Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical technology relics that the Frank Sharp Private museum has accumulated over the years .

Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.


Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:

- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........

..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !
-----------------------

©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of
Engineer Frank Sharp. NOTHING HERE IS FOR SALE !

Sunday, December 1, 2013

ULTRAVOX (SEMAR) P12 YEAR 1985.




The ULTRAVOX (SEMAR)  P12 is a portable  12 inches (31cm) B/W television with 16 programs manual rotatable program changer and VST electronic tuning semi automatic search.

The tunign system consist in a preset tuner adapted for selecting a desired one out of a plurality of preset channels, comprising: a memory for storing digital data concerning a plurality of channels to be preset, push-buttons/rotatable knob for addressing the memory for reading the digital data of a desired channel, a digital/analog converter for converting the read digital data into an analog signal, a manually operable variable voltage generator to obtain search mode AFC assisted, a write-in/channel select mode selector to store broadcasted transmission in desired program postion by rotatable program positions knob, a switch circuit responsive to the mode selector switchable between the digital/analog converter and the variable voltage generator, a voltage controlled oscillator responsive to the output of the switch circuit, a tuner employing the voltage controlled oscillator as a local oscillator, a comparator for comparing the outputs of the digital/analog converter and the variable voltage generator,

It has a Transistorized horizontal deflection circuits  made up of a horizontal switching or output transistor, a diode, one or more capacitors and a deflection winding. The output transistor, operating as a switch, is driven by a horizontal rate square wave signal and conducts during a portion of the horizontal trace interval. A diode, connected in parallel with the transistor, conducts during the remainder of the trace interval. A retrace capacitor and the deflection yoke winding are coupled in parallel across the transistor-diode combination. Energy is transferred into and out of the deflection winding via the diode and output transistor during the trace interval and via the retrace capacitor during the retrace interval.
In some television receivers, the collector of the horizontal output transistor is coupled to the B+ power supply through the primary windings of the high voltage transformer.

Was one of the last ULTRAVOX Tv sets and last B/W of that type.


ULTRAVOX S.r.l. RADIO TELEVISIONE — Milano, 

Founded in Milan in 1948 with the denomination Ultravox S.r.l of the brothers Sergio and Cino Stanghi, it was dedicated initially to the production of radiophonic apparatus.

 In 1959 the production was moved in a factory to Caronno Pertusella, in province of Varese, where some years later, there was transferred also the seat of the society, which changed in Ultravox S.p.A.

Later  it was specialised in the television sets production, sector in which the mark Ultravox became celebrated and conquered spaces in the market, with the carrying out of a special portable television set completely to transistor with tuner I expel incorporated FM, the model Hummingbird with protection from 6 thumbs of 1969, planned at the designer's Giovanni's Offredi.

In general the models Ultravox were distinguished compared to others, for the very original and futurist design, like the record player Cockchafer of 1970, created always from Offredi. Particular was the models of television sets built with incorporated record player.

In the eighties, the Lombard company, it had interested  a crisis in the market of the electronics that put it in financial difficulties, and therefore in 1982 it was admitted in the list of the societies in field REL, public society for the curing of the enterprises of the electronic sector.

The REL entered into the capital of the Ultravox acquiring 27 % it, since in 1981, the company, which was counting 105 employees, recorded losses in the budget accumulated 1970, piling up to 926 million lire. The accounts improved in the following years since the turnover passed 2,4 milliards from 1982 to 36 in 1987, year in which after years of losses it reached a profit of budget.

In 1988 together with the REL there acquired the control of Emerson of Florence, company television sets producer. They were noticed the mark of the society and the factory of Siena in resort It isolates of Arbia, when the Ultravox was constituting Siena S.p. A. The Sienese factory was reactivated and there was guided the production of television sets and videotape recorders with the marks Ultravox and Emerson.

In the nineties, the company was swept away by a new crisis, which was heavier than that one that struck it on the antecedent decade.

In 1993 it was forced the factory of Caronno Pertusella to close and subsequently it went to checked administration. To go out of this situation, in the capital of the Ultravox there intervened the Bank Mountain of the Paschi of Siena, with a financing for 8,5 milliard lires.

