The RADIOMARELLI RV687 is a 17 inches B/w portable television with 4 programs keyboard selected and potentiometers tuning search.
The invention relates to a tuning unit with bandswitch for high frequency receivers, especially radio and television receivers, having a potentiometer system for the control of capacity diodes, the said potentiometer system consisting of a plurality of parallel resistance paths along which wiper contacts can be driven by means of screw spindles disposed adjacent one another in a common insulating material housing in which a bandswitch formed of metal rods is associated with each tuning spindle.
In these tuning units, the working voltages of the capacity diodes in the tuning circuits are recorded once a precise tuning to the desired frequency has been performed. A potentiometer tuning system has great advantages over the formerly used channel selectors operating with mechanically adjustable capacitors (tuning condensers) or mechanically adjustable inductances (variometers), mainly because it is not required to have such great precision in its tuning mechanism.
Tuning units with bandswitches formed of variable resistances and combined with interlocking pushbuttons controlling the supply of recorded working voltages to capacity diodes are known. Channel selection is accomplished by depressing the knobs, and the tuning or fine tuning are performed by turning the knobs. The resistances serving as voltage dividers in these tuning units are combined into a component unit such that they are in the form of a ladderlike pattern on a common insulating plate forming the cover of the housing in which the tuning spindles and wiper contacts corresponding to the variable resistances are housed. The number of resistances corresponds to the number of channels or frequencies which are to be recorded. The wiper contact picks up a voltage which, when applied to the capacity diodes determines their capacitance and hence the frequency of the corresponding oscillating circuit. The adjustment of the wipers is performed by turning the tuning spindle coupled to the tuning knob. By the depression of a button the electrical connection between a contact rod and a tuning spindle is brought about and thus the selected voltage is applied to the capacity diodes. Since the push buttons release one another, it is possible simply by depressing another button to tune to a different receiving frequency or a different channel, as the case may be.
In the end of the 60's increasingly attention was focused on the varicap diode tuner as the latest, sophisticated means of television receiver frontend tuning in both colour and black and white sets.
The main purpose of this article is to investigate the servicing problems associated with this comparatively new method of tuning.
First however let's briefly recap on the principles involved in this tuning system:
The tuners use variable capacitance (or "varicap") diodes as the variable tuning elements: the effective capacitance of the diodes is controlled by the reverse bias applied across them, tuning being achieved by varying this voltage. As the reverse bias across a varicap diode is increased so its junction depletion region widens thus reducing its capacitance.
A VHF/ UHF television tuner is constructed in accordance with the present invention includes a preselector tuned circuit having a solid state voltage controlled capacitor as its tunable element, a radio frequency amplifier coupled to the preselector circuit and alsoother circuit to perfect the signal receiving capability and the application the like.
Considering the Mechanical Tuner Problems:
To get the servicing problems in perspective let us next consider the tuning arrangements previously used.
The earliest of these, employed on v.h.f., was the switched tuner which was either of the turret or incremental type.
The turret tuner substituted a coil bearing "biscuit" mounted on the rotating drum or turret when channels were changed. Twelve positions were normally provided, with a fine tuning knob to adjust the local oscillator frequency. As its name suggests the incremental tuner simply added more inductance to the tuned circuits at every downward channel movement: thus the highest inductance was present on channel one and the least on channel 12 (which normally covered 13 as well with manipulation of the fine tuner).
The movement towards u.h.f. TV working, initially with dual standard sets and later with single standard ones, brought about the need for u.h.f. tuners. In the earliest u.h.f. receivers valve tuners which were not particularly efficient were used.
The drive mechanism was usually a dual speed rotary system calibrated from channels 21 to 68. Experience in the field indicated that 625 line television was in many cases considered by the viewer to be inferior to 405 -line reception, on account of the poor signal to noise ratio achieved by the valve tuners. Many viewers were not prepared to use external u.h.f. aerials of course, having achieved satisfactory reception on v.h.f. with an indoor aerial: this aggravated the situation even more.
