The ITT IDEAL COLOR 3671 OSCAR is a 26 inches color Television with some features:
16 + 16 programs PLL Synthesized TRD Type.
First model series from (ITT) featuring the 30AX SYSTEM CRT TUBE WITH PHILIPS Technology but fabricated by SEL (ITT) COMBINED WITH an upgraded ITT VIDOM CHASSIS.
The 30AX system, which Philips introduced in 1979, is an important landmark in the development of colour picture systems. With previous systems the assembly technician had to workthrough a large number of complicated setting-up procedures whenever he fitted a television picture tube with aset of coils for deflecting the electron beams. These procedures were necessary to ensure that the beams for the three colours would converge at thescreen for every deflection. They are no longer necessary with the 30AX system: for a given screen format any deflection unit can be combined with any tube to form a single 'dynamically convergent' unit. A colour-television receiver can thus be assembled from its components almost as easily as a monochrome receiver. The colour picture tube of the PHILIPS 30AX system displays a noticeably sharper picture over the entire screen surface. This will be particularly noticeable when data transmissions such as Viewdata and Teletext are displayed. This has been achieved by a reduction in the size of the beam spot by about 30%. Absence of coma and the retention of the 36.5 mm neck diameter have both contributed to increased picture sharpness. Coma has been eliminated by means of corrective field shapers embedded in the deflection coils which are sectionally wound saddle types. The new deflection unit has no rear flanges. enabling uniform self-convergence to be obtained for all screen sizes. without special corrections, adjustments, or tolerance compensations. Horizontal raster distortion is reduced and no vertical correction is required. One of the inventions in 30AX is an internal magnetic correction system which obviates static convergence and colour purity errors. This enables the usual multiple unit to be dispensed with. together with the need for its adjustment ! New techniques have been employed to achieve close tolerance construction of the glass envelope. In addition, the 30AX picture tube incorporates two features whereby it can be accurately adjusted during the last stages of manufacture. One is the internal magnetic correction system. The other is an array of bosses on the cone that establish a precise reference for the axial purity positioning of the deflection unit on the tube axis and for raster orientation. During its manufacture, each deflection unit is individually adjusted for optimum convergence. The coil carrier also incorporates reference bosses that co-operate with those on the cone of the tube. ' Since every picture tube and every deflection unit is individually pre-aligned, any deflection unit automatically matches with any picture tube of the appropriate size. The deflection unit has only to be pushed onto the neck of the tube unit it seats. Once the reference bosses are engaged, the combination is accurately aligned and requires no adjustment for convergence, colour purity or raster orientation. With no multiple unit and a flangeless deflection unit, there is more space in the receiver cabinet. Higher deflection sensitivity means that less current is consumed, and consequently less heat is produced. This increases the reliability of the TV receiver again. 30AX means simple assembly. Any picture tube is compatible with any deflection unit of the appropriate size and is automatically self-aligning as well as being self-convergent.
The well-known 20AX features of HI-Bri, Soft-Flash and Quick-vision are maintained in the new 30AX systern. In their work on the design of deflection coils in the last few years the developers have expanded the magnetic deflectionfields into 'multipoles', This approach has improved the understanding of the relations between coil and field and between field and deflection to such an extent that designing deflection units is now more like playing a difficult but fascinating game of chess than carrying out the obscure computing procedure once necessary.Now that the new Philips/Mullard 30AX tube has put in an appearance, some details can be filled in. The new tube has been developed from the 20AX, which has been in production since 1974, but brings with it several important advances. First, no dynamic convergence, static convergence, purity or raster correction adjustments are necessary. Secondly the new yoke design gives improved deflection sensitivity, a straight NS raster, and reduced EW raster distortion. Due to the close mechanical tolerances and the inclusion of positioning bosses on the tube bowl, the tube and yoke can be aligned simply by being pushed together - any 30AX yoke will automatically match any 30AX tube of the appropriate size. Thirdly the newly designed electron gun gives a sharper spot, with greater focus uniformity over the screen area. An internal magnetic ring is used to give correct purity and static beam convergence, in place of the multipole unit used in previous in -line gun tube designs. This results in a strikingly compact assembly. The automatic yoke/tube alignment does away with the need for preset mechanical tilt and shift adjustments which, Philips point out, correct one error by introducing another. The new tube is being produced in the 26, 22 and 20in. screen sizes. The power consumption of a set fitted with the 30AX is typicaly 100W compared to 120W with the 20AX system, at 1.2mA beam current and with an e.h.t. of 25kV. This compares with 88W for a set fitted with a 90° narrow -neck tube and hybrid yoke, under the same conditions.
