The LOEWE VITROS 6270 ZW is a 29 inches 16/9 Digital 100Hz color television and is a CRT TV display system with increased field frequency ; digital scan converter means including field-memory means supplied with an input video signal of an interlaced television system having a selected plurality of fields per second with PHILIPS 100HZ digital scan system. The chassis chipset is featuring both ITT/MICRONAS and PHILIPS chipset in video ignal processing with the chassis LOEWE Q2500B (110Q25B)
The ser features first time a highly integrated circuit solution with a 3 chip design and one chip featuring 100 Hz conversion based on a field repetition algorithm. The PHILIPS SAA4979H supports different scan-rate upconversion concepts. In this application no further components are needed for a 100 Hz conversion based on a field repetition algorithm (AABB mode).The SAA4979H provided an economic stand-alone solution for 4 : 2 : 2 field rate upconversion (50 to 100 Hz or 60 to 120 Hz) including the required field memory combined with picture improvement features and dynamic field based noise reduction.
The 50 Hz, 625 line PAL and SECAM television systems were developed many years ago. Those systems have a 50 Hz field rate (312.5 lines per interlaced field) and a 25 Hz frame rate (625 interlaced lines per frame, only 576 of which are visible). At the time of their development, technology did not support large display sizes. Consequently, 576 lines per frame were adequate to render the line structure unnoticeable at normal viewing distances. Also, at that time, display brightness was much lower than in typical displays of the present era. As a result, flicker resulting from the relatively low 50 Hz field rate (refresh rate) was not a serious problem. When PAL and SECAM signals are displayed on today's large screen television equipment, both flicker and line structure are visible and annoying to most viewers.
The problem of flicker is particularly objectionable in 50 Hz systems displayed on large bright screens. To overcome flicker, video systems have been produced that double the frame rate. However, frame doubling still leaves the line structure visible in large displays. Visible line structure is reduced by line doubling. One type of line doubling converts the interlaced signal to a progressively scanned one in which the progressively scanned frame rate is the same as the interlaced field rate and the progressive frames have twice as many lines as an interlaced field. Another type of line doubling maintains interlacing but doubles the number of lines in each interlaced field.
Some “high end” television display enhancement products include both line doubling and frame doubling, including products manufactured by Loewe. While providing an excellent picture display without flicker and visible line structure at normal viewing distances, such systems require a high horizontal scan rate.
(Featuring an analog television component signal with a standard line frequency of 15.625 kHz is converted in the coder into an internal digital signal with a bit rate of 625 Mbit/s.) A method for reducing flickering in a television receiver, in which the television signal (Se) received field by field is divided into its high-frequency and low-frequency components (Ah, Bh, At, Bt; HA, TA) with respect to the spatial frequency by a spatially acting filter (1; 5; 15), these high-frequency and low-frequency components (Ah, Bh, At, Bt; HA, TA) are subjected to a signal processing based on the use of motion vectors (BV) and are subsequently combined again, and in which the television signal (Se) processed in this manner is reproduced with twice the vertical frequency in accordance with the line interlace method.
The LOEWE VITROS 6270 ZW is A 100HZ frame rate TELEVISION .
In a known arrangement, the frame rate of a television signal is doubled by using a field store. In a first operating mode, each field of the television signal is entered into the field store in this arrangement and read out twice at twice the frequency. In a second mode, only every second field is entered into the field store and read out four times at twice the frequency. In an arrangement for converting an original picture signal representing a sequence of frames, each of which is composed of two interlaced fields, into a converted picture signal which has a double field frequency with respect to the original picture signal, is for doubling the field frequency, for the purpose of noise reduction, motion compensation and line flicker reduction.
The 100Hz digital scan, is to improve the picture quality in a television receiver which displays the received television signal in accordance with the line interlace method, frame stores are increasingly used. The remaining system-related flicker disturbances caused by the line interlace method require different signal processing for stationary and moving frame sequences in known flicker reduction processes, in which the receiver switches from flicker-free to motion-correct 100-Hz field repetition rate even with a relatively slight movement. To reduce system-related line flicker disturbances with line interlace reproduction, the signals contained in the frame store are in each case divided by vertical filtering in the television receiver into a vertical high-frequency and low-frequency signal as determined by the position frequency, these signals are differently processed in dependence on movement and the processed high-frequency and low-frequency signals are reproduced with twice the vertical frequency in line interlace. The flicker reduction method according to the invention can be used in all television receivers in which the television signal is reproduced at twice the vertical frequency in line interlace,
It should be understood that implementation of other variations and modifications of the invention and its various aspects will be apparent to those skilled in the art, and that the invention is not limited by these specific embodiments described. It is therefore contemplated to cover by the present invention any and all modifications, variations, or equivalents that fall within the true spirit and scope of the basic underlying principles disclosed and claimed herein.
LOEWE VITROS 6270 ZW features also Beam Scan Velocity modulation.
When the phosphor screen of a video signal reproducing apparatus, such as, the screen of the cathode ray tube in a television receiver, is scanned by an electron beam or beams so as to form a picture or image on the screen, the beam current varies with the luminance or brightness level of the input video signal. Therefore, each electron beam forms on the phosphor screen a beam spot whose size is larger at high brightness levels than at low brightness levels of the image so that sharpness of the reproduced picture is deteriorated, particularly at the demarcation between bright and dark portions or areas of the picture. Further, when a beam scanning the screen in the line-scanning direction moves across the demaraction or edge between dark and bright areas of the picture, for example, black and white areas, respectively, the frequency response of the receiver does not permit the beam intensity to change instantly from the low level characteristic of the black area to the high level characteristic of the white area. Therefore, the sharpness of the reproduced image is degraded at portions of the image where sudden changes in brightness occur in response to transient changes in the luminance or brightness of the video signal being reproduced. The increase in the beam current and in the beam spot size for bright portions of the reproduced picture or image and the inadequate frequency response of the television receiver to sudden changes in the brightness or luminance level of the incomming video signal are additive in respect to the degradation of the horizontal sharpness of the reproduced image or picture.
It is well known that an improvement in apparent picture resolution can be achieved by modulating the beam scan velocity in accordance with the derivative of the video signal which controls the beam intensity. This video signal is referred to as the luminance signal and the derivative of the luminance signal is employed for such control. An advantage of this method over a peaking approach to picture sharpness enhancement is the avoidance of blooming of peaked white picture elements.
It is known in the prior art to apply a differentiated video signal to the input of a double ended limiter incorporating a pair of threshold circuits. The limiter consists of two separate differential amplifiers, where each amplifier is separately biased to provide double ended limiting as well as to provide coring. The limiter arrangement develops a doubly clipped signal output which does not respond to excursions of the differentiated signal which lie below selected threshold magnitudes. Thus the gain of the limiter is such as to provide sharpness enhancement for slow transients while precluding excessive supplemental beam deflection with fast transients. The coring capability of the limiter arrangement significantly lessens the likelihood of noise visibility.