The Sienese factory remained active only with his 200 employees, and the Ultravox was taken from the Holding company Galaxis, German financial society that was checking the Galaxis, company decoder producer for the reception of satellite TV. Initially the Tuscan society unwound the list of Italian distributor for the Galaxis, then later on it specialised in the production of the decoder. Under the new property the company grew again be in terms of turnover in which of sales, and in 1996, Ultravox became the principal decoder supplier for the television paytv Telepiù (died).

In 1998 the Sienese company changed social reason in Galaxis Produzione S.p. A., and it was producing television sets, videotape recorders and decoder for pay TV with the marks Ultravox and Galaxis.

In 2000 the Ultravox-Galaxis is forced to the closing for bankruptcy.


ULTRAVOX (SEMAR) P12 CHASSIS 2T/1 INTERNAL VIEW.









Power supply is realized with mains transformer and Linear transistorized power supply stabilizer, A DC power supply apparatus includes a rectifier circuit which rectifies an input commercial AC voltage. The rectifier output voltage is smoothed in a smoothing capacitor. Voltage stabilization is provided in the stabilizing circuits by the use of Zener diode circuits to provide biasing to control the collector-emitter paths of respective transistors.A linear regulator circuit according to an embodiment of the present invention has an input node receiving an unregulated voltage and an output node providing a regulated voltage. The linear regulator circuit includes a voltage regulator, a bias circuit, and a current control device.

In one embodiment, the current control device is implemented as an NPN bipolar junction transistor (BJT) having a collector electrode forming the input node of the linear regulator circuit, an emitter electrode coupled to the input of the voltage regulator, and a base electrode coupled to the second terminal of the bias circuit. A first capacitor may be coupled between the input and reference terminals of the voltage regulator and a second capacitor may be coupled between the output and reference terminals of the voltage regulator. The voltage regulator may be implemented as known to those skilled in the art, such as an LDO or non-LDO 3-terminal regulator or the like.
The bias circuit may include a bias device and a current source. The bias device has a first terminal coupled to the output terminal of the voltage regulator and a second terminal coupled to the control electrode of the current control device. The current source has an input coupled to the first current electrode of the current control device and an output coupled to the second terminal of the bias device. A capacitor may be coupled between the first and second terminals of the bias device.
In the bias device and current source embodiment, the bias device may be implemented as a Zener diode, one or more diodes coupled in series, at least one light emitting diode, or any other bias device which develops sufficient voltage while receiving current from the current source. The current source may be implemented with a PNP BJT having its collector electrode coupled to the second terminal of the bias device, at least one first resistor having a first end coupled to the emitter electrode of the PNP BJT and a second end, a Zener diode and a second resistor. The Zener diode has an anode coupled to the base electrode of the PNP BJT and a cathode coupled to the second end of the first resistor. The second resistor has a first end coupled to the anode of the Zener diode and a second end coupled to the reference terminal of the voltage regulator. A second Zener diode may be included having an anode coupled to the cathode of the first Zener diode and a cathode coupled to the first current electrode of the current control device.
A circuit is disclosed for improving operation of a linear regulator, having an input terminal, an output terminal, and a reference terminal. The circuit includes an input node, a transistor, a bias circuit, and first and second capacitors. The transistor has a first current electrode coupled to the input node, a second current electrode for coupling to the input terminal of the linear regulator, and a control electrode. The bias circuit has a first terminal for coupling to the output terminal of the linear regulator and a second terminal coupled to the control electrode of the transistor. The first capacitor is for coupling between the input and reference terminals of the linear regulator, and the second capacitor is for coupling between the output and reference terminals of the linear regulator. The bias circuit develops a voltage sufficient to drive the control terminal of the transistor and to operate the linear regulator. The bias circuit may be a battery, a bias device and a current source, a floating power supply, a charge pump, or any combination thereof. The transistor may be implemented as a BJT or FET or any other suitable current controlled device.

PHILIPS TDA2549 I.F. amplifier and demodulator for multistandard TV receivers:

GENERAL DESCRIPTION
The TDA2549 is a complete i.f. circuit with a.f.c., a.g.c., demodulation and video preamplification facilities for
multistandard television receivers. It is capable of handling positively and negatively modulated video signals in both
colour and black/white receivers.
Features
• Gain-controlled wide-band amplifier providing complete i.f. gain
• Synchronous demodulator for positive and negative modulation
• Video preamplifier with noise protection for negative modulation
• Auxiliary video input and output (75 Ω)
• Video switch to select between auxiliary video input signal and demodulated video signal
• A.F.C. circuit with on/off switch and inverter switch
• A.G.C. circuit for positive modulation (mean level) and negative modulation (noise gate)
• A.G.C. output for controlling MOSFET tuners.