Another aspect which caused difficulty was the care needed to tune in a u.h.f. channel using a rotary tuner covering the whole of Bands IV and V. Many viewers simply could not tune in BBC 2 or ZDF or ORF or any channel correctly with such a tuning mechanism, finding that they had passed right over the channel they wanted before realising what they had done.
The advent of transistor tuners rapidly improved the quality of u.h.f. reception but use of a rotary mechanism was continued by many manufacturers. Thus while potential reception was improved the same tuning difficulties remained and viewers continued to gravitate towards 405 line viewing using the "old faithful" switched tuner. The operational breakthrough came with the introduction of the push-button u.h.f. channel change.
The mechanism is basically simple. Adjustable push buttons press down on a lever bar which in turn rotates the tuner's variable capacitors to the appropriate position. Each button is capable of tuning over the entire u.h.f. bands and this leads to customer confusion at times when after some adjustments which were too heavy handed they find themselves receiving ITV on a BBC button or a ORF and ZDF broadcasting or any channel possible !
Mechanical Faults:
Mechanical tuning obviously has its snags. There are for example contact springs which earth the tuning capacitor and go intermittent. This gives rise to the most random tuning defects, capable of driving the. most patient viewer to a state of total exasperation. It is also possible for the rotation mechanism to hang up and jam intermittently, or just become sticky, so that the reset accuracy of the mechanism is impaired and the receiver has to be retuned every time the channel is changed.
The vanes in the tuning capacitor can also short out at different settings, thereby eliminating some channels. The Varicap Tuner It will be seen then that mechanical defects can cause very irritating fault symptoms. If one thinks along the lines that anything mechanical is nasty, then the elimination of mechanical parts can only be to the good.
The logic of this is splendid provided the electronic replacement for the mechanical system is more reliable! Otherwise we are leaping out of the frying pan into the fire! In the light of experience gained with mechanical tuning devices it seems great that with the varicap tuner we have at last dispensed with the dreaded rotary tuning capacitor, replacing it instead with a variable voltage to the tuner.
Let us think about this however since things are never quite as simple as they first appear. The tuning voltage has to be variable in order to tune the receiver. Obviously then a means of varying the voltage has to be provided to act as the tuning control.
As it is a voltage that has to be varied the tuning control takes the form of a potentiometer., Now we have returned to a mechanical system again, though in a less complex form.
A potentiometer is required for each channel, selected by pressing the appropriate channel button.
We have lost a tuning capacitor and its rotating mechanism and gained a set of pots and selector switches therefore. Provided the pots and switches are mechanically more reliable than the tuning capacitor we should be better off-or should we?
Need for Voltage Stabilisation.
The voltage selected by the pots cannot be allowed to drift otherwise the receiver will go off -tune. The voltage supply to the potentiometers has to be stabilised therefore and a stabilising zener diode or integrated circuit (TAA550) .is needed for this purpose.
Any failure in this part of the circuit will give rise to tuning drift or worse, a total loss of reception. A short-circuit TAA550 for example will completely remove the tuning voltage while if it is open circuit the tuning can vary with picture brightness. Likewise any intermittency in the potentiometers or associated switching and/or resistors can also cause problems.
Relative Reliability of Tuners:
It will be seen then that in order to lose our troublesome mechanical arrangement we have had to introduce considerably more electronics which we trust are going to be more reliable. In addition we have not so far considered the relative reliability of the varicap tuner itself compared with the mechanical type. Since two r.f. transistors are generally used to compensate for the reduced Q of the varicap tuned circuits we immediately have twice the likelihood of an r.f. stage breaking down!
And being semiconductors the varicap diodes themselves are more likely to fail than the sections of a ganged tuning capacitor. It is reasonable then to conclude that if mechanical faults are the most prevalent the use of varicap tuners will make life easier. Mechanical faults are generally not too difficult to sort out however and the field engineer can often cope with them in the home.