TV signals are defined primarily the National Television Standards Committee (NTSC), the Phase Alternative Line (PAL) or the Sequential Couleur Avec Memoire (SECAM) systems, and used in different countries around the world. An analog TV signal utilizes mainly two or three RF carriers, combined in the same channel band. One carrier may commonly be amplitude modulated (AM) with video content, and the other may be frequency modulated (FM) and/or amplitude modulated (AM) with audio content. An analog TV receiver functions by performing a series of operations comprising adjusting the signal power, separating the video and audio carriers, and locking to each carrier in order to down-convert the signals to baseband. The baseband video signal may then be decoded and displayed by achieving horizontal and vertical synchronization and extracting the luminance and color information. After demodulating the received signal, the resulting baseband audio may be decoded, and left, right, surround channels and/or other information may be extracted.- The LOEWE VITROS 6270 ZW Features a multistandard PAL/SECAM/NTSC 3.58 & 4.43 CCIR B/G/H/I/L/D/K/M. The different coding processes, e.g. NTSC, PAL and SECAM, introduced into the known colour television standards, differ in the nature of the chrominance transmission and in particular the different systems make use of different colour subcarrier frequencies and different line frequencies.
The following explanations relate to the PAL and NTSC systems, but correspondingly apply to video signals of other standards and non-standardized signals.
The colour subcarrier frequency (fsc) of a PAL system and a NTSC system is fsc(NTSC) = 3.58 MHz or fsc(PAL) = 4.43 MHz.
In addition, in PAL and NTSC systems the relationships of the colour subcarrier frequency (fsc) to the line frequency (fh) are given by fsc(NTSC) = 227.50 * fh or 4•fsc(NTSC) = 910 • fh fsc(PAL) = 283.75 * fh or 4•fsc(PAL) = 1135 • fh so that the phase of the colour subcarrier in the case of NTSC is changed by 180°/line and in PAL by 270°/line.
The invention relates to a digital multistandard decoder for video signals and to a method for decoding video signals. Colour video signals, so-called composite video, blanking and sync signals (CVBS) (chroma-video-blanking-sync) signal is a signal comprising both the chrominance and the luminance component of the video signal. Therefore, the CVBS video signal may be PAL video signal, a SECAM video signal, or an NTSC video signal. are essentially composed of a brightness signal or luminance component (Y), two colour difference signals or chrominance components (U, V or I, Q), vertical and horizontal sync signals (VS, HS) and a blanking signal (BL).
In order to decode a video signal and restore a color image, a color TV set has to identify the color TV standard used at the emission. Conventional color TV sets are equipped with a system for automatically identifying the norm or standard of the color TV set used for the emission. The invention more particularly relates to an automatic method for identifying a color TV standard in a multistandard TV set.
Presently, the most commonly used color TV standards are PAL, NTSC and SECAM standards. For these three standards, each line of the composite video signal comprises a synchronization pulse, a burst of a few oscillations of the chrominance sub-carrier signal, then the signal itself corresponding to the image, comprising superimposed luminance and chrominance information, the latter information being carried by the luminance signal.
The characteristics of the chrominance sub-carrier in the various PAL, NTSC and SECAM standards are defined in the published documents concerning these standards and will not be described in detail here. However, the main characteristics of these various standards will be briefly reminded because these indications are useful for a better understanding of the invention.
In the PAL standard, the frequency of the chrominance sub-carrier is equal for all the lines, but the phase of one of the modulation vectors varies + or -90° from one line to another. The frequency of the chrominance sub-carrier is standardized at 4.43 Mhz. In this system, the burst signal is also shifted by + or -90° from one line to the next.
In the NTSC standard, the chrominance sub-carrier is equal for all the lines.
In the SECAM standard, one uses two chrominance sub-carrier frequencies which alternate from one line to another, at 4.25 Mhz and 4.40 Mhz, respectively. These two chrominance sub-carriers are frequency modulated.
The multistandard color TV sets must have distinct internal systems designed to decode the luminance and chrominance signals for each standard used.
Therefore, these TV sets have to previously identify the received standard.
Systems for automatically identifying the standard used already exist. Generally, for such an automatic standard identification, the systems known use the bursts of the chrominance sub-carrier signal that are present at the beginning of each line. In fact, these bursts are standardized and calibrated samples of the chrominance sub-carrier transmitted on the video signal and comprise all the characteristic information concerning the transmitted color standard. The information contained in these bursts represents the frequency, the phase of one of the modulation vectors and the frequency or phase variation of one line with repect to the next one.
- CTI Picture Improvements circuitry in which colour signal, e.g. the line-sequential colour difference signals (R-Y,B-Y), is processed by an edge steepening circuit e.g. a colour transient improver and/or a two-line delay line in which the colour signals from two lines are added. The delay line may be part of a drop-out compensation circuit in which the colour signal of line n is replaced by the signal present for line n-2. A CCD-line may be used as the two-line delay line, and an amplitude limiter included. ADVANTAGE - Increased picture sharpness and improved signal-to-noise ratio.
LOEWE VITROS 6270 ZW Teletext is a television-based communication technique in which a given horizontal video line is utilized for broadcasting textual and graphical information encoded in a digital binary representation. Such horizontal video line signal that contains teletext data is referred to herein as a Data-line. It is assumed herein, for explanation purposes, that teletext is sent by the broadcaster only during the vertical blanking interval (VBI), when no other picture information is sent. The organization of the binary information in the broadcast signal is determined by the standard employed by the broadcaster. By way of an example only, references are made herein to a teletext based on a standard referred to by the British Broadcasting Corporation (BBC) as CEEFAX.
Each Data-line carries data synchronizing and address information and the codes for a Row of 40 characters. The synchronizing information includes a clock run-in sequence followed by an 8-bit framing code sequence. Each Data-line contains a 3 bit code referred to as the Magazine number. A teletext Page includes 24 Rows of 40 characters, including a special top Row called the Page-Header. Each ROW is contained in a corresponding Data-line. A user selected Page is intended to be displayed in place of, or added to a corresponding television picture frame. A Magazine is defined to include Pages having Data-lines containing a corresponding Magazine number. The transmission of a selected Page begins with, and includes its Page Header and ends with and excludes the next Page Header of the selected Magazine number. All intermediate Data lines carrying the selected Magazine number relate to the selected Page.
CTI Picture Improvements circuitry in which colour signal, e.g. the line-sequential colour difference signals (R-Y,B-Y), is processed by an edge steepening circuit e.g. a colour transient improver and/or a two-line delay line in which the colour signals from two lines are added. The delay line may be part of a drop-out compensation circuit in which the colour signal of line n is replaced by the signal present for line n-2. A CCD-line may be used as the two-line delay line, and an amplitude limiter included. ADVANTAGE - Increased picture sharpness and improved signal-to-noise ratio.
