BLOG PAGES

Tuesday, March 15, 2011

JVC AV-32WP2EN YEAR 1998.






The JVC AV-32WP2EN is a super top model Digital television with 100HZ Scan rate technology and top series high numbers of features. ,display system with increased field frequency ; digital scan converter means including field-memory means supplied with an input video signal of an interlaced television system having a selected plurality of fields per second different from PHILIPS 100HZ scan system. 

The television receiver has an alphanumeric display  which appears on the picture tube screen, to give the user data on the tuned channel number, colour settings and other operating data. The digital processor which generates the characters for display also controls the channel setting, etc., under the control of a digital remote control unit . The processor  has an associated memory circuit  for permanente tuning back up. The control of the capacitance diode tuner  is achieved by the processor  altering the dividing factor of a feedback loop to a phase/frequency comparator . The other input to the comparator is a divided frequency from a quartz oscillator.The present invention concerns a television system with apparatus for controlling a relatively large number of functions and characteristics with only a relatively small number of control devices.

Television receivers have a relatively large number of functions that are controllable by the user. Typically, these include turning the receiver on and off, selecting channels, setting the volume level and adjusting certain picture characteristics such as brightness, contrast sharpness (sometimes called "peaking"), color level (or saturation) and color tint (or hue) and in television receivers with stereo sound provisions, adjusting certain audio characters such as balance, treble and bass. In addition, with the increased use of digital signal processing and microprocessors, a large number of other control functions have become economically practical. Often a control device is provided for each function or characteristic.

In the case of television receivers with analog signal processing systems, potentiometers are provided for adjusting respective picture and audio characteristics in both increasing and decreasing senses. However, in television receivers with digital signal processing systems it is anticipated that each of these potentiometers may be replaced by two pushbutton switches for digitally causing the respective characteristic to be increased or decreased. Therefore it is anticipated that a digital television receiver will require even more control devices than a comparable analog receiver.

It is desirable for cost and for human engineering reasons to limit the number of user operable control devices. Thus, there has been the desire to provide control apparatus for controlling a large number of functions and characteristics of a television receiver with only a few control devices.

In the past, attempts to make multiple use of switches for controlling various functions in order to limit the number of control devices have been confusing to users. Thus, there exists a need for plural-function and characteristic control apparatus in which multiple use is made of control devices with little or no confusion to users.

In accordance with a feature of the present invention, in a television system, a programming switch and a plurality of switches identified by respective symbols such as numbers, the latter being normally used for channel or television signal source selection, are used to select various functions of a receiver for control. When the programming switch is operated by a user, a character generator produces signals for displaying a list or menu of various receiver control functions, such as the controlling of the picture and audio responses on an image reproducing device associated with the television system. In the menu, each one of the functions is identified by one of the symbols associated with the signal source selection switches. Thereafter, a particular one of the functions displayed on the menu can be selected for control by operation of the corresponding signal source selection switch.

In accordance with another aspect of the invention, after a particular function has been selected for control, a list or menu of characteristics of the selected function, such as brightness, contrast, sharpness, color level and color tint characteristics of the picture response is caused to be displayed. In the menu, each of the functions is identified by one of the symbols associated with the signal source selection switches. Thereafter, a particular one of the characteristics displayed on the menu can be selected for adjustment by operation of the corresponding signal source selection switch. After a characteristic has been selected for control, positive and negative sense adjustment switches common to all the characteristics can be operated to adjust the selected characteristic.

The  JVC  AV-32WP2EN  is 32 inches color tv  with  100HZ frame rate TELEVISION  a known arrangement, the frame rate of a television signal is doubled by using a field store. In a first operating mode, each field of the television signal is entered into the field store in this arrangement and read out twice at twice the frequency. In a second mode, only every second field is entered into the field store and read out four times at twice the frequency. In an arrangement for converting an original picture signal representing a sequence of frames, each of which is composed of two interlaced fields, into a converted picture signal which has a double field frequency with respect to the original picture signal, is for doubling the field frequency, for the purpose of noise reduction, motion compensation and line flicker reduction.

 The JVC  AV-32WP2EN   features also Beam Scan Velocity modulation.
When the phosphor screen of a video signal reproducing apparatus, such as, the screen of the cathode ray tube in a television receiver, is scanned by an electron beam or beams so as to form a picture or image on the screen, the beam current varies with the luminance or brightness level of the input video signal. Therefore, each electron beam forms on the phosphor screen a beam spot whose size is larger at high brightness levels than at low brightness levels of the image so that sharpness of the reproduced picture is deteriorated, particularly at the demarcation between bright and dark portions or areas of the picture. Further, when a beam scanning the screen in the line-scanning direction moves across the demaraction or edge between dark and bright areas of the picture, for example, black and white areas, respectively, the frequency response of the receiver does not permit the beam intensity to change instantly from the low level characteristic of the black area to the high level characteristic of the white area. Therefore, the sharpness of the reproduced image is degraded at portions of the image where sudden changes in brightness occur in response to transient changes in the luminance or brightness of the video signal being reproduced. The increase in the beam current and in the beam spot size for bright portions of the reproduced picture or image and the inadequate frequency response of the television receiver to sudden changes in the brightness or luminance level of the incomming video signal are additive in respect to the degradation of the horizontal sharpness of the reproduced image or picture.
It is well known that an improvement in apparent picture resolution can be achieved by modulating the beam scan velocity in accordance with the derivative of the video signal which controls the beam intensity. This video signal is referred to as the luminance signal and the derivative of the luminance signal is employed for such control. An advantage of this method over a peaking approach to picture sharpness enhancement is the avoidance of blooming of peaked white picture elements.