THOMSON TDA3190 COMPLETE TV SOUND CHANNEL:

The TDA3190 is a monolithicintegratedcircuit in a
16-lead dual in-line plastic package.It performsall
the functionsneededfor the TV soundchannel :
.IF LIMITER AMPLIFIER
.ACTIVE LOW-PASSFILTER
.FM DETECTOR
.DC VOLUMECONTROL
.AF PREAMPLIFIER
.AF OUTPUT STAGE
DESCRIPTION
The TDA3190 can give an output power of 4.2 W
(d = 10 %) into a 16 Ω load at VS = 24 V, or 1.5 W
(d = 10 %) into an 8 Ω load at VS = 12 V. This
performance,togetherwiththe FM-IF sectionchar-
acteristicsof high sensitivity, highAM rejection and
low distortion, enables the device to be used in
almost every type of televisionreceivers.
The device has no irradiation problems, hence no
externalscreening is needed.
The TDA3190 is a pin to pin replacement of
TDA1190Z.
The electrical characteristics of the TDA3190 re-
mainalmost constantover the frequencyrange4.5
to 6 MHz, therefore it can be used in all television
standards (FM mod.). The TDA3190 has a high
inputimpedance,soitcanwork withaceramicfilter
or with a tuned circuit that provide the necessary
input selectivity.
The value of the resistors connected to pin 9,
determinethe AC gain of the audio frequencyam-
plifier. This enablesthe desiredgainto be selected
in relation to the frequency deviation at which the
output stage of the AF amplifier, must enter into
clipping.
CapacitorC8, connectedbetween pins10 and11,
determinesthe uppercutofffrequencyof the audio
bandwidth.Toincreasethebandwidththe valuesof
C8 and C7 must be reduced, keeping the ratio
C7/C8 as shown in the table of fig. 16.
The capacitor connected between pin 16 and
ground, togetherwith the internal resistor of 10 KΩ
forms the de-emphasis network. The Boucherot
cell eliminates the high frequency oscillations
causedbytheinductiveloadandthewiresconnect-
ing theloudspeaker.


ULTRAVOX (SEMAR)  P12  CHASSIS 2T/1 Preset tuner:

 A preset tuner adapted for selecting a desired one out of a plurality of preset channels, comprising: a memory for storing digital data concerning a plurality of channels to be preset, push-buttons/rotatable knob for addressing the memory for reading the digital data of a desired channel, a digital/analog converter for converting the read digital data into an analog signal, a manually operable variable voltage generator to obtain search mode AFC assisted, a write-in/channel select mode selector, a switch circuit responsive to the mode selector switchable between the digital/analog converter and the variable voltage generator, a voltage controlled oscillator responsive to the output of the switch circuit, a tuner employing the voltage controlled oscillator as a local oscillator, a comparator for comparing the outputs of the digital/analog converter and the variable voltage generator, a counter to be reset responsive to the push-button search mode AFC  and to be enabled responsive to the write-in mode output of the mode selector to make a counting operation as a function of the output of the comparator, the output of the counter being loaded as the digital data concerning a channel in the memory, as addressed, a reference oscillator, a frequency comparator for comparing the output of the reference oscillator and the intermediate frequency output of the tuner, a filter for filtering the frequency comparator output to provide a correction control signal to the digital/analog converter, the digital/analog converter being adapted to be corrected for deviation of the intermediate frequency of the tuner as a function of the correction control signal.

 A typical conventional preset tuner such as employed in tv receivers and the like comprises a mechanical preset scheme. For example, such a preset tuner employing variable inductance devices as a tuning element is adapted to preset a plurality of channels by varying the inductance value of the variable inductance devices in association with the manual operation of a tuning knob. Another example of such a tuner using a variable capacitance device such as a variable capacitance diode as a tuning element employs variable resistors adjustable in association with the manual operation of a tuning knob for the purpose of a presetting operation.

 Such preset tuners as described above as employing a variable inductance device, a variable capacitance device and the like require provision of the same number of variable inductance devices, variable resistors and the like as that of presetting channel selection switches, which makes the tuner large in size, with the result that such tuner is disadvantageous particularly in case where such tuner is employed in an indash type portable tv receiver, where the tuner is provided in a limited space.


