BLOG PAGES

Monday, February 13, 2012

BLAUPUNKT COLORADO COLOR 7 665 814 YEAR 1976.





The BLAUPUNKT COLORADO COLOR is a 27 inches color television with a curvy look design.

It features 16 programs preselection with potentiometric drawbar tuning search system (see picture) controlled by an ultrasonic remote control
Where such apparatus as television receivers are to be controlled from a viewer location as to channel, volume, brightness, etc., the remote control systems usually are made up of a hand held transmitter which transmits an ultrasonic signal to a receiver connected to or built within the television receiver. The depression of buttons on the transmitter causes a variety of signals or signal frequencies to be transmitted, whereby channel change, volume change, etc. is responsively obtained.
However such systems have individually suffered from one or more problems, such as inability to have direct access to the desired channel, slow access, insufficient noise immunity making it often possible to operate the system with the jingling of a key chain or an ultrasonic sound originating from a dishwasher etc., unreliable control due to the absence of means to detect and suppress transmission errors resulting from echoes, interfering signal sources, etc. Also some control systems are not suitable for continuous analog commands such as volume, brightness, etc. Existing systems also often require the need for bandpass filters and accurate crystal oscillators which make them costly. Many systems are not very suitable for integration into custom integrated circuits.
The present invention provides a remote control system whereby the nature of the remote control signal allows utmost reliability of control. The remote control receiver will be found to be virtually immune to echoes and ambient ultrasonic noises, and therefore will not produce a false response in the presence of echoes and ultrasonic interfering signals. A variety of kinds of commands can be provided, and with the preferred embodiment disclosed, up to ninety-nine channels in a television receiver can be instantaneously selected, without the requirement for sequentially stepping through each channel. Volume can be varied or muted, tint or brightness controlled, etc.
The above advantages are obtained by the transmission of a unique type of two tone coded signal which advantageously contains information defining start-up transmitted data, type of command (i.e. channel select identification or miscellaneous command such as volume), information permitting reconstruction of clock and identification of end of data. The two tones are transmitted sequentially. The second tone is transmitted to provide masking of echoes produced by the first tone and to mask noises that may be present in the operating environment of the system.
Since the two tones may be close together in frequency, it is possible to operate the remote control system in conjunction with high sensitivity resonant type microphones, thereby achieving high sensitivity together with high noise immunity. This also eliminates the need for input bandpass amplifiers.
The inventive receiver is thus rendered immune from operation by extraneous noise further by the provision of received data error checking circuitry for the timing of input pulses, etc., and for rejecting the data if an error is detected. The receiver also has provision for operation of continuous analog circuits in a television set, such as brightness, volume and tint controls, etc. Since echoes are masked out in the present system, data transmission can occur much more rapidly than in prior systems, as the receiver does not have to wait until echoes die out between transmission of bits for identification of data pulses.
Since all that is frequency dependent is the detection of signal above or below a predetermined reference frequency, accurate crystals for timing and reference frequency generation are not needed. The receiver is virtually entirely digital logic, making it suitable for monolithic integration with a minimum of external components. CMOS integrated circuit logic is preferred, minimizing power supply requirements.
In the preferred embodiment, two digits are transmitted separately and the second must be received within a given time interval, or the first number is disregarded. This method eliminates the need for a clear key as normally present on calculators.
The output of the receiver is a binary or BCD signal which can be used by known means to control the frequency of a selected channel, or to perform other functions such as variation of volume, control of brightness, tint, etc. in a television set.
It should also be understood that the use of this invention is not intended to be restricted to a television set, but can be utilized for the control of a large variety of other kinds of apparatus, e.g. door locks, household appliances, radio receivers, production machinery, etc. While the description below will be directed to a wireless ultrasonic transmitter-receiver system, it should be understood that a wired system, a radio control system, etc. could be used in the alternative.
The advantages of the invention are obtained by the provision of a system including means for receiving a transmitted signal comprising a pulse envelope modulated continuous wave ultrasonic signal at a first predetermined frequency, each pulse being immediately followed by a continuous wave ultrasonic signal at a second predetermined frequency which has amplitude such as to mask echoes of the first predetermined frequency at the receiving means, the pulses being representative of a sequence of binary bits, means to determine whether the received signal is above or below the frequency of a reference frequency, means for recognizing a change in input frequency with respect to the reference frequency, and means for counting said changes, determining the value of the binary bits, and providing a parallel coded signal representative of said value.
 
