The AUTOVOX TVC2608 OMICRON is a 26 inches color television with 16 programs and VST MEMOTRONIC (MOTOROLA) tuning search containing an automatic station finder with a digital counter, a clock generator, and a digital-to-analog converter forming the tuning voltage for the varactors, a recall memory consisting of two series-connected parallel memories is connected in parallel with the digital counter. At a stop signal from the automatic station finder the first parallel memory records the instantaneous count of the digital counter; at an automatic-station-finding start signal the second parallel memory, to which the parallel input of the digital counter is connected, records the contents of the first parallel memory.........a similar tuning circuit have had featured in other many brands.............. and infrared remote, which after use was fittable on the rear lid.
A television tuning device having a circuit for continuously scanning at least one frequency band. Scanning can take place at two speeds and controls are provided for starting and stopping the scanning procedure. The scanning speed is automatically changed from high speed to low speed when a television channel is detected to allow ample time for scanning to be stopped manually. Alternatively, the scanning may be stopped automatically. present invention relates to a television tuning device, comprising a circuit for continuously scanning at least one band of receivable frequencies, and having control means for starting and stopping the said scanning procedure and a terminal for applying a switch signal for switching from a first band-scanning speed to a second band-scanning speed slower than the first.
The name usually applied to a unit consisting of circuits of this type for selecting and memorising a given number of preferred channels is "station memory".
Many types of station memories are already being sold on the market which can be divided into two main groups: those with automatic and those with manual television channel searching.
The automatic types are fitted with electronic searching circuits which locate television channels automatically when started by the user. This is done by scanning a given band (VHF or UHF, for example) and stopping on the located channel. Data relative to the located channel can then be memorised by the user in a memory circuit and the same channel recalled whenever required by simply pressing a button which recalls the said data from the memory and supplies it to the channel selection circuit.
This type of circuit is also fitted with components which sense, during search, if a television channel has been tuned into and disable automatic searching to prevent television band scanning from continuing. Most of these circuits are fitted with a phase detector which senses the coincidence between the sync signals received and those regenerated in the receiver (in particular, the flyback signal).
Manual station memories, on the other hand, are fitted with controls which, when activated by the user, start a device for scanning a given television band. These controls also stop the said device when required by the user. When the user sees the required channel appear on the screen, the device is stopped to disable search and enable the channel to be memorised in the appropriate circuit.
In these cases, the simplest way of starting and stopping the search is to fit the circuits with a button which, when pressed, supplies a search-start signal and, when released, stops the searching operation. For best tuning, two buttons are usually provided for band scanning in both directions.
The search tuning starts with pressing the key "S" and an apparatus for indicating a tuned frequency of a tuner of a radio or television receiver, said tuner comprising a tank circuit employing a voltage controlled variable capacitance diode as a circuit element, which diode is supplied in a reverse direction with a scanning control voltage from a solid state potential memory device, which control voltage is set as a result of tuning of said tuner, said indicating apparatus comprising a plurality of light emitting diodes arranged in a line, each illuminating the corresponding frequency indicating region out of a plurality of divided frequency indicating regions of a frequency band to be received by said receiver, said regions being arranged in succession to cover said frequency band, and a corresponding plurality of drivers responsive to said control voltage for energizing the corresponding light emitting diode for illuminating the corresponding frequency region to which said tuned frequency pertains. In a preferred embodiment of the invention, the frequency indicating regions to be covered by the adjacent light emitting diodes are adapted to be overlapped in part at the ends thereof, so that the frequency in the overlapped portion in the region is indicated by said two adjacent light emitting diodes.Further the RF bands class are also displayed with leds in similar way.
With this aim in view, the present invention provides a television tuning device comprising a circuit for continuously scanning at least one band of receivable frequencies, manual control means for starting and stopping the said scanning procedure, a terminal for applying a switch signal for switching from a first band-scanning speed to a second band-scanning speed lower than the first, and detection means for detecting the presence of a television channel by comparing the received sync signals with local signals generated in the television receiver, and applying a switch signal to the said terminal for switching from the said first scanning speed to the said second scanning speed in the presence of the said switch signal, so that the band scanning continues at said lower speed until the manual control means produce the stopping scanning procedure.