On screen display (OSD) arrangements employed in video processing systems include a switching (or "multiplexing") network for switching between graphic image representative signals and normal video signals so that a graphic image can be displayed on the screen of a picture reproduction device either in place of the image represented by the video signals or together with (inserted in) the image. The graphic image can take the form of alphanumeric symbols or-pictorial graphics, and can be used to indicate status information, such as channel numbers or time, or operating instructions.A SCART Connector (which stands for Syndicat des Constructeurs d'Appareils Radiorécepteurs et Téléviseurs) is a standard for connecting audio-visual equipment together. The official standard for SCART is CENELEC document number EN 50049-1. SCART is also known as Péritel (especially in France) and Euroconnector but the name SCART will be used exclusively herein. The standard defines a 21-pin connector (herein after a SCART connector) for carrying analog television signals. Various pieces of equipment may be connected by cables having a plug fitting the SCART connectors. Television apparatuses commonly include one or more SCART connectors.Although a SCART connector is bidirectional, the present invention is concerned with the use of a SCART connector as an input connector for receiving signals into a television apparatus. A SCART connector can receive input television signals either in an RGB format in which the red, green and blue signals are received on Pins 15, 11 and 7, respectively, or alternatively in an S-Video format in which the luminance (Y) and chroma (C) signals are received on Pins 20 and 15. As a result of the common usage of Pin 15 in accordance with the SCART standard, a SCART connector cannot receive input television signals in an RGB format and in an S-Video format at the same time.Consequently many commercially available television apparatuses include a separate SCART connectors each dedicated to receive input television signals in one of an RGB format and an S-Video format. This limits the functionality of the SCART connectors. In practical terms, the number of SCART connectors which can be provided on a television apparatus is limited by cost and space considerations. However, different users wish the input a wide range of different combinations of formats of television signals, depending on the equipment they personally own and use. However, the provision of SCART connectors dedicated to input television signals in one of an RGB format and an S-Video format limits the overall connectivity of the television apparatus. Furthermore, for many users the different RGB format and S-Video format are confusing. Some users may not understand or may mistake the format of a television signal being supplied on a given cable from a given piece of equipment. This can result in the supply of input television signals of an inappropriate format for the SCART connector concerned.This kind of connector is todays obsoleted !
In an OSD arrangement for use in an analog video signal processing system, the multiplexing network typically operates to switch in levels corresponding to the desired intensity of respective portions of the graphic image at the time the graphic image portions are to be displayed. In such an arrangement the graphic image representative signals take the form of timing pulses which occur when the graphic image portions are to be displayed and are used to control the multiplexing network. Such an analog OSD arrangement can also be used in a digital video processing system, but requires that the video signals be first converted to analog form. While digital video signal processing systems typically include a digital-to-analog converter section in which the digital video signals are converted to analog form, it may be more cost effective for the OSD arrangement to be incorporated as an integral part of the digital video processing section.
A remote control system, particularly for television sets, includes a remote control receiver and a remote control transmitter. The receiver and transmitter are switched to the menu mode by means of a menu key. At least two menu fields are associated with the remote control receiver and are displayed on the screen of the television set. The menu fields are individually selectable by means of the remote control transmitter. The selection is preferably accomplished by manually aligning the remote control transmitter with the displayed menu field to be selected.
The television receiver has a fully alphanumeric menu/display which appears on the picture tube screen, to give the user data on the tuned channel number, colour settings and other operating data. The digital processor which generates the characters for display also controls the channel setting, etc., under the control of a digital remote control unit . The processor has an associated memory circuit for permanent tuning back up. The control of the capacitance diode tuner is achieved by the processor altering the dividing factor of a feedback loop to a phase/frequency comparator . The other input to the comparator is a divided frequency from a quartz oscillator.The present invention concerns a television system with apparatus for controlling a relatively large number of functions and characteristics with only a relatively small number of control devices.
Television receivers have a relatively large number of functions that are controllable by the user. Typically, these include turning the receiver on and off, selecting channels, setting the volume level and adjusting certain picture characteristics such as brightness, contrast sharpness (sometimes called "peaking"), color level (or saturation) and color tint (or hue) and in television receivers with stereo sound provisions, adjusting certain audio characters such as balance, treble and bass. In addition, with the increased use of digital signal processing and microprocessors, a large number of other control functions have become economically practical. Often a control device is provided for each function or characteristic.
In the case of television receivers with analog signal processing systems, potentiometers are provided for adjusting respective picture and audio characteristics in both increasing and decreasing senses. However, in television receivers with digital signal processing systems it is anticipated that each of these potentiometers may be replaced by two pushbutton switches for digitally causing the respective characteristic to be increased or decreased. Therefore it is anticipated that a digital television receiver will require even more control devices than a comparable analog receiver.
It is desirable for cost and for human engineering reasons to limit the number of user operable control devices. Thus, there has been the desire to provide control apparatus for controlling a large number of functions and characteristics of a television receiver with only a few control devices.
In the past, attempts to make multiple use of switches for controlling various functions in order to limit the number of control devices have been confusing to users. Thus, there exists a need for plural-function and characteristic control apparatus in which multiple use is made of control devices with little or no confusion to users.
In accordance with a feature of the present invention, in a television system, a programming switch and a plurality of switches identified by respective symbols such as numbers, the latter being normally used for channel or television signal source selection, are used to select various functions of a receiver for control. When the programming switch is operated by a user, a character generator produces signals for displaying a list or menu of various receiver control functions, such as the controlling of the picture and audio responses on an image reproducing device associated with the television system. In the menu, each one of the functions is identified by one of the symbols associated with the signal source selection switches. Thereafter, a particular one of the functions displayed on the menu can be selected for control by operation of the corresponding signal source selection switch.
In accordance with another aspect of the invention, after a particular function has been selected for control, a list or menu of characteristics of the selected function, such as brightness, contrast, sharpness, color level and color tint characteristics of the picture response is caused to be displayed. In the menu, each of the functions is identified by one of the symbols associated with the signal source selection switches. Thereafter, a particular one of the characteristics displayed on the menu can be selected for adjustment by operation of the corresponding signal source selection switch. After a characteristic has been selected for control, positive and negative sense adjustment switches common to all the characteristics can be operated to adjust the selected characteristic.
It has 1000 Programs with 200 channels tuning capabilty;
Advanced Graphic OSD;
Full Digital processing and many high Improvements of picture;
Full Multistandard;
Stereo HIFI Multisound;
And many others features needless to say.........It's LOEWE.
(To see the Internal Chassis Just click on Older Post Button on bottom page, that's simple !)
One more comment about " digital " in 2000..............