Plus more interesting features like:

- First Blaupunkt tv set  introducing  a P.I.L. In line CRT TUBE from RCA. This Crt tube family  is primarily intended for use in a color tube having a line type color phosphor screen, with or without light absorbing guard bands between the color phosphor lines, and a mask having elongated apertures or slits. However, the gun could be used in the well known dot-type color tube having a screen of substantially circular color phosphor dots and a mask with substantially circular apertures.

The new colour picture tube introduced in Europe  and developed in the US by RCA has an abundance of novel features designed to make it easier to operate and perhaps cheaper to produce. It arrives in an aura of snappy abbreviations such as PST ("precision static toroid") and ITC ("integral tube components") but the proud inventors for some reason insist on giving its full name, Precision In - Line System, the full treatment on each appearance. It seems inevitable that others will have no such inhibitions, so we shall draw comparisons between the new PI tube, the standard shadowmask tube and the Sony Trinitron. 

 
These are the only colour large scale production at present. Over twenty years have passed since RCA introduced the shadowmask cathode-ray tube, the first colour television display device to be mass produced. For most of this time it has remained the only colour picture tube available and it is now prodUced under licence to the inventors by many manufacturers all over the world. Detail improvements have been made of course but the basic scheme has remained unchanged: three electron guns in a triangular (or "delta") formation, a shadowmask etched with a pattern of tiny holes and a corresponding array of red, green and blue phosphor dots on the screen. In the last few years the Sony Trinitron has appeared and soon established itself as a display device for use in the small screen portable receivers for which it was designed. The three electron guns in this tube are closely spaced side by side in a horizontal plane. The "shadowmask" contains vertical slits instead of holes and the screen is composed of vertical phosphor stripes in a red -green- blue sequence.

An in-line electron gun is one designed to generate or initiate at least two, and preferably three, electron beams in a common plane, for example, by at least two cathodes, and direct those beams along convergent paths in that plane to a point or small area of convergence near the tube screen.In accordance with one aspect of the invention, at least two electron beams are generated along co-planar paths toward the screen of a cathode ray tube, e.g., a shadow mask type color picture tube, and the beams are converged near the screen by asymmetric electric fields established in the paths of two beams by two plate-like grids positioned between the beam generating means and the screen and having corresponding apertures suitably related to the beam paths. The apertures in the first grid (nearest the cathodes) are aligned with the beam paths.

This kind of CRT was featured in various brands such as Nordmende, Blaupunkt, Salora, Dumont, and others except for those which have had their own CRT tube production such as  PHILIPS, Toshiba......

GRUNDIG as example Never Used such type but only newer  such S4 Versions and newer.

- First BLAUPUNKT Featuring a Switch mode Power supply combined with isolated ground chassis from mains.
Television receivers, which obtain operating power from an alternating current source producing any one of a plurality of RMS potentials within a predetermined range, have, traditionally, been provided with various regulation circuits in order to maintain relatively uniform performance of the television receiver within the predetermined range of RMS potentials. This type of circuit provides good regulation of all operating direct current potentials within the range of RMS potentials as well as isolation between the source of alternating current and the television receiver chassis. Switching regulators serve as efficient and compact power supplies for instruments such as television receivers. A switching regulator may typically comprise a power transformer having a primary winding coupled to an input voltage source and to a power switch and a secondary winding coupled to a rectifier arrangement for developing a DC supply voltage for the instrument. A regulator control circuit generates pulse width modulated control signals that control the duty cycle of the power switch. A power switch is coupled to an inductance and a source of input voltage. A control circuit is coupled to the power switch for producing the switching thereof to transfer energy from the input voltage source to a load circuit coupled to the inductance. The control circuit is responsive to control voltages for varying the duty cycle of the power switch to control the transfer of energy to the load. A first control voltage representative of a variation in an energy level of the load circuit is developed to control the duty cycle in a manner that regulates the energy level.