JVC  AV-32WP2EN  WIDE SCREEN TELEVISION The invention relates to the field of televisions, for example those televisions having a wide display format ratio screen, which must interpolate video data to implement various display formats. Most televisions today have a format display ratio, horizontal width to vertical height, of 4:3. A wide format display ratio corresponds more closely to the display format ratio of movies, for example 16:9. The invention is applicable to both direct view televisions and projection televisions.  Televisions having a format display ratio of 4:3, often referred to as 4 X 3, are limited in the ways that single and multiple video signal sources can be displayed. Television signal transmissions of commercial broadcasters, except for experimental material, are broadcast with a 4 X 3 format display ratio. Many viewers find the  4 X 3 display format less pleasing than the wider format display ratio associated with the movies. Televisions with a wide format display ratio provide not only a more pleasing display, but are capable of displaying wide display format signal sources in a corresponding wide display format. Movies "look" like movies, not cropped or distorted versions thereof. The video source need not be cropped, either when converted from film to video, for example with a telecine device, or by processors in the television.
Televisions with a wide display format ratio are also suited to a wide variety of displays for both conventional and wide display  format signals, as well as combinations thereof in multiple picture displays. However, the use of a wide display ratio screen entails numerous problems. Changing the display format ratios of multiple signal sources, developing consistent timing signals from asynchronous but simultaneously displayed sources, switching o between multiple sources to generate multiple picture displays, and providing high resolution pictures from compressed data signals are general categories of such problems. Such problems are solved in a wide screen television according to this invention. A wide screen television according to various inventive arrangements is capable of  providing high resolution, single and multiple picture displays, fromsingle and multiple sources having similar or different format ratios, and with selectable display format ratios.
Televisions with a wide display format ratio can be implemented in television systems displaying video signals both at  basic or standard horizontal scanning rates and multiples thereof, as well as by both interlaced and noninterlaced scanning. Standard NTSC video signals, for example, are displayed by interlacing the successive fields of each video frame, each field being generated by a raster scanning operation at a basic or standard horizontal scanning rate of approximately 15,734 Hz. The basic scanning rate for video signals is variously referred to as fπ, 1fH, and 1 H. The actual frequency of a 1fH signal will vary according to different video standards. In accordance with efforts to improve the picture quality of television apparatus, systems have been developed for i s displaying video signals progressively, in a noninterlaced fashion. Progressive scanning requires that each displayed frame must be scanned in the same time period allotted for scanning one of the two fields of the interlaced format. Flicker free AA-BB displays require that each field be scanned twice, consecutively. In each case, the horizontal scanning frequency must be twice that of the standard horizontal frequency. The scanning rate for such progressively scanned or flicker free displays is variously referred to as 2fπ and 2H. A 2fH scanning frequency according to standards in the United States, for example, is approximately 31 ,468 Hz.
 A wide screen television according to the inventive arrangements taught herein has all of the capabilities and advantages described above. A video display has a first format display ratio, for example 16 X 9. A mapping circuit maps an adjustable picture display are on the video display. First and second  signal processors generate first and second selectively interpolated video signals from input video signals having one of different format display ratios, for example 4 X 3 and 16 X 9. The interpolation of the input video signals can result in expansion or compression of the input video signals. The first and second signal processors can also selectively crop the input video signals. Overall, the input video signals can be selectively cropped, interpolated, both cropped and
interpolated and neither cropped nor interpolated. A switching circuit selectively couples video signal sources as the input video signals. A synchronizing circuit synchronizes the first and second signal processors with the mapping circuit. A selecting circuit  selects as an output video signal between one of the first and second processed video signals and a combination of the first and second processed video signals. A control circuit controls the mapping circuit, the first and second signal processors and the selecting circuit to adjust in format display ratio and image aspect ratio each  picture represented in the output video signal. One of the different format display ratios of the input video signals can be the same as the first format display ratio of the video display. The mapping circuit can comprise a raster generating circuit for a cathode ray tube or an address matrix generator for a liquid crystal display. The  display system may further comprise a circuit for converting interlaced video signals to a noninterlaced format, two internal tuners and a plurality of external jacks. In one inventive arrangement, the picture display area is adjustable only vertically and the first and second signal processing circuits interpolate the  video signals only horizontally.


This was JVC Flagship in 1998 and was not cheap.

JVC  AV-32WP2EN : The first tv with  Dolby Surround Multimedia system to use 3-D DSP audio processing to create a surround effect from two speakers was announced in February 1997 year by Texas Instruments and Victor Company of Japan, Ltd. (JVC).  