First model series employing a isolated CHASSIS from Mains with redesigned SMPS Supply.
It has a Transistorized horizontal deflection circuits made up of a horizontal switching or output transistor, a diode, one or more capacitors and a deflection winding. The output transistor, operating as a switch, is driven by a horizontal rate square wave signal and conducts during a portion of the horizontal trace interval. A diode, connected in parallel with the transistor, conducts during the remainder of the trace interval. A retrace capacitor and the deflection yoke winding are coupled in parallel across the transistor-diode combination. Energy is transferred into and out of the deflection winding via the diode and output transistor during the trace interval and via the retrace capacitor during the retrace interval.
In some television receivers, the collector of the horizontal output transistor is coupled to the B+ power supply through the primary windings of the high voltage transformer.
Featuring a 40W Music Power (20W RMS) speaker.
AUDIO MODULE: The design of a suitable audio output system for a television receiver presents a delicate question : should the quality aimed at be the best possible in order to give full justice to the transmitted sound or should the quality be satisfactory for the majority of viewers and little else? The problem is not really one of cost if an extra few pounds could result in hi-fi performance there would be little argument about which way to proceed. Unfortunately however the conventional television receiver as a sound reproducer inevitably leaves a lot to be desired. Although a reasonably sized cabinet could be made in order to incorporate a loudspeaker enclosure of hi-fi dimensions a television set is not really suitable for levels of reproduction. The power considered necessary for hi-fi results is at least 8-10 watts: this would inevitably lead to microphony in a television set particularly in the shadowmask tube. There is little point therefore in striving towards the design of a perfect audio output stage, although provision should we feel be made to enable the audio signal to be extracted to drive an external hi-fi system. The drive level available for the audio module is about 23mV (as noted in part 4) and for reasonable reproduction we would like some 2.5 to 3 watts. Commercial receivers average around 2 watts at the time and this is probably a little too low to give a reasonable dynamic range for trahsients. To get 2.5-3W using discrete circuitry we would probably need a five transistor amplifier with coupling, bias, load and feedback components plus a specially designed printed circuit board and suitable heat sinks. The total cost would be higher. It was therefore decided to use an integrated circuit amplifier instead though selection is rather limited for the gain required.
First models series with PLL Frequency tuning Synthesizer by ITT ASIC featured, a frequency synthesizer controlled channel selection means which includes a fine tuning arrangement; means for initiating a sweep of available channels by the channel selection means; means for stopping the sweep on reception of a signal and means, operable on cessation of sweeping and responsive to the frequency of the signal, and arranged to control the fine tuning arrangement to compensate for frequency drift of the signal. , and OSD Channel and program displaying.. In particular, the above-described tuner includes a synthesizer selectively coupled during an initial period of operation to apply a tuning voltage to a varactor-type tuning circuit, and thereafter, the tuning voltage as developed by an automatic fine-tuning (AFT) circuit is applied to the tuner. The synthesizer circuit, as described in the above-identified application, comprises a keyboard, upon which the desired channel is selected to be stored within a channel memory. The output of the channel memory controls a programmable divider to divide the output of the tuner's local oscillator by a factor in accordance with the selected channel. The output of the programmable divider is phase-compared or mixed with the output of a reference oscillator, which is divided down by a fixed factor, to provide the desired tuning voltage. To select a particular channel, the synthesizer is actuated selectively for a relatively short period, during the initial period of operation, to develop the tuning voltage in accordance with the desired channel. Once the tuner has been tuned and such a desired channel has been selected, the AFT circuit is coupled to place a corresponding tuning voltage upon the tuner. Selectively-actuated switch means is responsive to energize the synthesizer circuit or the AFT circuit to operatively connect either of the foregoing circuits to the tuning circuit. The TV receiver as described in the above-identified application is readily adapted for remote control, as will be explained in accordance with the subject invention, whereby a channel is selected remotely and such information is carried by Infra red waves to the TV receiver, the signal being received by a transducer and decoded by a circuit within the tuner of the subject application, whereby the signal indicative of the desired channel is stored in the aforementioned memory.