- Featuring a OSD Clock Timer and a Channel change program on screen displayed......
This invention relates generally to a television receiver and more particularly is directed to a television receiver which can indicate the numeral of a channel after the channel is changed.There is proposed a television receiver in which when a channel is changed, the numeral indicative of the channel after the channel is changed is indicated on the screen of a cathode ray tube during a predetermined period. A conventional channel indicator used in such television receiver requires a special LSI (large scale integration) chip to indicate the numeral of the channel. However, such LSI chip requires a substantial investment in time and money from its designing to the completion, and when the designing thereof is changed midway, it is quite difficult to cope with such change.

Such equipment included clock mechanisms and specialized electronic circuits adapted for automaticturn on and of the tv set according to user presets.In general these prior art devices and apparatus employ complicated electronic circuits.

- Fully modular chassis.

The set is build with a Modular chassis design because as modern television receivers become more complex the problem of repairing the receiver becomes more difficult. As the number of components used in the television receiver increases the susceptibility to breakdown increases and it becomes more difficult to replace defective components as they are more closely spaced. The problem has become even more complicated with the increasing number of color television receivers in use. A color television receiver has a larger number of circuits of a higher degree of complexity than the black and white receiver and further a more highly trained serviceman is required to properly service the color television receiver.
Fortunately for the service problem to date, most failures occur in the vacuum tubes used in the television receivers. A faulty or inoperative vacuum tube is relatively easy to find and replace. However, where the television receiver malfunction is caused by the failure of other components, such as resistors, capacitors or inductors, it is harder to isolate the defective component and a higher degree of skill on the part of the serviceman is required.
Even with the great majority of the color television receiver malfunctions being of the "easy to find and repair" type proper servicing of color sets has been difficult to obtain due to the shortage of trained serviceman.
At the present time advances in the state of the semiconductor art have led to the increasing use of transistors in color television receivers. The receiver described in this application has only two tubes, the picture tube and the high voltage rectifier tube, all the other active components in the receiver being semiconductors.
One important characteristic of a semiconductor device is its extreme reliability in comparison with the vacuum tube. The number of transistor and integrated circuit failures in the television receiver will be very low in comparison with the failures of other components, the reverse of what is true in present day color television receivers. Thus most failures in future television receivers will be of the hard to service type and will require more highly qualified servicemen.
The primary symptoms of a television receiver malfunction are shown on the picture tube of the television receiver while the components causing the malfunction are located within the cabinet. Also many adjustments to the receiver require the serviceman to observe the screen. Thus the serviceman must use unsatisfactory mirror arrangements to remove the electronic chassis from the cabinet, usually a very difficult task. Further many components are "buried" in a maze of circuitry and other components so that they are difficult to remove and replace without damage to other components in the receiver.
Repairing a modern color television receiver often requires that the receiver be removed from the home and carried to a repair shop where it may remain for many weeks. This is an expensive undertaking since most receivers are bulky and heavy enough to require at least two persons to carry them. Further, two trips must be made to the home, one to pick up the receiver and one to deliver it. For these reasons, the cost of maintaining the color television receiver in operating condition often exceeds the initial cost of the receiver and is an important factor in determining whether a receiver will be purchased.
Therefore, the object of this invention is to provide a transistorized color television receiver in which the main electronic chassis is easily accessible for maintenance and adjustment. Another object of this invention is to provide a transistorized color television receiver in which the electronic circuits are divided into a plurality of modules with the modules easily removable for service and maintenance. The main electronic chassis is slidably mounted within the cabinet so that it may be withdrawn, in the same manner as a drawer, to expose the electronic circuitry therein for maintenance and adjustment from the rear closure panel after easy removal. Another aspect is the capability to be serviced at eventually the home of the owner.

- Led lamps diagnose  systems fitted on the main sections of the chassis developed for service purposes.