- Attaining optimal sound quality in surround sound or multi-channel sound systems, over the largest possible listening area, can be quite challenging. Some of the difficulties in achieving optimal sound quality in such systems result from the fact that a wide variety of different surround sound and multi-channel audio formats and speaker configurations exist, so that a particular sound system may have reasonably acceptable sound with respect to one or perhaps two audio formats yet sub-optimal sound with respect to other audio formats. Therefore, where a consumer desires, for example, to use a single sound system to play sound recordings in a variety of different formats, different levels of sound quality, some of which are poor or impaired, are likely to be experienced. While the user can adjust speaker positioning or relative balances to try to improve sound quality, such techniques may involve significant manual effort or inconvenience, may be hard to reproduce consistently, and may benefit only one or perhaps a few listeners in a relatively small portion of the listening area.

Ofcourse it has PIP and double tuner feature and large connectivity capabilityies.

Multistandard video decoding and full advanced OSD Menu types toghether with many AND MANY other functions and features are composing
55KG of weight combined by all Advanced Digital signal Processing and a wide screen of 32 Inches (76Cm) plus Hi fi power 3D Sound.

Advanced osd is present for all functions (Inclusive nice Service features.)On screen display (OSD) arrangements employed in video processing systems include a switching (or "multiplexing") network for switching between graphic image representative signals and normal video signals so that a graphic image can be displayed on the screen of a picture reproduction device either in place of the image represented by the video signals or together with (inserted in) the image. The graphic image can take the form of alphanumeric symbols or-pictorial graphics, and can be used to indicate status information, such as channel numbers or time, or operating instructions.

In an OSD arrangement for use in an analog video signal processing system, the multiplexing network typically operates to switch in levels corresponding to the desired intensity of respective portions of the graphic image at the time the graphic image portions are to be displayed. In such an arrangement the graphic image representative signals take the form of timing pulses which occur when the graphic image portions are to be displayed and are used to control the multiplexing network. Such an analog OSD arrangement can also be used in a digital video processing system, but requires that the video signals be first converted to analog form. While digital video signal processing systems typically include a digital-to-analog converter section in which the digital video signals are converted to analog form, it may be more cost effective for the OSD arrangement to be incorporated as an integral part of the digital video processing section.

A SCART Connector (which stands for Syndicat des Constructeurs d'Appareils Radiorécepteurs et Téléviseurs) is a standard for connecting audio-visual equipment together. The official standard for SCART is CENELEC document number EN 50049-1. SCART is also known as Péritel (especially in France) and Euroconnector but the name SCART will be used exclusively herein. The standard defines a 21-pin connector (herein after a SCART connector) for carrying analog television signals. Various pieces of equipment may be connected by cables having a plug fitting the SCART connectors. Television apparatuses commonly include one or more SCART connectors.
Although a SCART connector is bidirectional, the present invention is concerned with the use of a SCART connector as an input connector for receiving signals into a television apparatus. A SCART connector can receive input television signals either in an RGB format in which the red, green and blue signals are received on Pins 15, 11 and 7, respectively, or alternatively in an S-Video format in which the luminance (Y) and chroma (C) signals are received on Pins 20 and 15. As a result of the common usage of Pin 15 in accordance with the SCART standard, a SCART connector cannot receive input television signals in an RGB format and in an S-Video format at the same time.
Consequently many commercially available television apparatuses include a separate SCART connectors each dedicated to receive input television signals in one of an RGB format and an S-Video format. This limits the functionality of the SCART connectors. In practical terms, the number of SCART connectors which can be provided on a television apparatus is limited by cost and space considerations. However, different users wish the input a wide range of different combinations of formats of television signals, depending on the equipment they personally own and use. However, the provision of SCART connectors dedicated to input television signals in one of an RGB format and an S-Video format limits the overall connectivity of the television apparatus. Furthermore, for many users the different RGB format and S-Video format are confusing. Some users may not understand or may mistake the format of a television signal being supplied on a given cable from a given piece of equipment. This can result in the supply of input television signals of an inappropriate format for the SCART connector concerned.
This kind of connector is todays obsoleted !
All of this + picture + sound quality you won't find on modern LCD toys.

Times for such types of sets are gone............. forever.

(Anyway it's a Terrific Heavy Weight)

About Screen Formats...............

It is difficult to know exactly what to make of the unfolding widescreen TV saga, which seems to be yet another example of failure to agree to a TV standard. Is it perhaps simply an attempt by the European TV industry to snatch a temporary advantage over Far Eastern manufacturers?
 Certainly it's the European tubemakers that have developed the technology. 
But if this is the case the question that has to be asked is whether widescreen TV is a further example of an attempt by technology rather than consumer demand to drive the market forwards? If so it could well be a mistake. People won't buy technology for the sake of it: they'll buy only what suits them. 

The 16:9 aspect ratio sets that have been announced so far are a mixed batch. Nokia has opted for 625 -line PAL, Thomson has opted for 1,250 -line PAL while Philips has decided on 625 -line PAL with a 100Hz field rate. Nokia feels that the wide screen is the important thing rather than any change to basic TV standards. The company points to the cost advantage of using a standard chassis to drive the new type of tube. But evenhere the wide screen presentation is seen as essentially a top of the range phenomenon. In this case why not go the whole hog? With a chassis that features digital signal processing, why not take advantage of the opportunity to improve the definition and get rid of flicker once and for all? There are arguments as to exactly how much better a picture you get for your money at higher timebase frequencies. 
What this seems to boil down to is that compromises, as always with TV, have to be accepted. The argument is over what compromise to accept. It's a rather pointless argument really and one can't help but feel that the motivation behind it is simply a matter of gaining marketing clout rather than achieving the best in good picture reproduction.
There is much to be said for the view that a well set up display using conventional technology and a decent aerial system, with no corner cutting in circuit design, will with the presently available transmissionsprovide as good a picture as any for the viewer rather than the technology buff. 