Can the same be said of the varicap tuner? It seems that this type of tuner does not need so much attention as its mechanical counterpart but is likely to throw up some much more difficult faults when it does, resulting in bench repairs being needed. So far my own experience has indicated that varicap tuning faults nearly always need servicing on the bench.
Generally speaking it seems true to say that varicap tuners themselves are adequately reliable: the snags result from the tuning system and stabilised power supply.
Tuning Drift with Varicap Tuners:
If a varicap tuned receiver is constantly drifting off tune the +30V supply should be the number one suspect. It is best to connect an Avometer permanently to the supply so that it can be precisely monitored-if necessary write down the exact voltage measured.
If the receiver drifts, check the voltage. If it has changed, even slightly, this may well be enough to be the cause of the fault. To pinpoint and confirm the diagnosis aerosol freezer should be applied to the stabiliser i.c. or zener. If the voltage returns to normal or changes wildly for the worse the stabiliser is almost certainly the cause of the trouble and should be replaced.
A prolonged soak test should then be carried out. Another point concerning varicap tuners arises with their use in colour receivers.
There were makers of the most expensive colour receiver on the market still didn't use a varicap tuner but instead use a mechanical one. The makers' claim is that the signal to-noise ratio of the varicap tuner is inadequate for their colour standards. Undoubtedly the results obtained on the receiver seem to confirm this. Interestingly, the same manufacturers use varicap tuners in their black -and -white receivers, and the tuning button system is often full of troublesome intermittent contacts. The varicap tuner has its advantages and disadvantages then. Probably the simplest comment would be to say that when it is good it is very very good but when it is bad it is horrid!Springs component in old tv's tuner :
Most old televisions tuning mechanisms were incorporating coil springs in one form or another for various functions. They can be of the compression type which are wound with spaces between adjacent turns and are intended to be squeezed under pressure : when released they expand to their original form. The mounting springs under record-player turntable units are examples of this type. Alternatively the spring can be of the expanding variety. The coils are wound closely together with adjacent turns touching. The applied tension tends to pull them apart and they exert a contracting force to counteract this and pull the linked components together. In the majority of applications this type is used. Springs often become damaged by being over stretched, or the end loop breaks. More frequently the spring simply becomes detached and disappears. Thus the engineer is faced with the task of finding and fitting a replacement. While it is possible to apply to the makers of the equipment for the right spring this involves delay and of course there is always the problem of identifying the right one out of the many used in the particular mechanism. For this reason many engineers find it more convenient to make their own replacements.
Making a Coil Spring: The operation was quite simple, the equipment needed being a wheelbrace, vice, selection of long screwdrivers with varying diameter shanks and a supply of piano wire of various gauges. The wheelbrace is mounted horizontally in the vice with the wheel uppermost and a screwdriver chosen and inserted into the chuck with the blade foremost. This serves as a mandrel on which the spring can be wound. Because a spring expands slightly in diameter after it is wound the diameter of the screwdriver shank should be a little less than the required inside diameter of the spring. One end of the piano wire should be inserted in the chuck and secured to prevent it coming free. The wheel is then slowly turned and the wire taken up around the screwdriver shank. Keep the wire taut and pull it backward (see Fig. 1) toward the chuck at an angle which keeps the adjacent turns together but does not make a turn ride over the top of its predecessor. When the spring has reached the required length cut the wire and remove the springand screwdriver from the chuck.
As an aid in determining the size of the spring required-especially if the original is lost and there is no pattern to make a comparison with-here are a few observations on the characteristics of coil springs as determined by their dimensions.