-
- Horizontal Beam Deflection  and high voltage generating circuits realized with Thyristors circuits.
The massive demand for colour television receivers in Europe/Germany in the 70's  brought about an influx of sets from the continent. Many of these use the thin -neck (29mm) type of 110° shadowmask tube and the Philips 20AX CRT Tube, plus the already Delta Gun CRT . 
Scanning of these tubes is accomplished by means of a toroidally wound deflection yoke (conventional 90° and thick -neck 110° tubes operate with saddle -wound deflection coils). The inductance of a toroidal yoke is very much less than that of a saddle -wound yoke, thus higher scan currents are required. The deflection current necessary for the line scan is about 12A peak -to -peak. This could be provided by a transistor line output stage but a current step-up transformer, which is bulky and both difficult and costly to manufacture, would be required. 
An entirely different approach, pioneered by RCA in America and developed by them and by ITT (SEL) in Germany, is the thyristor line output stage. In this system the scanning current is provided via two thyristors and two switching diodes which due to their characteristics can supply the deflection yoke without a step-up transformer (a small transformer is still required to obtain the input voltage pulse for the e.h.t. tripler). The purpose of this article is to explain the basic operation of such circuits. The thyristor line output circuit offers high reliability since all switching occurs at zero current level. C.R.T. flashovers, which can produce high current surges (up to 60A), have no detrimental effects on the switching diodes or thyristors since the forward voltage drop across these devices is small and the duration of the current pulses short. If a surge limiting resistor is pro- vided in the tube's final anode circuit the peak voltages produced by flashovers seldom exceed the normal repetitive circuit voltages by more than 50-100V. This is well within the device ratings.
  It's a very good system to use where the line scan coils require large peak currents with only a moderate flyback voltage  an intrinsic characteristic of toroidally wound deflection coils. The basic thyristor line output stage arrangement used in all these chassis is shown in Fig. 1
it was originally devised by RCA. Many sets fitted with 110°, narrow -neck delta -gun tubes used a thyristor line output stage - for example those in the Grundig and Saba ranges and the Finlux Peacock , Indesit, Siemens, Salora, Metz, Nordmende, Blaupunkt, ITT, Seleco, REX, Mivar, Emerson, Brionvega, Loewe, Galaxi, Stern, Zanussi, Wega, Philco. The circuit continued to find favour in earlier chassis designed for use with in -line gun tubes, examples being found in the Grundig and Korting ranges - also,  Indesit, Siemens, Salora, Metz, Nordmende, Blaupunkt, ITT, Seleco, REX, Mivar, Emerson, Brionvega, Loewe, Galaxi, Stern, Zanussi, Wega, Philco the Rediffusion Mk. III chassis. Deflection currents of up to 13A peak -to -peak are commonly encountered with 110° tubes, with a flyback voltage of only some 600V peak  to peak. The total energy requirement is of the order of 6mJ, which is 50 per cent higher than modern 110° tubes of the 30AX and S4 variety with their saddle -wound line scan coils.   The only problem with this type of circuit is the large amount of energy that shuttles back and forth at line frequency. This places a heavy stress on certain components. Circuit losses produce quite high temperatures, which are concentrated at certain points, in particular the commutating combi coil. This leads to deterioration of the soldered joints around the coil, a common cause of failure. This can have a cumulative effect, a high resistance joint increasing the local heating until the joint becomes well and truly dry -a classic symptom with some Grundig / Emerson sets. The wound components themselves can be a source of trouble, due to losses - particularly the combi coil and the regulating transductor. Later chassis are less prone to this sort of thing, partly because of the use of later generation, higher efficiency yokes but mainly due to more generous and better design of the wound components. The ideal dielectric for use in the tuning capacitors is polypropylene (either metalised or film). It's a truly won- derful dielectric - very stable, with very small losses, and capable of operation at high frequencies and elevated temperatures. It's also nowadays reasonably inexpensive. Unfortunately many earlier chassis of this type used polyester capacitors, and it's no surprise that they were inclined to give up. When replacing the tuning capacitors in a thyristor line output stage it's essential to use polypropylene types -a good range of axial components with values ranging from 0.001µF to 047µF is available from RS Components, enabling even non-standard values to be made up from an appropriate combination. Using polypropylene capacitors in place of polyester ones will not only ensure capacitor reliability but will also lower the stress on other components by reducing the circuit losses (and hence power consumption).
       Numerous circuit designs for completely transistorized television receivers either have been incorporated in commercially available receivers or have been described in detail in various technical publications. One of the most troublesome areas in such transistor receivers, from the point of View of reliability and economy, lies in the horizontal deflection circuits.
       As an attempt to avoid the voltage and current limitations of transistor deflection circuits, a number of circuits have been proposed utilizing the silicon controlled rectifier (SCR), a semiconductor device capable of handling substantially higher currents and voltages than transistors.
       The circuit utilizes two bi-directionally conductive switching means which serve respectively as trace and commutating switches. Particularly, each of the switching means comprises the parallel combination of a silicon controlled rectifier (SCR) and a diode. The commutating switch is triggered on shortly before the desired beginning of retrace and, in conjunction with a resonant commutating circuit having an inductor and two capacitors, serves to turn off the trace switch to initiate retrace. The commutating circuit is also arranged to turn oft the commutating SCR before the end of retrace.  

