BLOG PAGES

Friday, May 20, 2011

BRIONVEGA ALGOL 11" YEAR 1965.











A must here at Obsolete technology Tellye Museum.

The BRIONVEGA ALGOL 11" is a portable 11 Inches B/W television recognizeable for his famous design and compactness (Isn't easy to service).

It designed by Richard Sapper was born in Munich in 1932. He studied philosophy, graphic design, engineering and economics. From 1956 - 1958 he worked for Mercedes Benz until he moved to Milan, where he worked with Marco Zanuso for Brionvega. Other companies he worked for are Siemens, Fiat, Pirelli IBM and Alessi. His most famous design is the Tizio lamp for Artemide. He was a professor at the Hochschule fuer Angewandte Kunst in Vienna. He received the "Compasso d'Oro" 5 times.

Marco Zanuso was born in 1916. He graduated from the Milan Polytechnic (architecture) in 1939. He worked as a freelance designer and architect. He was editor of Domus and Casabella-Continuita. He worked with Richard Sapper for Brionvega in the 1960's creating industrial design classics like the Algol portable TV. He was a professor at the Milan Polytechnic.


And it weights much more than another 11 Inches portable B/W.


This little portable, plastic-cased TV set is shaped so that its screen tilts upwards slightly. The front of it is just the screen — no knobs, buttons or speakers or any kind of surround whatsoever. All the incidental stuff is mounted on the top or sides. A telescopic aerial sprouts from near the front, rather than the back as is more normal, while a hinged metal carrying handle is cranked to fit snugly into the bend at the top of the box.

Specifically, the original Algol 11″ was a black and white television that came in three colors: bright sun orange, black night, and moon gray. The metal retractable handle is a hallmark (shared by the TS-503 radio I should mention) that makes this a portable set. The TV receives VHF and UHF signals and uses a one meter extractable rod antenna for the VHF and a 19.5cm circlular antenna for UHF. It is also possible to connect to an external aerial. Power is either AC (125 – 16- =220) or via 12V DC. Dimension is 26 x 22 x 31cm and it comes in at 7.6kg.


The TVs are in the permanent collection of international museums including MoMA. The Algol TV was designed in 1964 by the the Italian Marco Zanuso and his German colleague Richard Sapper, who between them produced a string of enduring products for Brionvega in the 1960s using new miniaturised circuitry.

The Algol TV was considered by some, such as Flavio Manzoni, VW’s Creative Design Director, an “everlasting artwork”


Description from Brionvega in Italian:

Doney in piccolo, un vero, bellissimo televisore
da portare con sé.

E' un'invenzione da regalo;
lo si può avere in più anche per ambizione:
il primo televisore-transistor al mondo con
cinsecopio da 11" a schermo rettangolare.

Schermo libero, sviluppo in profondità.
un apparecchio guardabile con piacere
da tutti i lati, elegantissimo,
a superficie continua.

I programmi si cambiano a pulsante,
funziona dovunque, supera le zone difficili,
è il transistor assoluto.

Richiesto dalla Commissione
per la documentazione e preselezione del
premio Compasso d'Oro 1964.

Designers Marco Zanuso e Richard Sapper.

Un altro invito Brionvega
alla migliore televisione.



It has Channels selector for VHF and UHF Channels only in manual way !

Tuning is obtained with rotatable drum selectors for VHF and variable rotatable capacitor for UHF.
A rotatable drum containing twelve pre-defined channel-specific filters determines the received channel, where the inductors of the input matching, the channel filter and the LO tank circuit are changed. The tuner is divided into two chambers for maximum isolation between the sensitive RF input and the mixer-oscillator-IF section with its much larger signals. Also on the drum there are eventually two separate sub-modules.
It's completely based on tubes technology.
With this concept, which essentially turned the tuner module into a kind of Lego building block construction, many different tuners became possible. Depending upon the country of destination and its associated standard and IF settings, the required filter modules would be selected. Service workshops and tv fabricants could later even add or exchange modules when new channels were introduced, since every inductor module had its individual factory code and could be ordered separately. As a consequence more versions of the tuner were produced, covering at least standards B, B-for-Italy, C. E, F and M.


The principle of the drum tuner. On an axis two times 12 regularly spaced channel-specific filter modules are mounted. In front are twelve channel filter modules for both the channel filter and LO tank circuit tuning. Seven contacts are available, and one module is shown removed. The second row contains 12 modules with five contacts for the input filter circuit. In the tuner module the front section (for mixer-ocillator and channel filter) is separated by a metal shield from the rear RF input and pre-amp section. [Philips Service "Documentatie voor de kanalenkiezers met spoelenwals", 1954]
Examples of the filter modules as used in the drum tuner. Left the 5-contact input filter, right the 7-contact BPF and LO tank filters. In both modules the coils are co-axial for (maximum) mutual coupling.