Representatives of the main Japanese manufacturers in the UK have been making disparaging comments about widescreen TV. The case was put forcibly by Mark Todd, Toshiba's marketing director. He hit the headlines with coments that widescreen TV was "premature" and "a joke", but rather more to the point he suggested that instead of buying a set that is "too big" and "too expensive" the consumer would be better off with a 34in. Nicam set featuring surround sound. 

The money saved could, he added, be invested in a building society. The debate has been clouded by dispute over what programming is available. At present it seems to be limited to a few tapes and Continental satellite channels transmitted in D2-MAC form. Not much really to justify lashing out on a set that costs a few thousand pounds. Since some rather rude remarks about the 16:9 picture format  have been somewhat severely taken to task over what is and what isn't a natural display based on the characteristics of human vision, in particular who quoted a considerable amount of research. 
The fact that human eyes are horizontally displaced, giving perception somewhat elongated in the horizontal plane compared to the vertical plane, looks a clincher. 
But this rather overlooks the reason for us having two eyes in the first place to achieve bifocalvision. The images from the two eyes are superimposed to give us a three-dimensional fieldof view. It's nothing to do with aspect ratio!
 The aspect ratio debate continues in actual times with minor noise and debate is been  gratified by some support amongst more recent observations from people.

It all arrived too late for this issue, but watch this space as they say. What does rather intrigue me in all this is whether sight is really a scientific matter. It is, of course, as a subject for study. But as an aspect of natural history it seems more akin to disciplines such as economics rather than pure science. 
Those who take an interest in the endless economic debate, with one plausible argument after another seeming to establish opposite points of view, will appreciate this. The problem of course is that you can't conduct conclusive experiments with the subject matter of economics. You can't say right, call a halt,  go back five years and see what happens if we alter the conditions. Anything of an historical nature can only be observed and, in a more or less helpful manner, explained. That seems to be the case with human perception. You can't experiment with different vision systems. You have to understand as best you can the one we've ended up with. However that may be, the TV industry is not doing itself any great favours with its continual change.  

To the 4:3 and 16:9 aspect ratios we now have a proposed compromise 14:9. It's not easy of course to arrive at decisions with absolute certainty. Technological evolution continuously and often suddenly shifts, and new possibilities have a habit of coming at times that are inconvenient for the standards decision makers. Perhaps we should give up worrying about TV standards and accept the fact that there have always been and always will be different ways of going about things, with various advantages and disadvantages. Let's just sit back and watch the thing unfold. It would be nice to take a relaxed view like that. But of course there's more at stake.
 Sets have to be manufactured to standards, broadcasters have to observe system parameters and, at ourend of things, the public has to be presented with a good case for buying what's available. It doesn'thelp the salesman to have to work in an atmosphere of   continuing uncertainty.



One more comment about digital in 2000..............


Over the years we have learnt that one of the most important things in video/ TV technology is selecting the best system to use. We have also seen how difficult this can be. Prior to the start of the colour TV era in Europe there was an great to-do about the best system to adopt. The US NTSC system seemed an obvious choice to start with. It had been proved in use, and refine- ments had been devised. But alternative, better solutions were proposed - PAL and Secam. PAL proved to be a great success, in fact a good choice. 
The French Secam system seems to have worked just as well. Apart from the video tape battles of the Seventies, the next really big debate concerned digital TV. When it came to digital terrestrial TV (DTT), Europe and the USA again adopted different standards. 

One major difference is the modulation system used for transmission. Coded orthogonal frequency   division multiplexing (COFDM) was selected for the European DVB system, while in the USA a system called 8VSB was adopted. COFDM uses quadrature amplitude modulation of a number of orthogonal carriers that are spread across the channel bandwidth. Because of their number, each carrier has a relatively low bit rate. 
The main advantage of the system is its excellent behaviour under multipath reception conditions. 8VSB represents a rather older,  pre phase modulation technoogy: eight  state amplitude modulation of a single carrier, with a vestigial sideband. The decision on the US system was assigned to the Advanced Television Systems Committee (ATSC), reporting to the FCC. The system it proposed was approved by the FCC on December 26th, 1996. The curious date might suggest that there had been a certain amount of politicking. In fact there had been an almighty row between the TV and computer industries about the video standard to adopt, the two fearing that one or other would gain an advantage as the technologies converged. It was 'resolved' by adopting a sort of   "open standard"  we are talking about resolution and scanning standards here - the idea apparently being that the technology would somehow sort itself out.