- Ultrasonic Remote control.

- DIN Jacks connectors for recording and Headphones.

- IC AFC SERVO CONTROLS




(To see the Internal Chassis Just click on Older Post Button on bottom page, that's simple !)

Blaupunkt GmbH is a German manufacturer of electronics equipment, noted for its home and car audio equipment. It was a 100% subsidiary of Robert Bosch GmbH until March 1st, 2009 (Date of closing) when its Aftermarket and Accessories branch including the brand name were sold to Aurelius AG of Germany for an undisclosed amount. Founded in 1923 in Berlin as "Ideal", the company changed its name to "Blaupunkt" in 1938, German for "blue point" or "blue dot" after the blue dot painted onto its headphones that had passed quality control. After the Second World War, Blaupunkt moved its headquarters and production to the city of Hildesheim.

Today the majority of Blaupunkt products are manufactured overseas, with large manufacturing centers in Tunisia (speakers) [WTF !!! !!!] and Malaysia (speakers and electronics) [arrrrgggghhh!].
During the 1960 and 1970s, Blaupunkt had become the leading German manufacturer for car radios and car audio equipment. Blaupunkt was involved in the development of the Autofahrer-Rundfunk-Informationssystem traffic-information system for car radios, and provided this feature on their German-market car radios from the late 1970s. The company attempted to have ARI used in the USA but had only a few radio stations per major city involved.Founded in 1923 in Berlin as "Ideal", the company changed its name to "Blaupunkt" in 1938, German for "blue point" or "blue dot" after the blue dot painted onto its headphones that had passed quality control.

During World War II the company used slave labour at Groß-Rosen concentration camp.

After the Second World War, Blaupunkt moved its headquarters and production to the city of Hildesheim. Today the majority of Blaupunkt products are manufactured overseas, with large manufacturing centres in Tunisia (speakers) and Malaysia (speakers and electronics).

During the 1960 and 1970s, Blaupunkt had become the leading German manufacturer for car radios and car audio equipment.


Blaupunkt w
as involved in the development of the Autofahrer-Rundfunk-Informationssystem traffic-information system for car radios, and provided this feature on their German-market car radios from the late 1970s. The company attempted to have ARI used in the USA but had only a few radio stations per major city involved.

For many years, Blaupunkt car audio equipment models often carried the name of a city somewhere in the world, e.g. "London RDM126". In Blaupunkt model nomenclature, this can be translated as "An RDS CD player capable of controlling a Multichanger, rated at 4x30W RMS (4x30 = 120) from model year 1996". High-end models typically had German place names.