Over the years we have learnt that one of the most important things in video/ TV technology is selecting the best system to use. We have also seen how difficult this can be. Prior to the start of the colour TV era in Europe there was an great to-do about the best system to adopt. The US NTSC system seemed an obvious choice to start with. It had been proved in use, and refine- ments had been devised. But alternative, better solutions were proposed - PAL and Secam. PAL proved to be a great success, in fact a good choice.The French Secam system seems to have worked just as well. Apart from the video tape battles of the Seventies, the next really big debate concerned digital TV. When it came to digital terrestrial TV (DTT), Europe and the USA again adopted different standards.One major difference is the modulation system used for transmission. Coded orthogonal frequency division multiplexing (COFDM) was selected for the European DVB system, while in the USA a system called 8VSB was adopted. COFDM uses quadrature amplitude modulation of a number of orthogonal carriers that are spread across the channel bandwidth. Because of their number, each carrier has a relatively low bit rate.The main advantage of the system is its excellent behaviour under multipath reception conditions. 8VSB represents a rather older, pre phase modulation technoogy: eight state amplitude modulation of a single carrier, with a vestigial sideband. The decision on the US system was assigned to the Advanced Television Systems Committee (ATSC), reporting to the FCC. The system it proposed was approved by the FCC on December 26th, 1996. The curious date might suggest that there had been a certain amount of politicking. In fact there had been an almighty row between the TV and computer industries about the video standard to adopt, the two fearing that one or other would gain an advantage as the technologies converged. It was 'resolved' by adopting a sort of "open standard" we are talking about resolution and scanning standards here - the idea apparently being that the technology would somehow sort itself out.There seems to have been rather less concern about the modulation standard. 8VSB was adopted because it was assumed to be able to provide a larger service area than the alternatives, including COFDM, for a given transmitter power. Well, the USA is a very large place! But the US TV industry, or at least some parts of it, is now having second thoughts. Once the FCC had made its decision, there was pressure to get on with digital TV. In early 1998 there were announce- ments about the start of transmissions and broadcasters assured the FCC that DTT would be available in the ten areas of greatest population concentration by May 1999. Rapid advances were expected, with an anticipated analogue TV switch -off in 2006. So far however things have not gone like that. At the end of 1999 some seventy DTI' transmitters were in operation, but Consumer Electronics Manufacturers Association estimates suggest that only some 50,000 sets and 5,000 STBs had been sold.There have been many reports of technical problems, in particular with reception in urban and hilly areas and the use of indoor aerials, also with video/audio sync and other matters. Poor reception with indoor aerials in urban conditions is of particular concern: that's how much of the population receives its TV. The UK was the first European country to start DTI', in late 1998 - at much the same time as in the USA. The contrast is striking. ONdigital had signed up well over 500,000 subscribers by the end of 1999, a much higher proportion of viewers than in the USA. Free STBs have played a part of course, but it's notable that DTT 's reception in the UK has been relatively hassle -free. In making this comparison it should also be remembered that the main aim of DTT technology differs in Europe and the USA.The main concern in Europe has been to provide additional channels. In the USA it has been to move to HDTV, in particular to provide a successor the NTSC system. There have been plenty of channels in the USA for many a year. For example the DirecTV satellite service started in mid 1994 and offers some 200 channels. Internationally, various countries have been comparing the US and European digital systems. They have overwhelmingly come down in favour of the DVB system. There have been some very damaging assessments of the ATSC standard. The present concern in the US TV industry results from this poor domestic take up and lack of international success. Did the FCC make a boob, in particular in the choice of 8VSB? Following compara- tive tests carried out by Sinclair Broadcasting Group Inc., the company has petitioned the FCC to adopt COFDM as an option in the ATSC standard. Not only did its tests confirm poor reception with indoor aerials: they also established that the greater coverage predicted for 8VSB failed to materialise in practice. Could the USA have two DTT transmission standards? It seems unlikely. It would involve dual standard receivers and non standardisation of transmitters. In the all important business of system selection, it looks as if the FCC got it wrong.
.................................... It is obviously wasteful to duplicate terrestrial TV transmissions in analogue and digital form. Sooner or later transmissions will all be digital, since this is a more efficient use of spectrum space. The question is when? It would suit some to switch off the analogue transmitters as soon as possible. 2006 has been suggested as a time to start, with ana- logue transmissions finally ending in 2010. All very neat and tidy. Whether it will work out in that way is another matter. Strong doubts are already beginning to be aired.
The government has, quite properly, laid down conditions to be met before the switch off occurs. Basically that the digital signal coverage should equal that achieved for analogue TV, currently 99.4 per cent of the population, and that digital receiving equipment should be available at an affordable price. The real problem is that there is a difference between a coverage of 99.4 per cent and 99.4 per cent of the population actually having digital receiving equipment. Why should those who are interested in only free - to -air channels go out and buy/rent a digital receiver? It is already becoming evident that this represents a fair chunk of the population.
The ITC has warned the government that the 2006-2010 timetable is in jeopardy. Peter Rogers, the ITC's chief executive, has said "we need to persuade people only interested in watching free -to -air television to switch to digital. "Unless we do, there will be no switch - over." Well not quite, because the analogue receivers will eventually wear out and have to be replaced. But that could take a long, long time. Meanwhile many people will expect to be able to continue to watch their usual TV fare using their existing analogue receivers.Research carried out by Culture Secretary Chris Smith's department has established that between forty and fifty per cent of the population expects the BBC licence to cover their TV viewing, which means what they get at present in analogue form. A substantial percentage of the population simply isn't interested in going digital. In fact take up of integrated receiver -decoders, as opposed to the free digital set -top boxes, has so far been very slow.Of five million TV sets sold in the UK year 1999 , only 10,000 were digital. There are important factors apart from overall coverage and how many people have sets. There is the extension of coverage, which becomes more difficult to achieve eco- nomically as the number of those not covered decreases. There is the problem of reception quality. And there is the question of domestic arrangements and convenience. Extending coverage to the last ten fifteen per cent of the population by means of conventional terrestrial transmitters will be expensive. Mr Smith's department seems to have conceded that other methods of signal delivery may have to be adopted - by satellite, by microwave links or by cable. The latter has of course never been economic where few households are involved.The frequency planners have been trying to find ways of increasing coverage even to well populated areas. There are so many areas where problems of one sort or another make the provision of DTT difficult. Satellite TV is the obvious solution.The time may well come when it is wondered why anyone bothered with DTT. Signal quality is becoming an increasingly important factor as the digital roll out continues. In areas where the signal is marginal, viewers could experience the extreme irritation of picture break up or complete loss like even todays. This is quite apart from the actual quality of the channel, which depends on the number of bits per second used. There is a maximum number of bits per multiplex, the total being shared by several channels. The fewer the bits, the poorer the picture in terms of definition and rendering.There have already been complaints about poor quality. The question of domestic arrangements is one that has not so far received adequate public attention. Most households 2000 nowadays don't have just one TV set that the family watches. They have a main one, probably, almost certainly one or more VCRs, and several other sets around the house to serve various purposes. What 'the percentage of households that have digital TV' should really mean is the percentage willing to replace all this equipment. It will be expensive, and people would not be happy if they were told to throw away their other equipment when they get a single nice new all singing all dancing widescreen digital TV set. It fact there would be uproar. The move from analogue to digital is not like that from 405 to 625 lines, which went fairly smoothly.
In those days few people had video equipment or a multitude of sets. The transition to digital is not going to be smooth, and the suggestion of a switch off during 2006-2010 already looks totally unrealistic. Unless the government subsidises or gives away digital TV sets - and why should it? - people will expect their existing equipment to continue to be usable.So it's likely that analogue TV will be with us for many years yet. But that would be the end of analogue too..............................Indeed...............................
----------------------------------------------------------------------------
About Screen Formats...............
It is difficult to know exactly what to make of the unfolding widescreen TV saga, which seems to be yet another example of failure to agree to a TV standard. Is it perhaps simply an attempt by the European TV industry to snatch a temporary advantage over Far Eastern manufacturers?
Certainly it's the European tubemakers that have developed the technology.
But if this is the case the question that has to be asked is whether widescreen TV is a further example of an attempt by technology rather than consumer demand to drive the market forwards? If so it could well be a mistake. People won't buy technology for the sake of it: they'll buy only what suits them.
The 16:9 aspect ratio sets that have been announced so far are a mixed batch. Nokia has opted for 625 -line PAL, Thomson has opted for 1,250 -line PAL while Philips has decided on 625 -line PAL with a 100Hz field rate. Nokia feels that the wide screen is the important thing rather than any change to basic TV standards. The company points to the cost advantage of using a standard chassis to drive the new type of tube. But evenhere the wide screen presentation is seen as essentially a top of the range phenomenon. In this case why not go the whole hog? With a chassis that features digital signal processing, why not take advantage of the opportunity to improve the definition and get rid of flicker once and for all? There are arguments as to exactly how much better a picture you get for your money at higher timebase frequencies.
What this seems to boil down to is that compromises, as always with TV, have to be accepted. The argument is over what compromise to accept. It's a rather pointless argument really and one can't help but feel that the motivation behind it is simply a matter of gaining marketing clout rather than achieving the best in good picture reproduction.