A upper front display is present and Manual fine tuning or AFC controlled search is selectable via switch.
The general concept of Automatic Frequency Control (AFC) for television receivers is known in the art and has been adapted to radio receivers as well as to television receivers of both the monochrome and color variety. The general purpose of such a system is to assist the user in attaining proper fine-tuning of the receiver without requiring critical manual adjustment. The advantage of such a system is self-evident but its value to a color receiver is markedly increased due to the fact that improper tuning of a color receiver manifests itself in incorrect colors, or even a total lack of color, in the reproduced image. Typically, the AFC system is tuned to a reference or center frequency corresponding to the desired video IF frequency and so long as the tuning is reasonably close, within the response of the AFC system, an error voltage is developed to correct the tuning. If the user of the television receiver makes the fine-tuning adjustment while the AFC system is operative, he may adjust it to a point where the picture is acceptable but a substantial amount of AFC correction voltage is required. Thus, the receiver may be tuned at the limit of the "hold-in" range and would not give the proper "pull-in" performance when the channel selector is switched to the next channel. Accordingly, it is desirable to include an AFC defeat circuit for disabling the AFC system during manual fine-tuning. Heretofore, most AFC defeat circuits have required that the user of the television receiver defeat the AFC system by means of a manual switch. It is apparent, however, that the typical user of a television receiver may at times forget to flip the switch and hence the attendant problems are realized.
Headphone connector also present with an unusual speaker box connector type instead of a jack.
NEW LINE OUTPUT TRANSISTOR FEATURED: A new line output transistor, type BU500, has been introduced by Texas Instruments at the time. It is primarily designed for colour TV chassis using the new generation of 110° in line gun c.r.t.s. In addition to having a high gain when saturated and fast switching performance, the device, which is rated at 1500V and 6A, can withstand turn-off transients of up to 16A at 500V. Texas guarantee the transient turnlimit of every device, therefore it's possible to confirm safety margins for the transistor under fault conditions such as e.h.t. flashovers.
This set was the first AUTOVOX with PHILIPS 20AX CRT TUBE and a modular chassis technology developed on a horizontal pcb main holding chassis.The PHILIPS 20AX system was introduced in Europe in 1975 as the first self converging picture tube/deflection coil, combination for 110° degree deflection and screen sizes up to 26". The system is based on the automatic convergence principle discovered by Haantjes and Lubben of Philips Research Laboratory more than 20 years ago. It makes use of an in-line gun array in conjunction with a specially designed saddle type deflection coil. Residual small tolerance errors are compensated by a simple dynamic four-pole system. The tube is 2 cm shorter than conventional 110° Degree tubes and has a standard 36.5 mm neck in order to obtain good color selection. A slotted mask is used in combination with a stripe-structure screen. Picture sharpness is ensured by an astigmatic electron gun.