Blaupunkt also used the brand "Velocity" to sell products aimed at the top, audiophile end of the market. Audi, Volkswagen, Porsche, Mercedes, Vauxhall, Pontiac and BMW all fit Blaupunkt products into their cars, often branded with the car manufacturer's own mark (e.g. The VW Gamma or Audi Symphony lines), with Fiat using them, occasionally unbranded but generally unmodified. Some later Holden Astra models are fitted with Blaupunkt systems (with others being produced by Delphi). Blaupunkt also specialised in coach installations, selling TVs, multiple-speaker setups and PA equipment to that industry. However, that part of the business remained with Robert Bosch Car Multimedia GmbH, a 100% subsidiary of Robert Bosch GmbH.

Blaupunkt was part of the mobile communications division of the Robert Bosch group, a world leading manufacturer of industrial and automotive systems.

Blaupunkt's research, design and development headquarters are based in Hildesheim, Germany, where approx 3,000 staff are based.

Manufacture takes place either in Germany, or other plants in Portugal or Malaya where another 5,100 staff are employed
blaupunkt production

Current production is in excess of 4 million car radios every year.

Blaupunkt started life in 1920's Germany as the "Ideal" radio company of Berlin. Initially it produced only headphones. Quality control was paramount even in those days and each set of headphones that passed its final test was indicated by a blue circular sticker.

Before long customers simply began to ask for "Blue Dot" headphones - the symbol became the companies' trade mark, and in 1938 the company name.

This is where we get the name "Blaupunkt" - "Blue Spot" in German.
blaupunkt production

Bosch acquired the company over 6
0 years ago, and following the Second World War, the company made the move to Hildesheim It was at this time, 1932, that Blaupunkt introduced the world's first car radio: the AS5. This long, medium and short wave monster was about the size of a modern day microwave oven. Because of its bulk it could not be mounted within reach of the driver and had to be operated by a remote control on the steering wheel. Because car radio aerials were not yet developed, wires had to be run over the roof and along the running boards to get a signal. The cost in those days was 465 Reich marks; about one third the price of a small car.

In 1959, the one millionth car radio rolled off the production line. Each valve-based radio consisted of 1,693 separate parts. In 1969 Blaupunkt took advantage of the emerging FM radio system to introduce the world's first stereo car radio. A few years later the Phillips Compact Cassette was incorporated into sets.

In the late 1970's it was realised that the car radio could contribute toward road safety, and Blaupunkt developed the ARI traffic news detector which has evolved into the current Radio Data System (RDS) of traffic and related information.

The 1980's saw the first microprocessor digitally tuned radio cassette and in 1983 the first car radio equipped with EON station identification was released.

The first CD player incorporated into a dashboard mounted radio was introduced in 1988..
blaupunkt production

With increasingly attractive car radio systems, theft became a major problem. In 1990 the KeyCard smart card owner authorisation system was a big step forward in crime deterrence. This feature was the first recorded use of smart card technology in the automotive field.

In 2002, the Woodstock DAB52 receiver was launched. This is the world's first combined MP3 / CD / DAB receiver housed within a standard DIN sized enclosure. This ground-breaking unit was enhanced in 2003 with the DAB53 and in 2004 the DAB54 models that added the option of recording DAB broadcasts directly onto a MMC / SD memory card.



Die Blaupunkt GmbH ist eines der großen deutschen Unternehmen mit Weltgeltung. Gegründet in den 20er Jahren, ist Blaupunkt heute eine hundertprozentiges Tochterunternehmen der Bosch-Gruppe. Die Unternehmenszentrale liegt im niedersächsischen Hildesheim.

Blaupunkt stellte früher Kopfhörer, Radio-, Fernseh- und HiFi-Geräte her. Heute ist das Unternehmen europäischer Marktführer bei Autoradios und Car
-Multimedia-Systemen; darüber hinaus gehört es zu den großen Anbietern von Navigationssystemen für den automobilen Einsatz.