Properties of Coil Springs: There are two main properties of a spring, the length to which it can be expanded in comparison to its closed length and its tension or strength in the expanded state. If a coil spring is expanded too far its coils will not return to their original position and the spring is said to be stretched. The amount that a spring can be expanded without becoming stretched is governed by the number of turns and the diameter. The greater the number of turns the less each one has to deviate from its resting position for the complete spring to reach a particular length. Also the greater the diameter the smaller the strain and therefore the more the spring can be expanded. The strength of a spring is related to the gauge of wire and the diameter. A heavy gauge will obviously give greater tension than a lighter one but also a spring with a large diameter will exert less force than a smaller one because as we have seen there is less strain when it is expanded. More force is exerted when the spring is well expanded than when it is nearly closed. If therefore we need a spring that is strong and will stretch a long way we need a large number of turns but not so many that the spring is too long in its closed position. It needs to be of fairly large diameter but as this will make it weaker we must compensate by using a heavy gauge of wire. A weak spring with a long stretch is easily made with thinner wire and a large diameter while a strong spring with a short stretch need have few turns and small diameter. So the various factors are interdependent and although spring design can be quite an exact art-by varying the various parameters-something suitable for the job can usually be made up by judicously estimating the size from the foregoing principles. If a spring has become stretched nothing can be done to restore it by squeezing it up as it has now become a compression spring and the expanded state is its normal one. Rather than winding a completely new spring however the old one can be unwound on a wheelbrace-by reversing the winding process and then rewound tightly. Proper unwinding is essential, not just pulling the spring out straight, because this will produce kinks.
Leaf Springs: From coil springs we turn to leaf springs. These were used as contacts in tuner units and are also were used in the press button channel selector of the Philips colour TV range and other fabricants. To make a positive contact the leaf spring must be tensioned just right. In the case of the turret tuner the leaf must be so sprung that the contacting stud moves it about a tenth of an inch away from the resting position. If as sometimes happens contact is made without much movement of the leaf there will be little if any pressure and the contact will very likely be intermittent. If on the other hand the leaf is adjusted too far forward it may be caught by the edge of the coil biscuit and crumpled when the turret is rotated.
Moreover, using this arrangement, the only indication--during adjustment--of which channel is selected is by station identification.
It has a Transistorized horizontal deflection circuits made up of a horizontal switching or output transistor, a diode, one or more capacitors and a deflection winding. The output transistor, operating as a switch, is driven by a horizontal rate square wave signal and conducts during a portion of the horizontal trace interval. A diode, connected in parallel with the transistor, conducts during the remainder of the trace interval. A retrace capacitor and the deflection yoke winding are coupled in parallel across the transistor-diode combination. Energy is transferred into and out of the deflection winding via the diode and output transistor during the trace interval and via the retrace capacitor during the retrace interval.
In some television receivers, the collector of the horizontal output transistor is coupled to the B+ power supply through the primary windings of the high voltage transformer.
The set here in collection is fabricated by ZANUSSI.
RADIOMARELLI (society of the group Magneti Marelli) has been
one of the most famous radio receivers industries: it was founded in 1891 as
Industria Elettromeccanica Italiana by ERCOLE MARELLI.
Radiomarelli was founded in 1929 from the Magneti Marelli company.
Between 1920 and 1930 there was a linkage from this Italian company and the American Bosch about the manufacturing of magnets and electrical parts for motor vehicles.
On 11.19.1930, the Magneti Marelli decided to start the radio production and the new company was named Radiomarelli.
The Radiomarelli project manager was Mr. B.A.Quintavalle and the first radio models, made in Italy, were inspired to the American Bosch models.
At that time, Radiomarelli and American Bosch were business partners.
The diagrams and the chassis of the first Radiomarelli models were similar to the ones of American Bosch models, the wood cabinets were a bit different.
The “Musagete” model has the same chassis of the A. Bosch mod. 48 and the wood cabinet was made in Italy but is very similar to the American model.
The “Coribante” model is the Italian version of the A. Bosch mod. 5.
The “Scrigno” model was the Italian version of the Bosch 200A & 200B models.
The chassis of the “Alauda” is very similar to the one of Bosch 402.
From 1935 onwards Radiomarelli decided to create a more independent production.And obviously DIED like all Italian Industry..........
But before, it was aquired from the conglomerate of ELCIT AND SEIMART which was a joint developed by GEPI a government special system invented to "save" industry with "some" difficulties (!!!)
Further Readings / Notes.
^ Ministero dello sviluppo economico, su cultura.mise.gov.it. URL consultato il 28 febbraio 2018.