Accordingly, a principal object of the present invention is to provide an improved preset tuner, wherein the data concerning the local oscillation frequencies corresponding to the respective preset channels is preloaded in a memory in a digital representation format.
Another object of the present invention is to provide an improved preset tuner, which is adapted for implementation by large scale integration integrated circuits.
A further object of the present invention is to provide an improved preset tuner, which is adapted for implementation in an electronic structure rather than mechanical structure

ULTRAVOX (SEMAR) P12 CHASSIS 2T/1 CRT TUBE A31-510W.


TELEVISION TUBE A31-510W

QUICK REFERENCE DATA

31cm (12in) rectangular direct viewing television tube. A separate safety
screen is not required. Especially for use in portable receivers with push-
through presentation.

A special feature of this tube is its short warm—up time.

Deflection angle 110 deg
Final accelerator voltage max. 15 kV
Neck diameter 20 mm —u-

Light transmission 50 % E

Maximum overall length 233 mm

A legible picture appears within 5 seconds (typ. )

This data should be read in conjunction with
GENERAL OPERATIONAL RECOMMENDATIONS — TELEVISION PICTURE TUBES

HEATER
Vh 11  V
Ah 140 mA
Cathode warm —up time (typ. ) 5 s

OPERATING CONDITIONS

Va2, a4 12 kV
VG3 (focus electrode) control range 0 to 350 V
V  A1 250 V
Vg for visual extinction of focused raster  -35 to -69 V
*Vk for visual extinction of focused raster 32 to 58 V

*For cathode modulation, all voltages are measured with respect to grid.

SCREEN
Metal backedFluorescent colour White
Light transmission (approx. ) 50 %











Focusing Electrostatic

DEFLECTION Magnetic
Diagonal deflection ‘angle  110 deg
Horizontal deflection angle 99 deg
Vertical deflection angle 80 deg

The deflection eons should designed so that their internal contour is in accordance
with the reference line gauge shown on page 4.



CAPACITANCES:
cg all 7. 0 pF
ck all 3. 0 pF
ca2 a4 m 450 to 900 pF
a2,a4 —B 150 PF

EXTERNAL CONDUCTIVE COATING
This tube has external conductive coating, M, which must be connected to chassis.
and the 'capacitance ‘of this ‘coating to the final anode is used to provide smoothing
for the eht supply.
 The electrical connection to this coating must be made within
the area specified on the tube outline drawing;

RASTER CENTRING

See notes under this heading in ' General Operational Recommendations - Television
Picture Tubes' .

Centring magnet field intensity 0 to 800 A/m
Maximum distance of centre of centering field from reference line 47 mm

Adjustment of the centring magnet should not be such that '3. general reduction in
brightness of the raster occurs.

REFERENCE LINE GAUGE see page 4
MOUNTING POSITION Any

The tube socket should not be rigidily mounted but should have flexible leads and be
allowed to move freely.

This ‘tube is fitted with a pin protector in "order to avoid ‘damage to ‘the glass base
due to bending of the base pins whilst handling the tube.

it is advisable to keep this pin protector on the base until it can be replaced by the
socket after the installation of the tube in any equipment.

TELEVISION TUBE A31-410W

RATINGS (DESIGN MAXIMUM SYSTEM)

Va2 a4 max. (at i=0 a2 a4) (see note 1) 15 kV
Vva2 a4,“ min, 8.5kv
va3 max. 500 V
-Va3 max. 50 V
Va1 max. 350 V
va1 min. 200 V
~vg(pk) max. (see note 2) 350 V
~Vg max. (see note 3) ~ 100 V



Adequate precautions should be taken to ensure that the receiver is protected
from damage which may be caused by a possible high voltage flashover within
the tube. '

Maximum pulse duration 22% of one cycle with a maximum of 1. 5ms

The d. c. value of bias must not be such as to allow the grid to become positive
with respect to the cathode, except during the period immediately after switching
the receiver on or off when it may be allowed to rise to +2. OV. It is advisable to
limit the positive excursion of the video signal to +5V(pk) max. This may be
achieved automatically by the series connection of a 10kohm resistor.

. The metal hand must be earthed by means of the tag provided.

The mounting lugs will not necessarily be in electrical contact with the metal
band.

Weight tube alone (approx. ) 2. 8 kg