Geschichte
Keimzelle der Unternehmensgeschichte ist die Berliner „Radiotelefon- und Apparatefabrik“ Ideal. Diese 1923 gegründete Firma stellt zunächst Kopfhörer her, die mit einem „blauen Punkt“ als Prüfsiegel gekennzeichnet wurden. Bald fragen die Käufer nur noch nach den "Blaupunkt-Kopfhörern" – es war der erste Schritt auf dem Weg vom Qualitätssymbol zum Markenzeichen (1924)
und zum heutigen Firmennamen "Blaupunkt" (1938).
Bereits 1932 stellt das Unternehmen mit dem „Autosuper AS 5“ das erste in Europa entwickelte Autoradio vor. Dieser Apparat für den Mittel- und Langwellenempfang ist mit 10 Litern Rauminhalt üppig dimensioniert und mit einem Kaufpreis von 465 Reichsmark ein Luxusartikel (ein kompletter Kleinwagen kostet damals weniger als 1.500 Reichsmark).
Durch wegweisende Innovationen trägt Blaupunkt entscheidend zur Popularisierung des Autoradios bei: 1952 baut man das erste UKW-Autoradio der Welt, 1969 folgt das erste Stereo-Autoradio, 1974 der erste Verkehrsfunk-Empfänger. Viele digitale Pionierentwicklungen rund um den Empfang und Klang auf Rädern stammen ebenfalls aus Hildesheim. Automobilgerechte Multimedia-Techniken in jeder Form stehen weiterhin im Mittelpunkt der Forschung und Entwicklung.
Mit dem 1989 vorgestellten „TravelPilot“ leistet Blaupunkt auch wesentliche Schrittmacherdienste für eine weitere Technologie, die das Autofahren komfortabler und sicherer macht: Der TravelPilot gilt als das erste serienreife Navigationssystem für den Straßenverkehr in Europa. Eines seiner Nachfolgemodelle ist das erste serienreife Gerät mit dynamischer Zielführung, die automatisch aktuellste Verkehrsinformationen verarbeitet und so Staus umfahren hilft. Neben fest eingebauten gehören längst auch mobile Navigationssysteme zum Blaupunkt-Programm.
Aktuelle Zahlen
Heute (12/2006) hat Blaupunkt weltweit über 9.000 Mitarbeiter, 2.300 davon in Hildesheim. Weitere Fertigungs- und Entwicklungsstätten befinden sich in Ungarn, Portugal, Malaysia, China und Tunesien. Das Unternehmen produziert jährlich über 500.000 Navigationssysteme, 6 Mio. Autoradios sowie 19 Mio. Autolautsprecher. Der Umsatz liegt bei ca. 1,4 Mrd. Euro.

Some References:

"'Aurelius AG Acquires Blaupunkt". Aurelius AG Press Release. 18 December 2008. Archived from the original on 28 February 2009.


Germany, Hannoversche Allgemeine Zeitung, Hannover, Niedersachsen,. "Autoelektronik-Spezialist – Blaupunkt stellt Insolvenzantrag". Hannoversche Allgemeine Zeitung (in German). Retrieved 2017-12-21.

"Blaupunkt Hildesheim entlässt auch die letzten Mitarbeiter". DEUTSCHE WIRTSCHAFTS NACHRICHTEN (in German). Retrieved 2017-12-21.

"Several possible buyers for Blaupunkt". RetailDetail. 2015-11-20. Retrieved 2017-12-21.

"Blaupunkt winding up Penang operations". NST Online. 2015-10-22. Retrieved 2017-12-21.

Sethi, Anand Kumar (2013). The Business of Electronics: A Concise History. New York: Palgrave Macmillan. p. 33. ISBN 9781137330420.

"Robert Bosch GmbH". Answers.com. Retrieved 31 May 2013.

White, Annie (March 2019). "AV Club: Odyssey of Sound". Car and Driver.

"Blaupunkt Hildesheim entlässt auch die letzten Mitarbeiter". DEUTSCHE WIRTSCHAFTS NACHRICHTEN (in German). Retrieved 2017-12-21.

"Rockford Announces Details on Blaupunkt Deal | ceoutlook.com". ceoutlook.com. 2012-07-11. Retrieved 2017-12-21.

"Archived copy". Archived from the original on 9 August 2012. Retrieved 14 July 2012.
Blaupunkt company profile
Bosch BLAUPUNKT HISTORY
TV 1950
Radio 1963
Radio 1938

No comments:

Post a Comment

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.

Note: Only a member of this blog may post a comment.