The second new valve introduced in the tuners family was the PCF80, a triode-pentode combo valve specifically designed for the VHF mixer-oscillator role. First order the circuit principles didn't change too much from the previous ECC81 based generation, with the triode acting as a Colpitts oscillator with a tuned feedback from anode to grid. The oscillator voltage was minimally 5V at the grid, and would be inductively coupled to the input of the mixer pentode. This inductive coupling was achieved by putting the oscillator coil S7 and the BPF coils S5 and S6 on the same rod inside the drum tuner filter modules, see Fig.5 above. By adjusting the distance between these coils for each channel filter module, the coupling constant could be kept more or less constant across all channels, providing as much as possible a frequency-independent mixer performance. For the mixer the pentode replaced the previous triode, providing more feedback isolation between anode and grid. All in all the new tuner must have given a considerable performance improvement compared to the previous generation.



It can be even powered with a 12volt source.Recently, it has become more popular than ever to watch TV in a car as the number of cars increases. In general, a storage battery of 12 volts is used in small cars while one of 24 volts is used in large cars so that there is a disadvantage that a separate power supply device is required for driving a TV set in compliance with the respective battery used in the car. The present invention relates to a power supply circuit of a television receiver used in an automobile, and in particular to a power supply circuit of a television receiver which enables two different voltages from two kinds of supply respectively mains at 220v and dc 12v.




Brionvega is (was) an Italian electronics company, established in Milan in 1945.

Good design is no longer simply for an "elite" but is demanded by a far wider audience interested in continuous development.With so many designs and products available, how is it possible to distinguish a truly outstanding design from one that is simply trendy. World famous designers: Hannes Wettstein, Mario Bellini, Richard Sapper, Marco Zanuso, Castiglioni brothers and Ettore Sottsass, have tried to come up with the answer to what constitutes the perfect design. In finding inspiration, when designing for Brionvega, these people look beyond every day fashion and look for examples which are outstanding in their beauty. They also pay attention to people's attitude and how they relate to everyday objects.


Historically speaking, Brionvega is one of the most famous radio and Television manufacturers, thanks to its products, born from the collaboration with well-known design firms. Over the years, from its establishment, Brionvega has made some industrial design corner-stones, such as the radio "cube" TS502 from 1963, the Algol and Doney portable TV, and the radio-phonograph RR126.

The BRIONVEGA stylish design is well recognized around the world for it's particularity.
The television here in collection The ALGOL 11" is a clear example of that style.


A good point  on good  old  B/W Televisions.....................

The Sixties was a time of great change for TV. At the start of the decade there were just monochrome sets with valves, designed for 405 -line transmissions at VHF. By the end there was 625 -line colour at UHF, with transistorised chassis that used the odd IC.

The following decade was one of growth. The "space race" had begun in 1957, when the USSR launched Sputnik 1 and terrified the Americans. Thereafter the USA began to spend countless billions of dollars on space missions. This got underway in earnest in the Sixties, with the announcement that America would be going all out to get a man on the moon by the end of the decade. There followed the Mercury series of earth - orbit missions, then the Apollo launches. Success was achieved in 1969. Most of these missions were televised, and in those days anything to do with space was hot stuff. It was inevitable that everyone wanted to have a television set. At the time an average receiver would be a monochrome one with a 14in. tube - there was no colour until 1967. It would cost about 75 guineas. 
TV sets were often priced in guineas (21 shillings) as it made the price look a bit easier on the pocket. Anyway 75 guineas, equivalent to about £78.75 in 2000's currency, was a lot of money then.  For those who couldn't, rental was a good option. The Sixties was a period of tremendous growth for rental TV. 
Much else was rented at that time, even radios, also washing machines, spin driers, refrigerators and, later on, audio tape recorders (no VCRs then). 
For most people these things were too expensive for cash purchase. 
There were no credit cards then. And when it came to a TV set, the question of reli- ability had to be taken into account: renting took care of repair costs. 