^ (EN) Homepage | Magneti Marelli, su www.magnetimarelli.com. URL consultato il 28 febbraio 2018.
^ MOVISION: by Pierluigi Spadolini for Radiomarelli | Mu.De.To. - Museo del Design Toscano, Museo Design Toscana, su www.mudeto.it. URL consultato il 28 febbraio 2018.
^ Catalogo Radiomarelli del 1965
^ LESA: dove dalle idee nascevano i giradischi Archiviato l'11 maggio 2013 in Internet Archive.
^ Admin, GIRADISCHI RADIOMARELLI - Radio Museo!, su www.radiomuseo.it. URL consultato il 28 febbraio 2018.
^ Archivio Storico Magneti Marelli: cento anni di attività, su Portale per il Turismo del Comune di Milano. URL consultato il 28 febbraio 2018.
^ La GEPI e l'industria radio
^ Il Mondo, vol. 29, nº 2, 1977.
^ CSI-Piemonte, RESOCONTI CONSILIARI, su www.cr.piemonte.it. URL consultato il 28 febbraio 2018.
^ Tornano le televisioni Magnadyne ma arrivano dalla Cina e dall'Europa dell'est - La Valsusa - settimanale della Val di Susa e Val Sangone, in La Valsusa - settimanale della Val di Susa e Val Sangone, 17 marzo 2017. URL consultato il 28 febbraio 2018.
^ Rispunta la Radiomarelli: da Lugano a Termini Imerese Il marchio ora svizzero punta all'ex impianto Fiat, in ilGiornale.it. URL consultato il 28 febbraio 2018.
^ MediaTI, È fallita la Radiomarelli - Ticinonews, su www.ticinonews.ch. URL consultato il 28 febbraio 2018.
^ (EN) Apply for a Trademark. Search a Trademark, su trademarkia.com. URL consultato il 28 febbraio 2018.
^ www.radiomarelli.com, su www.radiomarelli.com. URL consultato il 28 febbraio 2018.
^ (EN) Homepage | Magneti Marelli, su www.magnetimarelli.com. URL consultato il 28 febbraio 2018.
^ MOVISION: by Pierluigi Spadolini for Radiomarelli | Mu.De.To. - Museo del Design Toscano, Museo Design Toscana, su www.mudeto.it. URL consultato il 28 febbraio 2018.
^ Catalogo Radiomarelli del 1965
^ LESA: dove dalle idee nascevano i giradischi Archiviato l'11 maggio 2013 in Internet Archive.
^ Admin, GIRADISCHI RADIOMARELLI - Radio Museo!, su www.radiomuseo.it. URL consultato il 28 febbraio 2018.
^ Archivio Storico Magneti Marelli: cento anni di attività, su Portale per il Turismo del Comune di Milano. URL consultato il 28 febbraio 2018.
^ La GEPI e l'industria radio
^ Il Mondo, vol. 29, nº 2, 1977.
^ CSI-Piemonte, RESOCONTI CONSILIARI, su www.cr.piemonte.it. URL consultato il 28 febbraio 2018.
^ Tornano le televisioni Magnadyne ma arrivano dalla Cina e dall'Europa dell'est - La Valsusa - settimanale della Val di Susa e Val Sangone, in La Valsusa - settimanale della Val di Susa e Val Sangone, 17 marzo 2017. URL consultato il 28 febbraio 2018.
^ Rispunta la Radiomarelli: da Lugano a Termini Imerese Il marchio ora svizzero punta all'ex impianto Fiat, in ilGiornale.it. URL consultato il 28 febbraio 2018.
^ MediaTI, È fallita la Radiomarelli - Ticinonews, su www.ticinonews.ch. URL consultato il 28 febbraio 2018.
^ (EN) Apply for a Trademark. Search a Trademark, su trademarkia.com. URL consultato il 28 febbraio 2018.
^ www.radiomarelli.com, su www.radiomarelli.com. URL consultato il 28 febbraio 2018.