 There seems to have been rather less concern about the modulation standard. 8VSB was adopted because it was assumed to be able to provide a larger service area than the alternatives, including COFDM, for a given transmitter power. Well, the USA is a very large place! But the US TV industry, or at least some parts of it, is now having second thoughts. Once the FCC had made its decision, there was pressure to get on with digital TV. In early 1998 there were announce- ments about the start of transmissions and broadcasters assured the FCC that DTT would be available in the ten areas of greatest population concentration by May 1999. Rapid advances were expected, with an anticipated analogue TV switch -off in 2006. So far however things have not gone like that. At the end of 1999 some seventy DTI' transmitters were in operation, but Consumer Electronics Manufacturers Association estimates suggest that only some 50,000 sets and 5,000 STBs had been sold.

 There have been many reports of technical problems, in particular with reception in urban and hilly areas and the use of indoor aerials, also with video/audio sync and other matters. Poor reception with indoor aerials in urban conditions is of particular concern: that's how much of the population receives its TV. The UK was the first European country to start DTI', in late 1998 - at much the same time as in the USA. The contrast is striking. ONdigital had signed up well over 500,000 subscribers by the end of 1999, a much higher proportion of viewers than in the USA. Free STBs have played a part of course, but it's notable that DTT 's reception in the UK has been relatively hassle -free. In making this comparison it should also be remembered that the main aim of DTT technology differs in Europe and the USA. 

The main concern in Europe has been to provide additional channels. In the USA it has been to move to HDTV, in particular to provide a successor the NTSC system. There have been plenty of channels in the USA for many a year. For example the DirecTV satellite service started in mid 1994 and offers some 200 channels. Internationally, various countries have been comparing the US and European digital systems. They have overwhelmingly come down in favour of the DVB system. There have been some very damaging assessments of the ATSC standard. The present concern in the US TV industry results from this poor domestic take up and lack of international success. Did the FCC make a boob, in particular in the choice of 8VSB? Following compara- tive tests carried out by Sinclair Broadcasting Group Inc., the company has petitioned the FCC to adopt COFDM as an option in the ATSC standard. Not only did its tests confirm poor reception with indoor aerials: they also established that the greater coverage predicted for 8VSB failed to materialise in practice. Could the USA have two DTT transmission standards? It seems unlikely. It would involve dual standard receivers and non  standardisation of transmitters. In the all important business of system selection, it looks as if the FCC got it wrong.
              ....................................   It is obviously wasteful to duplicate terrestrial TV transmissions in analogue and digital form. Sooner or later transmissions will all be digital, since this is a more efficient use of spectrum space. The question is when? It would suit some to switch off the analogue transmitters as soon as possible. 2006 has been suggested as a time to start, with ana- logue transmissions finally ending in 2010. All very neat and tidy. Whether it will work out in that way is another matter. Strong doubts are already beginning to be aired. 
 The government has, quite properly, laid down conditions to be met before the switch off occurs. Basically that the digital signal coverage should equal that achieved for analogue TV, currently 99.4 per cent of the population, and that digital receiving equipment should be available at an affordable price. The real problem is that there is a difference between a coverage of 99.4 per cent and 99.4 per cent of the population actually having digital receiving equipment. Why should those who are interested in only free - to -air channels go out and buy/rent a digital receiver? It is already becoming evident that this represents a fair chunk of the population. 
The ITC has warned the government that the 2006-2010 timetable is in jeopardy. Peter Rogers, the ITC's chief executive, has said "we need to persuade people only interested in watching free -to -air television to switch to digital. "
Unless we do, there will be no switch - over." Well not quite, because the analogue receivers will eventually wear out and have to be replaced. But that could take a long, long time. Meanwhile many people will expect to be able to continue to watch their usual TV fare using their existing analogue receivers. 

Research carried out by Culture Secretary Chris Smith's department has established that between forty and fifty per cent of the population expects the BBC licence to cover their TV viewing, which means what they get at present in analogue form. A substantial percentage of the population simply isn't interested in going digital. In fact take up of integrated receiver -decoders, as opposed to the free digital set -top boxes, has so far been very slow. 
Of five million TV sets sold in the UK year 1999 , only 10,000 were digital. There are important factors apart from overall coverage and how many people have sets. There is the extension of coverage, which becomes more difficult to achieve eco- nomically as the number of those not covered decreases. There is the problem of reception quality. And there is the question of domestic arrangements and convenience. Extending coverage to the last ten fifteen per cent of the population by means of conventional terrestrial transmitters will be expensive. Mr Smith's department seems to have conceded that other methods of signal delivery may have to be adopted - by satellite, by microwave links or by cable. The latter has of course never been economic where few households are involved. 
The frequency planners have been trying to find ways of increasing coverage even to well populated areas. There are so many areas where problems of one sort or another make the provision of DTT difficult. Satellite TV is the obvious solution. 
The time may well come when it is wondered why anyone bothered with DTT. Signal quality is becoming an increasingly important factor as the digital roll out continues. In areas where the signal is marginal, viewers could experience the extreme irritation of picture break up or complete loss like even todays. This is quite apart from the actual quality of the channel, which depends on the number of bits per second used. There is a maximum number of bits per multiplex, the total being shared by several channels. The fewer the bits, the poorer the picture in terms of definition and rendering. 