TV reliability.........The TV sets of the period were notoriously unreliable. They still used valves, which meant that a large amount of heat was generated. The dropper resistor contributed to this: it was used mainly as a series device to reduce the mains voltage to the level required to power the valve heaters. These were generally connected in series, so the heater volt- ages of all the valves were added together and the total was subtracted from the mains voltage. The difference was the voltage across the heater section of the dropper resistor, whose value was determined by simple application of Ohm's Law. 
As valves are voltage -operated devices, there was no need to stabilise the current. So the power supply circuits in TV sets were very simple. They often consisted of nothing more than a dropper resistor, a half or biphase rectifier and a couple of smoothing capacitors. If a TV set had a transformer and a full wave rectifier in addition to the other components, it was sophisticated!
 As the valve heaters were connected in series they were like Christmas -tree lights: should one fail they all went out and the TV set ceased to function. Another common problem with valves is the cathode -to -heater short. When this fault occurs in a valve, some of the heaters in the chain would go out and some would stay on. Those that stayed on would glow like search- lights, often becoming damaged as a result. Dropper failure could cause loss of HT (dead set with the heaters glowing), or no heater supply with HT present. When the HT rectifier valve went low emission, there was low EHT, a small picture and poor performance all round. CRTs would go soft or low emission, the result being a faint picture, or cathode -to -heater short-circuit, the result this time being uncontrollable brightness. On average a TV set would have twelve to fourteen valves, any one of which could go low -emission or fail in some other way. All valves have a finite life, so each one would probably have to be replaced at one time or another. The amount of heat generated in an average TV set would dry out the capacitors, which then failed. So you can see why people rented! 

The CRT could cause various problems. Because of its cost, it was the gen- eral practice to place its heater at the earthy end of the chain. In this position it was less likely to be overloaded by a heater chain fault. But during the winter months, when the mains voltage dropped a bit, it would be starved of power. This would eventually lead to 'cathode poi- soning' with loss of emission. The 'cure' for this was to fit a booster transformer designed to overrun the heater by 10, 20 or 30 per cent. It would work fine for a while, until the CRT completely expired. At about this time CRT reactivators came into being - and a weird and wonderful collection of devices they turned out to be. Regunned tubes also started to appear. You couldn't do this with the `hard -glass' triode tubes made by Emitron. These were fitted in a number of older sets. Yes, they were still around, at least during the early Sixties.



Developments................... A great deal of development occurred during the Sixties. Many TV sets and radios made in the early Sixties were still hard -wired: the introduction of the printed circuit board changed the construction of electronic equipment forever. The first one was in a Pam transistor radio. PCBs were ideal for use in transistor radios, because of the small size of the components used and the fact that such radios ran almost cold. 
They were not so good for use with valve circuitry, as the heat from the valves caused all sorts of problems. Print cracks could develop if a board became warped. If it became carbonised there could be serious leakage and tracking problems. In addition it was more difficult to remove components from a PCB. Many technicians at that time didn't like PCBs. As the Sixties progressed, transistors took over more and more in TV sets. They first appeared in a rather random fashion, for example in the sync separator stages in some Pye models. Then the IF strip became transistorised. Early transistors were based on the use of germanium, which was far from ideal. 

The change to silicon produced devices that were more robust and had a better signal-to-noise ratio. 
Car radios became fully transistorised, and 'solid-state' circuitry ceased to be based on earlier valve arrangements. Many hi-fi amplifiers had been transistorised from the late Fifties, and all tape recorders were now solid-state. 
Both reel-to-reel and compact -cassette recorders were available at this time. Initially, audio cassette recorders had a maximum upper frequency response of only about 9kHz. 
To increase it meant either a smaller head gap or a faster speed. Philips, which developed the compact audio cassette and holds the patents for the design (which we still use in 2000!) wouldn't allow an increase in speed. Good reel-to-reel recorders had a fre- quency response that extended to 20kHz when the tape speed was 15in./sec. 
This is true hi-fi. In time the frequency response of compact -cassette recorders did improve, because of the use of better head materials with a smaller gap. 
This led to the demise of the reel-to-reel audio recorder as a domestic product We began to benefit from spin-offs of the space race between the USA and the USSR. 
The need to squeeze as much technology as possible into the early computers in the Mercury space capsules used by the USA lead to the first inte- grated circuits. 
This technology soon found its way into consumer equipment. Often these devices were hybrid encap- sulations rather than true chips, but they did improve reliability and saved space. The few chips around in those days were analogue devices.  To start with most UHF tuners used valves such as the PC86 and PC88. They were all manually tuned. Some had slow-motion drives and others had push -buttons. They didn't have a lot of gain, so it was important to have an adequate aerial and use low -loss cable..............................

No comments:

Post a Comment

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.

Note: Only a member of this blog may post a comment.