The
new tube, to be known as the 20AX, has been developed by PHILIPS in
conjunction with the parent Philips / Mullard organisation and will be
produced by several Philips subsidiary companies on the Continent as
well as by PHILIPS in the UK. PHILIPS envisage quantity production of
the tube by 1976, mainly for export at first, with large-scale
production for UK set - makers starting in 1977. The tube has been
developed as "probably the final phase in the design of the 110°
shadowmask tube". Its main
features are the use of three guns mounted horizontally in line, the
use of a shadow - mask with slots instead of circular holes, and a
screen with the phosphors deposited in vertical stripes instead of as a
pattern of dot triads. It seems therefore that the days of the present
delta gun shadowmask tube are now numbered, though considerable
production will have to continue for many years to provide replacement
tubes for the millions of colour sets already in use. So far as the
viewer is concerned however it is important to appreciate the time scale
involved (see above) and the reasons for the development of the new
tube. There is nothing wrong with the type of shadow - mask tube we have
known since the beginning of colour TV: it is able to provide superb
pictures. But in its 110° form it does require rather a lot of
scan/convergence correction circuitry. If this can be reduced by means
of an alternative approach
as
with the 20AX tube considerable benefits in set production and
servicing will be obtained. This has been the aim behind the development
of the new tube, and the demonstration tube we have seen operating with
its associated deflection yoke and circuitry gave a picture every bit
as good as we have come to expect from the present "conventional"
approach to colour tube design. There are now four colour tubes with in
-line guns, the Sony Trinitron (the first to come along), the RCA /Mazda
PIL tube, the Toshiba RIS tube and now the PHILIPS 20AX. It is
interesting to compare them. The Trinitron is a 90° narrow neck (29mm)
tube. It differs from the others in using an aperture grill (slits from
top to bottom) instead of a mask behind the screen to shadow the beams
and a tube face which is substantially flat in the vertical plane. On
the domestic market it is used exclusively in Sony sets and certainly
represented a break through in simplifying the convergence circuitry and
setting up adjustments required. The Toshiba RIS (rectangular flare,
in-line guns, slotted shadowmask) tube has now turned up in the UK in
the recently introduced 18in. Sharp Model C1831H. Its most distinctive
feature is the rectangu- lar instead of conical tube flare and the
rectangular semi -toroidal scanning yoke which is used with this. It is a
110° thick neck (36mm) tube. The convergence arrangements are fairly
simple. The most interesting comparisons however are between the PI tube
and the 20AX. The first is a 90° tube of the narrow neck variety and
features a toroidal yoke which is cemented to the tube- thus if either
is faulty the entire tube/yoke assembly must be replaced. The great
advantage is that no dynamic convergence adjustments or circuitry are
required. It is at present limited to sizes up to 20in. and the
designers say that it is not intended as a successor to the standard
shadowmask tube above this size. Its depth compares with 110° tubes
because of the simplified gun structure used. The PHILIPS 20AX tube
differs from it in several respects. First it is basically a 110° tube
which can be produced in a whole range
of sizes production of 18, 22 and 26in. versions is proposed so that
set makers can use it with a single chassis for models of various
sizes. Secondly it uses saddlewound deflection coils which are separate
from though accurately aligned
with the tube. And thirdly it is a thick neck tube. Unlike the PI tube
in which all the gun electrodes except the cathodes are common to all
guns the electrodes of each gun in the 20AX are separately available at
the base. This means that in addition to RGB drive to the cathodes the
grids are available for blanking and beam limiting and the first anodes
for background control setting in the normal manner. In fact PHILIPS
emphasised that the new tube is entirely compatible with existing colour
set techniques though the whole convergence system is greatly
simplified. The basic idea behind these in line gun, slotted mask tubes
is that by mounting the guns horizontally in line the convergence errors
are confined to the horizontal plane and by applying an astigmatic
deflection field these errors are cancelled. This means that a fair
amount of cunning in the design of the deflection yoke is required. A
saddlewound yoke is more efficient than a toroidal yoke since the
deflection fields are totally enclosed.
In comparison to current 110° PHILIPS tubes the 20AX requires much the same horizontal deflection power but about twice the vertical deflection power (which can be obtained without trouble from modern semiconductor devices). The use of a separate yoke with a tube of this type means that some dynamic convergence controls are still necessary, in order to match the assemblies. PHILIPS refer to these as "tolerance adjustments" rather than "dynamic convergence controls". About seven are required at present though further work is being done on this and by the time sets with the new tube appear we can expect some reduction. A single pincushion transductor is required instead of the two needed with 110° shadowmask tubes of the present variety. In comparison the PIL tube requires no dynamic convergence adjustments, only some simple tube neck magnets for static setting up. It is a little less efficient however because of the type of yoke employed. Whatever else happens there is no doubt that the vast majority of colour tubes fitted to TVC sets come 1977 will be of the in line gun, slotted mask, vertical phosphor stripe variety. Two further points made by PHILIPS at their demonstration : first, this type of tube requires less degaussing so that there are worthwhile savings in the amount of copper required for the degaussing coils: secondly their new tube, and in fact all PHILIPS monochrome tubes and shortly their colour tubes as well, will incorporate "instant on" guns which come into operation about five seconds after the set is switched on instead of the 30 seconds or more taken by present tubes. This instant on feature is based on a new heater/cathode assembly in which the use of mica insulators has been avoided.