There have already been complaints about poor quality. The question of domestic arrangements is one that has not so far received adequate public attention. Most households 2000 nowadays don't have just one TV set that the family watches. They have a main one, probably, almost certainly one or more VCRs, and several other sets around the house to serve various purposes. What 'the percentage of households that have digital TV' should really mean is the percentage willing to replace all this equipment. It will be expensive, and people would not be happy if they were told to throw away their other equipment when they get a single nice new all  singing all dancing widescreen digital TV set. It fact there would be uproar. The move from analogue to digital is not like that from 405 to 625 lines, which went fairly smoothly.

In those days few people had video equipment or a multitude of sets. The transition to digital is not going to be smooth, and the suggestion of a switch off during 2006-2010 already looks totally unrealistic. Unless the government subsidises or gives away digital TV sets - and why should it? - people will expect their existing equipment to continue to be usable.  

So it's likely that analogue TV will be with us for many years yet. But that would be the end of analogue too. 

.............................Indeed...............................


----------------------------------------------------------------------------


Victor Company of Japan, Ltd (Nippon Bikutā Kabushiki-gaisha?) (TYO: 6792), usually referred to as JVC, is a Japanese international consumer and professional electronics corporation based in Yokohama, Japan which was founded in 1927. The company is best known for introducing Japan's first televisions, and developing the VHS video recorder.


1920s – 1960s

JVC was founded in 1927 as "The Victor Talking Machine Company of Japan, Limited" as a subsidiary of the United States' leading phonograph and record company, the Victor Talking Machine Company. In 1929 majority ownership was transferred to RCA-Victor. In the 1930s JVC produced phonographs and records, but in 1932 JVC started producing radios, and in 1939 they introduced Japan's first TV. JVC severed relations with its foreign partners during World War II, and was majority owned by Matsushita (Panasonic Corp.) from 1953 to Aug 2007. Finally it became JVC Kenwood Holdings in 2008 after Panasonic (Matsushita) decided to spin off the company and it was merged with Kenwood Electronics.
1970s – 1980s

In 1970, JVC marketed the Videosphere, a modern portable CRT television inside a space helmet shaped casing with an alarm clock at the base. It was a commercial success.

In 1971, JVC introduced the first discrete system for four channel quadraphonic sound sound on vinyl records - CD-4 (Compatible Discrete Four Channel) or Quadradisc, as it was called by RCA in the U.S. In 1976 JVC introduced the 3060, a 3" portable television with an included cassette player.


VC developed the VHS format, and introduced the first VHS recorders to the consumer market in 1977 for the equivalent of US $1060. Sony who had introduced the Betamax home videocassette tape a year earlier, became the main competitor to JVC's VHS into the 1980s creating the videotape format war. The Betamax cassette was smaller with slightly superior quality to the VHS cassette[citation needed], but this resulted in Betamax having less recording time. By 1984, forty companies utilized the VHS format in comparison with Betamax's twelve. Sony tacitly conceded defeat in 1988 when they also began producing VHS recorders.

In 1979, JVC demonstrated a prototype of their VHD/AHD disc system. This system was capacitance-based like CED, but the discs were grooveless with the stylus being guided by servo signals in the disc surface. The VHD discs were initially handled by the operator and played on a machine that looked like an audio LP turntable, but JVC used caddy housed discs when the system was marketed. Development was interrupted continually, but in April 1983 it was first marketed in Japan, and then in the UK in 1984 to a limited industrial market. By this time both Philips and Sony already had compact discs on the market, and the VHD format never caught on.

In 1981, JVC introduced a line of revolutionary direct drive cassette decks, topped by the DD-9, that provided previously unattainable levels of speed stability.

During the 1980s JVC had a brief appearance in marketing their own portable audio equipment similar to the Sony Walkmans at the time. The JVC CQ-F2K was released in 1982 and had a detachable radio that mounted to the headphones for compact, wire-free listening experience. JVC had difficulty making a success of the products, and a few years later abandoned the product line. In Japan, JVC marketed the products under the name Victor.

In 1986, JVC released the HC-95, a personal computer with a 3.58 MHz Zilog Z80A processor, 64KB RAM and ran MSX Basic 2.0. It included two 3.5" floppy disk drives and conformed to the graphics specification of the MSX-2 standard. However, like the Pioneer PX-7 it also carried a sophisticated hardware interface that handled video superimposition and various interactive video processing features. The JVC HC-95 was first sold in Japan, and then Europe, but sales were disappointing.

JVC video recorders were marketed by Ferguson in the UK, with just cosmetic changes. However Ferguson needed to find another supplier for its camcorders when JVC produced only the VHS-C format, rather than video8. Furthermore, Ferguson was taken over by Thomson SA and so ended the relationship. At the time, JVC had a reputation for reliable, high quality equipment. JVC has gone on to invent hard drive camcorders.


Present

In October 2001, the National Academy of Television Arts and Sciences presented JVC an Emmy Award for "outstanding achievement in technological advancement" for “Pioneering Development of Consumer Camcorders.” Annual sponsorships of the world-renowned JVC Tokyo Video Festival and the JVC Jazz Festival have helped attract the attention of more customers.