There is much to be said for the view that a well set up display using conventional technology and a decent aerial system, with no corner cutting in circuit design, will with the presently available transmissionsprovide as good a picture as any for the viewer rather than the technology buff.
Representatives of the main Japanese manufacturers in the UK have been making disparaging comments about widescreen TV. The case was put forcibly by Mark Todd, Toshiba's marketing director. He hit the headlines with coments that widescreen TV was "premature" and "a joke", but rather more to the point he suggested that instead of buying a set that is "too big" and "too expensive" the consumer would be better off with a 34in. Nicam set featuring surround sound.
The money saved could, he added, be invested in a building society. The debate has been clouded by dispute over what programming is available. At present it seems to be limited to a few tapes and Continental satellite channels transmitted in D2-MAC form. Not much really to justify lashing out on a set that costs a few thousand pounds. Since some rather rude remarks about the 16:9 picture format have been somewhat severely taken to task over what is and what isn't a natural display based on the characteristics of human vision, in particular who quoted a considerable amount of research.
The fact that human eyes are horizontally displaced, giving perception somewhat elongated in the horizontal plane compared to the vertical plane, looks a clincher.
But this rather overlooks the reason for us having two eyes in the first place to achieve bifocalvision. The images from the two eyes are superimposed to give us a three-dimensional fieldof view. It's nothing to do with aspect ratio!
The aspect ratio debate continues in actual times with minor noise and debate is been gratified by some support amongst more recent observations from people.
It all arrived too late for this issue, but watch this space as they say. What does rather intrigue me in all this is whether sight is really a scientific matter. It is, of course, as a subject for study. But as an aspect of natural history it seems more akin to disciplines such as economics rather than pure science.
Those who take an interest in the endless economic debate, with one plausible argument after another seeming to establish opposite points of view, will appreciate this. The problem of course is that you can't conduct conclusive experiments with the subject matter of economics. You can't say right, call a halt, go back five years and see what happens if we alter the conditions. Anything of an historical nature can only be observed and, in a more or less helpful manner, explained. That seems to be the case with human perception. You can't experiment with different vision systems. You have to understand as best you can the one we've ended up with. However that may be, the TV industry is not doing itself any great favours with its continual change.
To the 4:3 and 16:9 aspect ratios we now have a proposed compromise 14:9. It's not easy of course to arrive at decisions with absolute certainty. Technological evolution continuously and often suddenly shifts, and new possibilities have a habit of coming at times that are inconvenient for the standards decision makers. Perhaps we should give up worrying about TV standards and accept the fact that there have always been and always will be different ways of going about things, with various advantages and disadvantages. Let's just sit back and watch the thing unfold. It would be nice to take a relaxed view like that. But of course there's more at stake.
Sets have to be manufactured to standards, broadcasters have to observe system parameters and, at ourend of things, the public has to be presented with a good case for buying what's available. It doesn'thelp the salesman to have to work in an atmosphere of continuing uncertainty.
UPDATE: 01.07.2019 With Loewe, it's over now, here is why..............
The plant in Kronach remains largely deserted from this Monday on: The Upper Franconian TV manufacturer Loewe ceases operations. Most of the more than 400 employees no longer show up for work.
Loewe has been in a crisis for years and now, at least for the time being, the production of televisions in Kronach, Upper Franconia, has come to an end. On Monday, the bankrupt manufacturer with a long tradition ceases operations. The majority of the more than 400 employees are released from work and do not have to come to work. According to the provisional insolvency administrator Rüdiger Weiß, only a core team of ten to fifteen employees remains.
The remaining few employees will continue to look for a rescuing investor in the coming months. One of the most urgent tasks for the insolvency administrator and the Loewe works council is now to negotiate a social plan for the workforce. According to Weiß, he hopes to be able to conclude this by mid-July.
Although the employees are currently released from their duties and no longer receive a salary from Loewe, no one has been dismissed so far. This can only be done after an agreement has been reached on a social plan and a reconciliation of interests. According to Weiß, if no investor is found, the employment contracts could be kept until the end of October at the latest.
Dispute with IG Metall
According to the insolvency administrator's assessment, it will take that long even in the event of another rescue until there is clarity. "We expect the investor process to take another four months," said Weiß. "We will do everything we can to find someone, there have already been initial discussions with investors.
For Loewe, this is the second crisis in a few years to threaten its very existence. "Loewe has been running a loss-making business for years," said Weiß. "Everyone in the company agrees that the compensation structure is not appropriate. To cover personnel costs alone, annual sales of EUR 150 million would be required; for a black zero, we would need sales of EUR 180 million. In fact, it was 120 million in the end."
However, there are fierce disputes with the trade union. The Bavarian IG Metall district manager Johann Horn accuses the British investment company Riverrock of deliberately refusing Loewe new loans. There is some evidence that "the financial investor Riverrock is waiting until Loewe has finally bled out, only to earn money with the ruins of the company afterwards," Horn recently said. In addition, he pointed out that the investor wanted to implement such drastic wage cuts and worse working conditions.
Postbank plays an important role
According to IG Metall, Riverrock has kept Loewe afloat in the past with a double-digit million euro loan, but has now refused a new loan. The former management has also pledged the Loewe brand name to Riverrock.
The preliminary insolvency administrator rejects these accusations: "I cannot understand the criticism of IG Metall," said Weiß. In the presence of the union, all possible models for restructuring had been agreed. "We needed EUR 5.5 million to continue operations until the end of the year and a further EUR 3.4 million for a qualification and employment company for all employees.
According to Weiß, Riverrock was willing to finance this company - but made it dependent on Postbank's decision to take over Loewes' outstanding debts, to pay them on behalf of Loewes and to collect them from customers. So far, Postbank has refused to do so.
-------------------------------------
LOEWE AG
The Loewe brand values have been shaped consistently over a long period of time. It all began in Berlin in 1923, with the brothers Dr. Siegmund and David Ludwig Loewe. Since then, one principle has always been adhered to: setting new standards with innovation for the senses.
Loewe established an impressive level of quality as early as 1931, with the first public television transmission worldwide. Loewe has been producing quality made in Germany at its location in Kronach since 1948. In the last 20 years, in addition to the Art 1 from 1985 becoming a design classic, Loewe has received numerous national and international awards.
In 2005, Loewe became the leading premium flat screen television provider. It made its breakthrough with the Loewe Individual: the first flat screen television with individualised housing versions, set-up options and inset colours. In 2008, with the Loewe Connect, Loewe heralded a new, digital television age where non-system end devices could be connected to a flat screen television set. One year later, Loewe combined uncompromising ultraslim design with leading state-of-the-art technology in the Reference range. In 2010, Loewe ultimately introduced the Mediacenter, which provides perfect entertainment networking throughout the home. Another step towards the future.
Loewe AG (pronounced [ˈløːvə]) is the parent company of the German Loewe group. The Loewe group develops, manufactures and sells a wide variety of electronic, electrical and mechanical products and systems, and specialises in the field of consumer and communication technology. The company was founded in Berlin in 1923 by brothers Siegmund and David L. Loewe. The company has its headquarters and sole production facilities in Kronach, Franconia. Today, the range has expanded to include televisions, Blu-ray players, DVD recorders, hard disk recorders, multiroom systems, speakers and racks. The trend is shifting from individual products to complete home entertainment systems. Loewe AG is also represented internationally by sales partners and subsidiaries. These include subsidiaries in the Benelux countries, France, Italy, Austria and the UK. There are exclusive Loewe Galeries acting as flagship stores in many cities around the world, including Madrid, London, Paris, Amsterdam, Rome, Copenhagen, Vienna, Moscow and Hong Kong.