PLL SYNTHESIZED TUNING System Concepts:
INTRODUCTION Digital tuning systems are fast replacing the conventional mechanical systems in AM FM and television receivers The desirability of the digital approach is mainly due to the following features * Precise tuning of station frequencies
* Exact digital frequency display
* Keyboard entry of desired frequency
* Virtually unlimited station memory
* Up down scanning through the band
* Station ‘‘search’’ (stop on next active station)
* Power on to the last station
* Easy option for time-of-day clock In addition
" recent "developments in large scale integrated circuit technology and new varactor diodes for the AM band have made the cost-benefit picture for digital tuning very attractive System partitioning is extremely important in optimizing this cost-benefit picture as will be discussed.
SYSTEM DESCRIPTION
A simplified block diagram of a typical digitally tuned receiver is shown in Figure 1 Notice this receiver could be one for AM FM marine radio or television it makes no difference The frequency synthesizer block generates the local oscillator frequency for the receiver just as a conventional mechanical tuner would However the phase-locked-loop (PLL) acts as an integral frequency multiplier of an accurate crystal controlled reference frequency while the mechanical type provides a continuously variable frequency output with no reference Some method of controlling the value of the multiplier for channel tuning must be provided The other RF IF and audio video circuitry will be the same as in the mechanical tuning method There are many different ways to partition the frequency synthesizer system to perform the digital tuning function................
Many connectors for AV / Headphone / Audiorecorder.
Sound tone controls.
Pictures are very bright and sharp and almost everlasting CRT from SEL.
The set is build with a Modular chassis design because as modern television receivers become more complex the problem of repairing the receiver becomes more difficult. As the number of components used in the television receiver increases the susceptibility to breakdown increases and it becomes more difficult to replace defective components as they are more closely spaced. The problem has become even more complicated with the increasing number of color television receivers in use. A color television receiver has a larger number of circuits of a higher degree of complexity than the black and white receiver and further a more highly trained serviceman is required to properly service the color television receiver.
Fortunately for the service problem to date, most failures occur in the vacuum tubes used in the television receivers. A faulty or inoperative vacuum tube is relatively easy to find and replace. However, where the television receiver malfunction is caused by the failure of other components, such as resistors, capacitors or inductors, it is harder to isolate the defective component and a higher degree of skill on the part of the serviceman is required.
Even with the great majority of the color television receiver malfunctions being of the "easy to find and repair" type proper servicing of color sets has been difficult to obtain due to the shortage of trained serviceman.
At the present time advances in the state of the semiconductor art have led to the increasing use of transistors in color television receivers. The receiver described in this application has only two tubes, the picture tube and the high voltage rectifier tube, all the other active components in the receiver being semiconductors.
One important characteristic of a semiconductor device is its extreme reliability in comparison with the vacuum tube. The number of transistor and integrated circuit failures in the television receiver will be very low in comparison with the failures of other components, the reverse of what is true in present day color television receivers. Thus most failures in future television receivers will be of the hard to service type and will require more highly qualified servicemen.