JVC has been a worldwide football supporter since 1982, having a former kit sponsorship with Arsenal and continued its role as an official partner of 2002 FIFA World Cup Korea / Japan. JVC made headlines as the first-ever corporate partner of the Kennedy Space Center Visitor Complex. JVC has recently forged elite corporate partnerships with ESPN Zone and with Foxploration. In 2005, JVC joined HANA, the High-Definition Audio-Video Network Alliance to help establish standards in consumer electronics interoperability.

JVC developed the first DVD+RW DL in 2005.

In December 2006, Matsushita entered talks with Kenwood and Cerberus Capital Management to sell its stake in JVC.

In 2007, Victor Company of Japan Ltd confirmed a strategic capital alliance with Kenwood and SPARKX Investment, resulting in Matsushita shareholding being reduced to approx 37%.

In 2008, Matsushita (Panasonic) agreed to spin-off the company and merge with Kenwood Electronics, creating JVC Kenwood Holdings, formed on October 1, 2008.



JAPAN IS STRANGE
Strange how situations change. It seems not so long ago that Japan and its industries, particularly electronics, could do no wrong. They taught us how to make cars and TV sets properly. They invested heavily and came up with a seem- ingly endless stream of desirable, innova- tive products. Both outsiders and insiders could see no end to this success story. We were told, by more than one leading Japanese electronics industrialist, that the 21st century would be the Japanese one, when Japan became predominant industri- ally and culturally. For the last couple of years the situation has been somewhat different. Japan is still the world's second largest economy, but the previous confidence has gone. The econo- my has stalled, and doesn't look like getting going again for some time. Profitability has become appalling, and the talk now is all of restructuring and job losses. Sony has announced that some 17,000 jobs will be lost worldwide, ten per cent of its workforce, while fifteen of its seventy factories are to be closed. Mighty Hitachi, whose activities span a much wider field and whose turnover is equivalent to over two per cent of Japan's gross domestic product, has launched a detailed review of its businesses. 6,500 of its 66,000 parent company employees are to be made redun- dant by March next year. On a consolidat- ed basis Hitachi is Japan's largest employ- er, with 330,000 staff. Businesses are to be dropped or reorganised. The story from Mitsubishi Electric is similar: there is to be a "sweeping restructuring of its portfolio of businesses". In the UK, the latest manifes- tation of this is the closure of Mitsubishi's VCR plant at Livingston. 14,500 jobs will go (8,400 in Japan) at Mitsubishi Electric, nearly ten per cent of the workforce. Other manufacturers who have announced poor results and restructuring recently include NEC, Matsushita, Sharp and Toshiba. It's all a long way since the time when, it seemed, all the Japanese had to do was to get the product right and produce more and more of it. Some of this was foreseeable. Markets reach saturation point; new products are not always a runaway success; if investment in new plant is excessive you end up with too much capacity; and so on. Then there is the fact that Japan is not isolated from econom- ic problems elsewhere: no economy that is heavily dependent on exports can be. But there are also more specific Japanese prob- lems. The banking system is beset by non- performing loans that Japanese bankers are reluctant to write off. The bubble economy of a few years ago, when asset values rose to unrealistic levels, collapsed. This is part of the cause of the banking system difficul- ties. Then there is the practice of cross - ownership, with firms owning substantial stakes in each other. This can work nicely when everything is doing well: when reces- sion looms, it aggravates the problems. Japan's unemployment rate hit a new high of 4.8 per cent (3.39m) in March, part- ly because of the corporate sector restructur- ing. Japanese industrialists hope to improve their profitability in the second half of the year, and will be helped by improved condi- tions in SE Asia. But it will be hard going, particularly to improve domestic market conditions. The Japanese have always had a high propensity to save. This increases when the economic climate is poor, with unemployment a threat. Right now Japanese consumers are saving rather than buying. No one seems to know how to alter their behaviour. There is also a demographic problem: the Japanese population is ageing. Japanese interest rates are negligible. So borrowing is not a problem. But conversely all those savings are bringing in little income. In the Western world interest rate changes often have a considerable impact on the economy. This economic tool is not available when interest rates are negligible. The Japanese have been advised to get their banking system sorted out, but that's not the sort of thing that can be done overnight. Right now the best opportunity for Japan seems to be to export its way out of its dif- ficulties, something that shouldn't be too difficult once worldwide expansion has resumed. But the high value of the yen is a drawback. From the economic viewpoint it's an extremely interesting situation, one in which the laws of economics have little to offer. This could be because such laws are, basically, descriptive rather than prescrip- tive. In the real world you can't always ini- tiate economic activity through monetary or fiscal means. Some commentators have gone so far as to suggest that the Japanese government should spend, spend, spend and print money to kick-start the economy. This is a dangerous course that can go badly wrong. It has already been tried by the Japanese government to a limited extent, with similarly limited success. The one thing that we do know is that economies are not stable. Change is ever present in one form or another. The prob- lem lies in trying to control it. This is all rather humbling, and certainly something of a comeuppance for the rather arrogant Japanese industrialists who had talked about the century of Japanese economic hegemony.