LOEWE Company history
It all began in 1923 in Berlin, when Dr Siegmund Loewe and his brother David Ludwig Loewe established a radio manufacturing company called Radiofrequenz GmbH. Their work with the young physicist Manfred von Ardenne in 1926 led to the development of the triple tube, which was first used in the Loewe OE333 radio receiver. This tube prompted Loewe’s multi-tube production and is today lauded as the world’s first integrated circuit.
Television development began at Loewe in 1929. The company worked together with British television pioneer John Logie Baird. In 1931, Manfred von Ardenne presented the world’s first fully electronic television to the public on the Loewe stand at the 8th Berlin Radio Show.
When Hitler came to power in Germany, Siegmund Loewe had to emigrate to the USA in 1938, where he developed friendship with yet another forced emigrant, Albert Einstein.
In 1949, Siegmund Loewe regained possession of company property and took over as chairman of the supervisory board. In the 1950s, Loewe began producing the Optaphon, the first cassette tape recorder, and manufacturing televisions in Kronach. 1961 saw the first European video recorder, the Optacord 500, enter mass production.
In 1962, the family company tradition ended with the death of Siegmund Loewe. Subsidiaries of the Philips group took over the majority of shares. Under this management, which continued until 1985, the company increasingly specialised in the development and production of televisions.
In 1963, the first portable television, Loewe Optaport, was launched. It had a 25cm screen and built-in FM radio. The first Loewe colour televisions were launched along with the introduction of colour television in Germany. Loewe revolutionised television production in 1979 with a fully integrated chassis (everything on a single board). The first European stereo television followed in 1981.
In 1985, management made Loewe a privately owned company again after Philips sold its shares. In the same year, Loewe created the Art 1, a new generation of TVs with a focus on design.
The CS1 represented another international first in 1995 as the world’s first fully recyclable television. At this time, the course was also set for systematic further development as a multimedia specialist.
1998 marked two more milestones in the company history: the launch of the Xelos @ media, the first television with internet access, and that of the Spheros, the first Loewe flat-screen television. In the following year, Loewe AG became a publicly listed company.
With the Individual, the first flat-screen TV with individual housing options, set-up solutions and inset colours, Loewe took a decisive step and became a premium flat-screen TV manufacturer.
Loewe Connect, the world's first smart TV with fully integrated network capability for wireless access to picture, music and video files on a computer or external hard drive followed in 2008.
LED technology was adopted at Loewe in 2010 in the new Individual. In the following year, Loewe introduced 3D picture display to its Individual range.
LOEWE HISTORY IN GERMAN:
Loewe war und ist immer ein besonderer Betrieb - und bis ins 21. Jahrhundert aktiv und in privatem Besitz. Nicht nur «das erste IC», die Röhre 3NF ist da zu erwähnen, sondern auch die Mitentwicklung des elektronischen Fernsehens in Deutschland.
1923: Radiofrequenz-GmbH und Loewe-Audion GmbH, Berlin-Friedenau;
1926: Aktiengesellschaft D.S. Loewe, Berlin-Steglitz;
1930: Radio-Aktien-Gesellschaft Dr. S. Loewe;
1933 (nach): Löwe-Radio AG;
1942: Opta-Radio AG;
1949: Loewe-Opta AG;
1965: Loewe Opta GmbH, Kronach.
Radios: 1923 bis 1926, Loewe 1927 bis 1978. TV-Fabrikation danach.
Nach Studium der Physik und Elektrotechnik promoviert Siegmund Loewe (Berlin 6.11.1885-28.5.1962 USA) unter Max Wien mit magna cum laude zum Dr. phil. Er tritt bei der Firma Telefunken ein und wechselt 1915 zur Firma Huth, wo er die Leitung der Laboratorien und der Patentabteilung übernimmt. 1918 mietet Loewe in Berlin SW61 eine 7-Zimmer-Wohnung und erstellt mit einer kleinen Entwicklungsgruppe einen Telefonie-Röhrensender, dessen Sendungen in dem nicht weit entfernten Haus des Scherl-Verlages von Otto Kappelmayer zu empfangen sind. Um seine Kenntnisse zu erweitern, begibt sich Loewe in die USA. Einen ausführlichen Bericht von und über Loewe finden Sie in [1-99], woraus Sie erkennen können, dass Loewe das treibende Element für den Rundfunk in Deutschland war. Wie er gegen den Monopolanspruch von Telefunken/Lorenz/Huth (Funkkartell «Rundfunk GmbH») kämpfte und weitere Details finden Sie in [6-121].
Nach seiner Rückkehr aus den USA wird das Versuchslabor von Loewe zum Kristallisationspunkt der jungen Funktechnik. Im Dezember 1921 erhält Loewe Besuch von Lee de Forest, und sie verbessern gemeinsam Röhren. 1921 entstehen auch zwei grundlegende Patente für den Konus-Lautsprecher. Loewe eröffnet ein zweites Laboratorium und gründet 1923 die Loewe-Audion-GmbH für die Herstellung von Radioröhren sowie die Radiosender GmbH.
Im Dezember 1921 lernt der Realschüler Manfred von Ardenne den Radiopionier Loewe in einem Elektrikergeschäft kennen und ist darauf häufiger Gast in den Laboratorien von Loewe. Ein Autor schreibt, dass Loewe zum «Ziehvater» des jungen von Ardenne wird und er in der Familie aufgenommen ist, doch von Ardenne beschreibt dies in seinem Buch «Eine glückliche Jugend im Zeichen der Technik» (DDR) nicht.
Die wahrscheinlich 1923 gegründete Loewe Radio GmbH führt der jüngste Loewe-Bruder Bernhard. Das D bei D.S. Loewe steht für den älteren Bruder, David (Teilhaber).
Radiofrequenz GmbH und Loewe-Audion GmbH (1923-27):
Am 22.1.23 erwirbt Dr. Siegmund Loewe die seit 1918/19 bestehende Mechanische Werkstatt Grüttner & Lütgert in Berlin-Friedenau und gründet die Radiofrequenz GmbH. Die ersten Geräte sind für den Export bestimmt. Davon sind mir die Typen EA51, EA52 und EA54 bekannt. EA steht für «Empfangs-Apparat».
Im Jahr darauf stellt der Betrieb die Ziffer 9 vor die laufende Nummer. Der Sprung von EA958 auf EA980 deutet auf andere Artikel hin (z.B. Trichterlautsprecher und kombinierte Geräte etc.). Nachher ist keine Nummernsystematik mehr zu erkennen, ausser den Buchstabenkombinationen wie OE (Orts-Empfänger), FE (Fern-Empfänger), KV (KW-Vorsetzer), RO (Rückkopplungs-Ortsempfänger) etc.
1927 gibt Loewe den Namen Radiofrequenz auf und verwendet seinen eigenen Namen. Die drei Geräte OE333, 2H3N und NVG gibt es unter beiden Namen, da sie Loewe 1927/28 ohne neue Modelle weiter produziert. Mehr als eine Million dieser Geräte lassen sich zum Stückpreis von 39.50 RM verkaufen, und die Tagesproduktion erreicht zeitweise 2000 Einheiten.