The primary symptoms of a television receiver malfunction are shown on the picture tube of the television receiver while the components causing the malfunction are located within the cabinet. Also many adjustments to the receiver require the serviceman to observe the screen. Thus the serviceman must use unsatisfactory mirror arrangements to remove the electronic chassis from the cabinet, usually a very difficult task. Further many components are "buried" in a maze of circuitry and other components so that they are difficult to remove and replace without damage to other components in the receiver.
Repairing a modern color television receiver often requires that the receiver be removed from the home and carried to a repair shop where it may remain for many weeks. This is an expensive undertaking since most receivers are bulky and heavy enough to require at least two persons to carry them. Further, two trips must be made to the home, one to pick up the receiver and one to deliver it. For these reasons, the cost of maintaining the color television receiver in operating condition often exceeds the initial cost of the receiver and is an important factor in determining whether a receiver will be purchased.
Therefore, the object of this invention is to provide a transistorized color television receiver in which the main electronic chassis is easily accessible for maintenance and adjustment. Another object of this invention is to provide a transistorized color television receiver in which the electronic circuits are divided into a plurality of modules with the modules easily removable for service and maintenance. The main electronic chassis is slidably mounted within the cabinet so that it may be withdrawn, in the same manner as a drawer, to expose the electronic circuitry therein for maintenance and adjustment from the rear closure panel after easy removal. Another aspect is the capability to be serviced at eventually the home of the owner.
The set here shown has the well known "child lock" feature on the mains switch like almost all NORDMENDE color set from that era of time, see pictures.
Last models with ITT VIDOM CHASSIS Technology modular type, (After models Going To compact types).
(To see the Internal Chassis Just click on Older Post Button on bottom page, that's simple !)
It's an interesting fact that the cathode ray tube, which was amongst the very earliest thermionic devices, seems likely to be amongst the very last in everyday use. Receiving valves are largely things of the past, while timebase valves now belong in the service department. The development of the CRT continues apace however, and one cannot see any likelihood of its demise. Solid-state displays have been talked about, and demonstrated, but anything likely to compete on cost and performance grounds with the modern colour tube seems forever to be "at least ten years away". The early experiments with cathode-ray tubes were carried out in the last century. By the turn of the century, crude CRTs could be made. An early CRT, the Wehnelt hot cathode tube of 1905, is on display at the IBA's Television Gallery. By 1910, Alexander Campbell -Swinton had come to appreciate the possibilities of the CRT as a pick-up and display device for television, and put forward suggestions for such a TV system. It was a while however before the type of tube we know today appeared. The tubes of the 1910-30 era were gas focused devices (relying on residual gas to focus the beam), the vacuum pumps of the period producing only a poor vacuum. By the time of the start of the BBC's TV service in 1936 however the modern type of tube had arrived. It was a triode device with external focusing and a deflection angle of around 50°. The usual sizes were 9 and 12in., and the e.h.t. was about 5kV. Post-war developments during the 1950s saw some important innovations. The deflection angle went to 70°, then 90°, then 110°; multi -electrode gun assemblies with electrostatic focusing were introduced; the e.h.t rose to 20kV; improved phosphors became available; and the advent of the aluminised screen considerably improved the brightness and contrast (by reflecting all the phosphor light emission forwards) while overcoming the problem of ion bombardment. Meanwhile, colour had come. The principle of the shadowmask tube had been suggested in the 1930s, but development (by RCA) had to wait until proposals for an acceptable, practical colour broadcasting system were put forward. A regular colour service was started in the USA in 1954, and the receivers were fitted with 21in. shadowmask tubes. Early developments included the use of improved phosphors, but essentially the same tube confronted us with the advent of colour transmissions in Europe in 1967. As you all know, it had three guns mounted in a triangular formation, a dot-phosphor screen, a massive convergence system in two sections (radial and lateral), plus purity magnets and a large metal shield on which the degaussing coils hung. It also needed both NS and EW raster