..................OLD RELIABILITY PROBLEM:
 It's a well known fact that the reliability of Japanese made TV sets is better than that of European made ones. It works out something like this: for every call to a Japanese set during its first year you'll have to make two -three calls to its European counterpart. It's not quite as bad as that may sound. Call rates tend to lie in the region 0.5-1, which means at one end that half the sets won't require attention while at the other end each set will require one call per year. Then again these are average figures, and while many sets won't require attention at all others will have more than their fair share of breakdowns. Fortunately there has been an improvement in recent years - the situation was rather worse say four years ago. But then for the last couple of years we've been going through a period when the technical situation has remained fairly static. Will the new in -line gun tube chassis using the new ranges of i.c.s prove more or less reliable than their immediate predecessors? Only time will tell of course. But the unfavourable comparison between the failure rate of Japanese and European sets has been a continuing fact of life for several years. Is it to do with components, assembly methods, or basic design? Well, Japanese sets use much the same components and assembly methods, and the designs are not fundamentally all that different. Perhaps there is some subtler difference somewhere? Recent conversations we've had suggest that this could well be so. We can speak only of the European industry of course, but feel that the situation is probably much the same with our continental competitors. The first thing to bear in mind - and this relates to other industries, such as car manufacturers, as well - is the different industrial structures. Like the car industry, European TV setmakers tend to be assemblers of finished products rather than manufacturers of whole units. They buy in capacitors, resistors, semiconductor devices, many of the wound components, the tubes, probably the tuners and triplers and so on. This is far less the case in Japan, where most of what a setmaker uses comes from "in house" sources. All right you may say. But European component manufacturers have been in the game long enough to know what they're about - as long as anyone else for that matter. Furthermore, they've been working in close contact with the same setmakers, both facing and dealing with common problems. Why should this different industrial set-up make any difference? It's probably not so much the set-up itself so much as the fact that the way the European industry is organised tends to emphasise certain basic weaknesses. Quite substantial changes have occurred in even the most mundane components in recent years - component manufacturers are producing new types of capacitor and resistor that were simply not known a decade ago for example. But to do this successfully calls for adequate investment and the employment of adequate numbers of properly trained engineers and technical staff. In both these respects, European industry is notorious. It may well be said that in difficult economic times it's hardly possible to increase investment and take on extra trained staff, which is true enough. But the fact is that we are reaping the results of our past inadequacies, and a start hag to be made sometime if the situation is ever to be retrieved. The main problems seem to relate to know-how and technical liaison. Does the setmaker get a thorough and reliable service from his suppliers - and conversely has he set about ensuring that he does? It's not good enough today to continue on the basis that something worked reasonably well enough last time and the supplier says he hasn't had any particular complaints other than the usual ones. To achieve the degree of reliability required to continue to exist in a highly competitive international industrial climate, it's necessary to know precisely what order of tolerances under various operating conditions the various components offered and bought have. And this calls for adequate technical back-up and investment. The Japanese invest adequately and their engineers can get together within a single organisation to deal with common problems. It's not necessary for the European industry to be reorganised for the same to be done. What's required is a more powerful voice for the engineer, backed by adequate investment.

Some References:

"Annual Report 2008 Financial Section for JVC" (PDF). JVC Kenwood Holdings, Inc. Archived from the original (PDF) on 2011-07-22. Retrieved 2012-05-22.
"HMV ONLINE - CD・DVD・ブルーレイ・本・雑誌・ゲーム・グッズも充実". Retrieved 22 March 2015.

"Matsushita owned JVC 1953-2007". Retrieved 2012-10-08.

"Always Helpful! Full of Information on Recording Media "Made in Japan After All"". Nipponsei.jp. Archived from the original on 2011-01-11. Retrieved 2011-07-11.

"JVC HR-3300". Totalrewind.org. Retrieved 2011-07-11.

"Video / DVD - A Brief History of Home Video" (timeline), 2005, Entertainment Scene, webpage: ES-hvid-hist.

" JVC DD-9 Cassette Deck Review", HiFi Classic, webpage: [1].

"JVC Develops World's First Single-sided, Dual Layer DVD-RW Disc Technology" (PDF). 2005-04-04. Archived from the original (PDF) on 2014-12-21. Retrieved 2016-03-25. Victor Company of Japan, Ltd. (JVC) is pleased to announce that it has developed the world's first [as of April 4, 2005] single-sided, dual layer DVD-RW disc technology with a maximum storage capacity of 8.5GB

"Matsushita Says No Decision on Sale of Victor Shares to Kenwood". Bloomberg. 2006-12-23. Retrieved 2012-05-22.

"Kenwood, JVC Take First Merger Steps". TWICE. 2007-08-06. Retrieved 2012-05-22.

Takenaka, Kiyoshi (2008-05-12). "JVC, Kenwood to merge under holding company". Reuters. Retrieved 2012-05-22.

"JAPAN NEWS: JVC reports increased losses, plans to end TV production in UK". Retrieved 22 March 2015.

"2010 - News Release - JVCKENWOOD Corporation". Archived from the original on 29 March 2015. Retrieved 22 March 2015.

"Archived copy" (PDF). Archived from the original (PDF) on 2014-04-11. Retrieved 2015-03-21.

http://rise.unistellar.com/Category:Sponsorship

"why nipper is disappearing from record labels!". Retrieved 22 March 2015.

1 comment:

  1. never even knew this television existed...I bet it at least cost a grand.

    ReplyDelete

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.

Note: Only a member of this blog may post a comment.