Im Oktober 1923 gründet Loewe eine weitere Gesellschaft zur Herstellung von Rundfunkröhren mit dem Namen Loewe-Audion GmbH, ebenfalls an der Niedstrasse 5 in Berlin-Friedenau gelegen. Zuerst entstehen dort Wolfram-, dann Thoriumröhren als «Sparröhren». Im September 1924 meldet Loewe die grundlegenden Patente zur Dreifachröhre mit integrierten Bauteilen an, die 1926 als 3NF mit dem «Loewe Ortsempfänger OE333» einen legendären Ruf erreicht.
Loewe, Löwe, Opta, Loewe-Opta
Die Schrift «Loewe-Story» aus dem Hause Loewe-Opta zeigt die Abbildung eines «Detektor-Empfängers» mit zwei Steckspulen, der angeblich zur Eröffnung des Rundfunks bereitstand. Es ist aber ein umfunktionierter Sperrkreis für den Empfänger 2H3N, Baujahr 1927, was auch aus dem Firmenschild mit «Berlin-Steglitz» hervorgeht.
1926 entsteht die Aktiengesellschaft D.S. Loewe, Berlin-Steglitz. Als zweites Gerät unter der neuen Marke Loewe bzw. Loewe Radio gilt der auf der Funkausstellung im September 1926 gezeigte Fernempfänger 2H3N zu RM 150. Auch Lautsprecherboxen mit Loewe-Konus-Lautsprecher und Stoffbezug im «Südsee-look» sind nun erhältlich. Wegen der steigenden Anzahl Rundfunksender treten Trennschärfeprobleme auf, so dass die Dreifachröhre für den Einbezug einer Rückkopplung einen siebten Anschluss erhält. Diese «3NF7» baut Loewe ab 1928 in alle OE333, 2H3N und in das dritte Gerät, den RO433 ein. Die elektrische Schallplatten-Abtastdose LR150 erregt Aufsehen; Gewicht 260 g! Die Dose verlangt einen Abspielwinkel von 55 Grad. Die 3NF gibt es nun auch mit Oxydkathode als 3NFB mit einem Verbrauch von 0,13 statt 0,34 A Heizstrom - zudem beträgt die Verstärkung etwa das Doppelte. Weitere Details zu Firmengründungen von Loewe siehe [638967]. Es sind dies z.B. die Eudarit-Pressgut GmbH für Bakelitgehäuse etc. und die Ortophon-Apparatebau GmbH für den Lautsprecherbau.
1929 bringen die Loewe-Firmen den «Vollnetzanschluss-Empfänger R533» heraus, der mit einer nochmals verbesserten Dreifachröhre, der 3NFW mit indirekter Heizung, ausgestattet ist. 1929 entsteht Loewe's Berliner-Radio-Handels-Aktiengesellschaft. Die Baird Television Company Ltd., London, bietet Loewe die Auswertung und Entwicklung ihrer Schutzrechte und Entwicklungsarbeiten auf dem Fernsehgebiet in Deutschland an. Da dieses Angebot die finanziellen Möglichkeiten von Loewe übersteigt, regt Dr. Loewe eine Beteiligung von Zeiss Ikon, Dresden, und Robert Bosch, Stuttgart, an. Es kommt Mitte 1929 zur Gründung der Fernseh-AG in Berlin, die 1939 im Firmenverband Robert Bosch aufgeht.
1930 fasst Loewe verschiedene seiner Firmen unter dem Namen Radio-Aktien-Gesellschaft Dr. S. Loewe zusammen und mit dem EB100W (1931 EB100G) beginnt die Reihe der Empfänger mit integriertem Lautsprecher.
Im Auftrag der Loewe-Firmen bringt von Ardenne aus seinem eigenen Labor 1930 erste brauchbare Vorschläge zur Helligkeitssteuerung, um auf einem Bildschirm ein gut modulierbares Bildraster zu schreiben. Meine gasgefüllte Braun'sche Röhre aus dem Labor von Ardenne zeugt für die Forschung um 1926.
Auch auf der Senderseite entwickelt Loewe elektronische Medien auf der Grundlage des «Flying-spot-Abtasters», um Filme elektronisch übertragen zu können. Am 25.4.31 veranstalten Dr. S. Loewe und M. von Ardenne in den Lichterfelder-Laboratorien eine Vorführung vor der Fachpresse. Bald darauf kann Loewe die Qualität der mechanischen Systeme erreichen und übertreffen. Siehe [1-127f]. 1932 geht von Ardenne eigene Wege. 1933, ein Jahr vor den Mitbewerbern, erkennt Dr. Loewe die Notwendigkeit von Allstrom-Apparaten und bringt den 1-Kreis-Empfänger «Edda» auf den Markt. (Ganz so richtig ist das nicht: zumindest Emud kommt 1931 mit «Allstrom», EE). Zu der Zeit halten sich Wohnungen mit Gleich- bzw. Wechselstrom etwa die Waage und eine Familie, die umzieht, kann den transformatorlosen Apparat weiterverwenden. Der Apparat führt die Allstrom-Dreifachröhre WD33. Das Allstromkonzept führt Loewe auch für Mehrkreis- und Superhet-Empfänger mit den Röhren WG34, WG35 und WG36 fort.
Auf dem in England bestellten Sattelschlepper mit einer Fernseh-Sendereinrichtung steht anlässlich der Premiere vom Juli 1934 in London gross der Namenszug Radio A.G. D.S. Loewe. Das Regime in Deutschland lässt die Firma jedoch bald in Löwe-Radio AG umtaufen und 1942 in Opta-Radio AG. Loewe wandert 1936 in die USA aus und gründet dort die Loewe Radio Inc. Er hat 1938 aus dem Vorstand in Deutschland auszuscheiden.
1941-44 fertigen die Opta-Betriebe ausschliesslich Rüstungsgüter; Opta-Radios sind dann Fremdtypen [638966-19]. Man gliedert Grassman in den Opta-Betrieb ein. Es entstehen Auslagerungsbetriebe, z.B. in Oberlungwitz in Sachsen. In Berlin-Weissensee entsteht während des Krieges ein Betrieb für Röhrenbau [DRM94].
Noch im März 1945 verlagert das Unternehmen eine wichtige Kriegsfertigung nach Küps bei Kronach. Dies ist die Keimzelle der neuen Firma, denn 1948 kann S. Loewe seine Wiedergutmachungsansprüche durchsetzen und erhält das Sagen beim demontierten Hauptwerk in Berlin und der Auslagerungsstätte in Küps bei Kronach. In Küps fabriziert Loewe ab 1946. Gemäss «Loewe-Story» gibt es vor November 1947 den «Kronach», wahrscheinlich 547W, in einer Auflage von zwei Geräten pro Tag. Ein getrenntes Werk in Düsseldorf-Heerdt offeriert als Firma Opta-Spezial GmbH von 1950 bis 1954 Opta-Spezial-Radios [6-124]. Konsul Bruno Pieper wirkt als Generaldirektor.
Jedenfalls: Auf der Leipziger Messe von 1947 sind wieder Loewe-Entwicklungen zu sehen. Die Firma erzeugt 1950 mit dem «Optaphon» das erste deutsche Kassetten-Tonbandgerät. 1961 ist Loewe mit dem «Optacord 500», einer für den privaten Gebrauch konzipierten Video-Anlage, führend beim Bildschirmtext und baut vor allem modernste TV-Empfänger - ein Steckenpferd von Dr. S. Loewe. Er stirbt 1962.