correction circuitry. The first versions in Europe had a deflection angle of 90° : when the 110° version came along in the early 1970s the convergence and raster correction circuitry required were even more complex, but the degaussing shield had disappeared inside the tube. At much the same time however the first major breakthrough in large screen tube design occurred (we put it that way because the innovating Sony Trinitron was at the time mainly a small screen tube) - the RCA PIL tube with its in -line guns, phosphor -striped screen, and slotted shadowmask. The design of the yoke to provide self -convergence in conjunction with the in -line gun arrangement meant that no dynamic convergence system was required, while some simple manufacturer preset magnets provided static convergence and purity correction. Sets using this tube first appeared in Europe in 1975, and meanwhile the PHILIPS 20AX system had come along. Over the last few years the pace of development has quickened to a striking extent. We've had quick warm-up cathodes, the hi-bri technology which increases the shadow mask's transparency, the contoured line screen, the super -arch mask, pigmented phosphors, soft flash to reduce flashover damage, redesigned focus arrangements, and increased use of an earlier development, the black -stripe screen. The latest generation of tubes require no NS raster correction circuitry, which is all part of a parallel development in yoke technology, while the need for EW correction is also in the process of being designed out. With the new Philips 30AX tube, the static convergence and purity system disappear inside the tube in the form of a small internal magnetic ring. It's all a long way from Wehnelt's hot -cathode tube of 1905. The latest colour tubes are compact and have all the various correction arrangements required built in. They are amazing feats of precision engineering, and a solid-state alternative seems as far away as ever. Is there any farther to go along this path? Well, single -gun colour tubes using the beam indexing principle are now understood to be a practical proposition for small screen tubes, so we can't be too sure.
ITT Corporation (NYSE: ITT) is a global diversified manufacturing company with 2008 revenues of $11.7 billion. ITT participates in global markets including water and fluids management, defense and security, and motion and flow control. Forbes.com named ITT Corporation to its list of "America's Best Managed Companies" for 2008, and awarded the company the top spot in the conglomerates category.
,ITT's water business is the world's largest supplier of pumps and systems to transport, treat and control water, and other fluids. The company's defense electronics and services business is one of the ten largest US defense contractors providing defense and security systems, advanced technologies and operational services for military and civilian customers. ITT's motion and flow control business manufactures specialty components for aerospace, transportation and industrial markets.
In 2008, ITT was named to the Dow Jones Sustainability World Index (DJSI World) for the tenth time in recognition of the company's economic, environmental and social performance. ITT is one of the few companies to be included on the list every year since its inception in 1999.
The company was founded in 1920 as International Telephone & Telegraph. During the 1960s and 1970s, under the leadership of its CEO Harold Geneen the company rose to prominence as the archetypal conglomerate, deriving its growth from hundreds of acquisitions in diversified industries. ITT divested its telecommunications assets in 1986, and in 1995 spun off its non-manufacturing divisions, later to be purchased by Starwood Hotels & Resorts Worldwide.
In 1996, the company became ITT Industries, Inc., but changed its name back to ITT Corporation in 2006.
History
ITT was formed in 1920, created from the Puerto Rico Telephone Company co-founded by Sosthenes Behn.[1] Its first major expansion was in 1923 when it consolidated the Spanish Telecoms market into what is now Telefónica.[2] From 1922 to 1925 it purchased a number of European telephone companies. In 1925 it purchased the Bell Telephone Manufacturing Company of Brussels, Belgium, which was formerly affiliated with AT&T, and manufactured rotary system switching equipment. In the 1930s, ITT grew through purchasing German electronic companies Standard Elektrizitaetsgesellschaft (SEG) and Mix & Genest, both of which were internationally active companies. Its only serious rival was the Theodore Gary & Company conglomerate, which operated a subsidiary, Associated Telephone and Telegraph, with manufacturing plants in Europe.
In the United States, ITT acquired the various companies of the Mackay Companies in 1928 through a specially organized subsidiary corporation, Postal Telegraph & Cable. These companies included the Commercial Cable Company, the Commercial Pacific Cable Company, Postal Telegraph, and the Federal Telegraph Company.