Meanwhile we understand that in addition to RCA and, in the UK, Mazda, ITT and Videocolor SA are to produce PIL tubes. Whilst congratulations all round was appropriate on the successful development of these tubes it does seem a pity that was about to enter for the first time an era of non compatible colour c.r.t.s.
The set is build with a Modular chassis design because as modern television receivers become more complex the problem of repairing the receiver becomes more difficult. As the number of components used in the television receiver increases the susceptibility to breakdown increases and it becomes more difficult to replace defective components as they are more closely spaced. The problem has become even more complicated with the increasing number of color television receivers in use. A color television receiver has a larger number of circuits of a higher degree of complexity than the black and white receiver and further a more highly trained serviceman is required to properly service the color television receiver.
Fortunately for the service problem to date, most failures occur in the vacuum tubes used in the television receivers. A faulty or inoperative vacuum tube is relatively easy to find and replace. However, where the television receiver malfunction is caused by the failure of other components, such as resistors, capacitors or inductors, it is harder to isolate the defective component and a higher degree of skill on the part of the serviceman is required.
Even with the great majority of the color television receiver malfunctions being of the "easy to find and repair" type proper servicing of color sets has been difficult to obtain due to the shortage of trained serviceman.
At the present time advances in the state of the semiconductor art have led to the increasing use of transistors in color television receivers. The receiver described in this application has only two tubes, the picture tube and the high voltage rectifier tube, all the other active components in the receiver being semiconductors.
One important characteristic of a semiconductor device is its extreme reliability in comparison with the vacuum tube. The number of transistor and integrated circuit failures in the television receiver will be very low in comparison with the failures of other components, the reverse of what is true in present day color television receivers. Thus most failures in future television receivers will be of the hard to service type and will require more highly qualified servicemen.
The primary symptoms of a television receiver malfunction are shown on the picture tube of the television receiver while the components causing the malfunction are located within the cabinet. Also many adjustments to the receiver require the serviceman to observe the screen. Thus the serviceman must use unsatisfactory mirror arrangements to remove the electronic chassis from the cabinet, usually a very difficult task. Further many components are "buried" in a maze of circuitry and other components so that they are difficult to remove and replace without damage to other components in the receiver.
Repairing a modern color television receiver often requires that the receiver be removed from the home and carried to a repair shop where it may remain for many weeks. This is an expensive undertaking since most receivers are bulky and heavy enough to require at least two persons to carry them. Further, two trips must be made to the home, one to pick up the receiver and one to deliver it. For these reasons, the cost of maintaining the color television receiver in operating condition often exceeds the initial cost of the receiver and is an important factor in determining whether a receiver will be purchased.
Therefore, the object of this invention is to provide a transistorized color television receiver in which the main electronic chassis is easily accessible for maintenance and adjustment. Another object of this invention is to provide a transistorized color television receiver in which the electronic circuits are divided into a plurality of modules with the modules easily removable for service and maintenance. The main electronic chassis is slidably mounted within the cabinet so that it may be withdrawn, in the same manner as a drawer, to expose the electronic circuitry therein for maintenance and adjustment from the rear closure panel after easy removal. Another aspect is the capability to be serviced at eventually the home of the owner.
Giordano Bruno Verdesi founded in Rome in 1933 the Industry Italian Radio engineering, IRI, for the production of professional apparates, but this had its single development in 1945 with the war reconstruction post.
Previewing a strong development of the motorization, with Carlo Daroda, it comes up the Autovox SpA, with the specialization car radio production.
In 1953 the company is upgraded and constructed on the way Pays wages to Rome, the new plant for the production of television sets, antennas, car radio, transistor radio receivers, beyond a production of radiosondes and professional apparatuses for the aeronautical meteorology.