Bis 1978 fertigt die Firma Radios in Berlin, löst diesen Betrieb aber auf. Der Mitarbeiterbestand bei Loewe beträgt Ende der 80er Jahre ca. 1500. Die Loewe Opta GmbH, Kronach, gehört in den 90er Jahren zu 51,9 % der Management GBR (Gesellschaft leitender Mitarbeiter der GmbH) und zu 48,1 % zu Matsushita (Panasonic), wobei eine gute gegenseitige Befruchtung für das Hauptprodukt, TV, zum Tragen kommt.
Loewe in Ostdeutschland:
Opta Leipzig, ab 1950 VEB Stern-Radio Leipzig genannt, geht 1952 im VEB Fernmeldewerk Leipzig auf. Die Radioproduktion endet 1950/51.
Nach dem Krieg versuchen Loewe-Mitarbeiter des Zweigwerkes in Oberlungwitz in Sachsen, Maschinen und Vorrichtungen nach West-Berlin zu transportieren, doch die Sowjets verlangen, dass diese Güter in die Röhrenfabrik Berlin-Weissensee gelangen.
Dieser Loewe-Betrieb arbeitet mit der Röhrenfabrik in Berlin.
Loewe hat auch in anderen Ländern Produktionsstätten, so z.B. in Grossbritannien. Vor allem aber auch Handelsniederlassungen, wie Loewe Radio S.A., 3 quai de Willebroeck, Bruxelles (adress in 1932).
Literature
- 75 Jahre Loewe (1923-1998). Und die Zukunft geht weiter, author's edition 1998
- Kilian J.L. Steiner: Ortsempfänger, Volksfernseher und Optaphon. Die Entwicklung der deutschen Radio- und Fernsehindustrie und das Unternehmen Loewe 1923-1962. Klartext Verlag, Essen 2005, ISBN 978-3-89861-492-4
- Frank Keuper, Jürgen Kindervater, Heiko Dertinger, Andreas Heim (Hrsg.): Das Diktat der Markenführung. 11 Thesen zur nachhaltigen Markenführung und -implementierung. Mit einem umfassenden Fallbeispiel der Loewe AG, Gabler Fachverlage, Wiesbaden 2009, ISBN 978-3-8349-0852-0
References
- "Loewe klang 5 active speaker - Winner - Entertainment - German Design Award". www.german-design-award.com (in German). Retrieved 2017-09-13.
- https://www.loewe.tv/de/legal/impressum
- "German technology manufacturer Loewe declares bankruptcy"
- Loewe AG: self-administration insolvency, a corporate press-release
- "Investor consortium to rescue high-end TV maker Loewe". Deutsche Welle. Retrieved 17 January 2014.
- "Münchener Investor übernimmt Loewe". Handelsblatt. Retrieved 6 January 2015.
Einzelnachweise:
loewe.tv: ImpressumLoewe bild 7 - Gold - Entertainment - German Design Award. Abgerufen am 9. Oktober 2017.
http://www.nordbayerischer-kurier.de/nachrichten/loewe-gliedert-markenrechte-aus_627658
NDR: Manfred von Ardenne - Herr des Fernsehens. Abgerufen am 9. Oktober 2017.
NDR: Manfred von Ardenne - Herr des Fernsehens. Abgerufen am 9. Oktober 2017.
Loewe. Abgerufen am 13. September 2017 (englisch).
Radioapparate. In: Berliner Adreßbuch, 1924, Teil 2, S. 475.
Kilian J. L. Steiner: Die „Arisierung“ der Radioaktiengesellschaft D. S. Loewe in Berlin-Steglitz. In: Christof Biggeleben u. a.: „Arisierung“ in Berlin. Metropol Verlag, Berlin 2007, ISBN 978-3-938690-55-0, S. 226.
radiomuseum-bocket: Der OE333 Ortsempfänger. Abgerufen am 8. November 2016.
radiomuseum.org: Ortsempfänger OE333. Abgerufen am 28. Januar 2016.
radiomuseum.org: Röhre 3NF. Abgerufen am 28. Januar 2016.
Die Loewe-Röhre 3NFB – Analyse einer Mehrfachröhre. (PDF; 170 kB)
Kilian J. L. Steiner: Die „Arisierung“ der Radioaktiengesellschaft D. S. Loewe in Berlin-Steglitz. In: Christof Biggeleben u. a.: „Arisierung“ in Berlin. Metropol Verlag, Berlin 2007, ISBN 978-3-938690-55-0, S. 226.
Kilian J. L. Steiner: Die „Arisierung“ der Radioaktiengesellschaft D. S. Loewe in Berlin-Steglitz. In: Christof Biggeleben u. a.: „Arisierung“ in Berlin. Metropol Verlag, Berlin 2007, ISBN 978-3-938690-55-0, S. 226.
Joachim Hofer: Loewe will leben. In: Handelsblatt. 17. Juli 2013, S. 16 f.
Letzte Chance für Loewe. In: Handelsblatt. 17. Juli 2013, S. 1.
Loewe hofft auf den reichen Retter. Handelsblatt, 16. Juli 2013, abgerufen am 16. Juli 2013.
Loewe schwört trotz Krise auf Luxus-Geschäftsmodell. inFranken.de, 31. Juli 2013, abgerufen am 1. August 2013.
Loewe: Partner kommt aus China. inFranken.de, 31. Juli 2013, abgerufen am 1. August 2013.
Loewe: Kapitalmaßnahmen auf den Weg gebracht. (Nicht mehr online verfügbar.) Loewe AG, 7. August 2013, archiviert vom Original am 5. Oktober 2013; abgerufen am 1. September 2013. Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.
Restrukturierungsprozess vor dem Abschluss. (Nicht mehr online verfügbar.) Loewe AG, 16. September 2013, archiviert vom Original am 26. September 2013; abgerufen am 17. September 2013.
Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.
TV-Hersteller Loewe meldet Insolvenz an (1. Oktober 2013)
Loewe AG: Insolvenzverfahren in Eigenverwaltung bestätigt. (Memento des Originals vom 4. Oktober 2013 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis. Ad-hoc-Meldung auf: corporate.loewe.tv, 1. Oktober 2013.
TV-Hersteller in der Krise: Loewe meldet Insolvenz an. auf: spiegel.de, 1. Oktober 2013.
Bevollmächtigter gibt sich für Loewe optimistisch. FAZ.net. 13. Oktober 2013
Insolventer TV-Hersteller: Loewe-Käufer machen Rückzieher. Spiegel Online, 24. Februar 2014, abgerufen am 24. Februar 2014.
Stargate Capital übernimmt Loewe, Handelsblatt, am 21. März 2014
Neue Hoffnung für Loewe: Finanzinvestor übernimmt TV-Gerätebauer. In: Heise Online. 22. März 2014, abgerufen am 23. März 2014.
Loewe findet neuen Investor. In: Süddeutsche Zeitung. 22. März 2014, abgerufen am 23. März 2014.
Andreas Wilkens: Loewe-Rettung in trockenen Tüchern. 9. April 2014, abgerufen am 9. April 2014.
Loewe: 2016 noch kein Gewinn | Nordbayerischer Kurier. Abgerufen am 28. August 2017.
Loewe. Abgerufen am 9. Oktober 2017 (englisch).