With the planning of the first car radio in the world, the leggendaria Bikini, in 1942 it begins a long season of successes like with the car radio Piper, the blue line with the first tuning electronic, the Kanguro the first car extractable stereo, mythical the Shuttle and Challenger the first car radio with the frequency synthesis, represents for Autovox, the flag stones in the development of new technologies, beyond to a complete range of television set (in black and white) of great reliability and from the pretty aesthetic.
Successively it realizes first in Europe, a color television set with fully transistorized chassis. (CLICK HERE TO SEE).
(To see the Internal Chassis Just click on Older Post Button on bottom page, that's simple !)
Some references and Notes:
^ AA.VV., Capitolium vol. 43, 1968, p. 14
^ "L' agonia dell'Autovox, cinquant'anni di fatti e misfatti romani" - Corriere della Sera, 10 aprile 1996
^ Bruce Weber, Kusisto envisions rainbows ahead, in Billboard, 15 gennaio 1972.
^ Richard Robson, Motorola UK bows cassette units, in Billboard, 1º luglio 1972.
Istituto Mobiliare Italiano, SpA v. Motorola, 689 F. Supp. 812 (N.D. Ill. 1988), su Justia Law. URL consultato il 26 gennaio 2016. ^ Aldo Grandi, Insurrezione Armata, BUR - Rizzoli, 2005, ISBN 978-88-17-00758-0. ^ Il Mondo vol. 36, 1985, p. 65 ^ "ALLA FINANZIARIA PUBBLICA REL IL 54% DELLA NUOVA AUTOVOX" - Repubblica, 8 giugno 1985 ^ "CONVOCATI DAL TRIBUNALE I CREDITORI DELL' AUTOVOX" - Repubblica, 12 novembre 1987 ^ "AUTOVOX, BATTAGLIA VUOLE IL FALLIMENTO" - Repubblica, 19 novembre 1987 ^ "NOVE ' IN CORDATA' PER SALVARE L' AUTOVOX" - Repubblica, 4 luglio 1992 ^ *** ATTO COMPLETO ***, su www.gazzettaufficiale.it. URL consultato il 21 gennaio 2016. ^ nuova autovox: a nissan Italia complesso aziendale Capena | Agi Archivio, su archivio.agi.it. URL consultato il 20 gennaio 2016 (archiviato dall'url originale l'8 marzo 2016). ^ LA NISSAN FAVORITA PER L'ACQUISTO AUTOVOX - la Repubblica.it, su Archivio - la Repubblica.it. URL consultato il 20 gennaio 2016. ^ AUTOVOX, cordata romana per riaccendere l'autoradio, su archiviostorico.corriere.it. URL consultato il 20 gennaio 2016. ^ Nuova autovox:commissariata anche la autovox video system | Agi Archivio, su archivio.agi.it. URL consultato il 20 gennaio 2016 (archiviato dall'url originale il 2 febbraio 2016). ^ Rifiuti: a Roma nuovo impianto e prima centrale biogas | Agi Archivio, su archivio.agi.it. URL consultato il 20 gennaio 2016 (archiviato dall'url originale il 2 febbraio 2016). ^ ACCORDO AMA - AUTOVOX RISCHIO DI ROTTURA - la Repubblica.it, su Archivio - la Repubblica.it. URL consultato il 20 gennaio 2016. ^ "OCCUPAZIONE. L' Autovox licenzia 234 lavoratori" - Corriere della Sera, 11 giugno 1996 ^ Italia lavoro dismette quota in Roma multiservizi | Agi Archivio, su archivio.agi.it. URL consultato il 20 gennaio 2016 (archiviato dall'url originale il 2 febbraio 2016). ^ Studio Multimediale Hangloose, Impianto di selezione e produzione CDR Salario - Ama Roma S.p.A., su www.amaroma.it. URL consultato il 26 gennaio 2016.
No comments:
Post a Comment
The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.
Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!
The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.
Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.
Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.
Your choice.........Live or DIE.
That indeed is where your liberty lies.
Note: Only a member of this blog may post a comment.