International telecommunications
International telecommunications manufacturing subsidiaries included STC in Australia and Britain, SEL in Germany, BTM in Belgium, and CGCT and LMT in France. Alec Reeves invented Pulse-code modulation (PCM), upon which future digital voice communication was based. These companies manufactured equipment according to ITT designs including the (1960s) Pentaconta crossbar switch and (1970s) Metaconta D, L and 10c Stored Program Control exchanges, mostly for sale to their respective national telephone administrations. This equipment was also produced under license in Poznań (Poland), and in Yugoslavia, and elsewhere. ITT was the largest owner of the LM Ericsson company in Sweden but sold out in 1960.
1989 breakup
In 1989 ITT sold its international telecommunications product businesses to Alcatel, now Alcatel-Lucent. ITT Kellogg was also part of the 1989 sale to Alcatel. The company was then sold to private investors in the U.S. and went by the name Cortelco Kellogg. Today the company is known as Cortelco (Corinth Telecommunications Corporation, named for Corinth, MS headquarters). ITT Educational Services, Inc. (ESI) was spun off through an IPO in 1994, with ITT as an 83% shareholder. ITT merged its long distance division with Metromedia Long Distance, creating Metromedia-ITT. Metromedia-ITT would eventually be acquired by Long Distance Discount Services, Inc. (LDDS) in 1993. LDDS would later change its name to Worldcom in 1995.
In 1995, ITT Corporation split into 3 separate public companies:
* ITT Corp. — In 1997, ITT Corp. completed a merger with Starwood Hotels & Resorts Worldwide, selling off its non-hotel and resorts business. By 1999, ITT completely divested from ITT/ESI; however, the schools still operate as ITT Technical Institute using the ITT name under license.[1] Also in 1999, ITT Corp. dropped the ITT name in favor of Starwood.[7]
* ITT Hartford (insurance) — Today ITT Hartford is still a major insurance company although it has dropped the ITT from its name altogether. The company is now known as The Hartford Financial Services Group, Inc.
* ITT Industries — ITT operated under this name until 2006 and is a major manufacturing and defense contractor business.
o On July 1, 2006, ITT Industries changed its name to ITT Corporation as a result of its shareholders vote on May 9, 2006.
Purchase of International Motion Control (IMC)
An agreement was reached on June 26, 2007 for ITT to acquire privately held International Motion Control (IMC) for $395 million. The deal was closed and finalized in September 2007. An announcement was made September 14, 2010, to close the Cleveland site.
Purchase of EDO
An agreement was reached September 18, 2007 for ITT to buy EDO Corporation for $1.7 billion.[12] After EDO shareholders' approval, the deal was closed and finalized on December 20, 2007.
Purchase of Laing
On April 16, 2009, ITT announced it has signed a definitive agreement to acquire Laing GmbH of Germany, a privately held leading producer of energy-efficient circulator pumps primarily used in residential and commercial plumbing and heating, ventilating and air conditioning (HVAC) systems.
2011 breakup
On January 12, 2011, ITT announced a transformation to separate the company into 3, stand-alone, publicly-traded, and independent companies.
HISTORY OF Standard Elektrik Lorenz AG IN GERMAN:
Die Standard Elektrik Lorenz AG (heute Alcatel-Lucent Deutschland AG) ist ein Unternehmen der Nachrichtentechnik (früherer Slogan: SEL – Die ganze Nachrichtentechnik) mit Hauptsitz in Stuttgart. Zur Nachrichtentechnik zählen auch Informations- und Kommunikationstechnik, Telekommunikationstechnik (SEL war für die Röchelschaltung bekannt) und früher Fernmeldetechnik oder Schwachstromtechnik. Einen weiteren Geschäftsbereich hatte das Unternehmen in der Bahnsicherungstechnik, so wurden für die Deutsche Bundesbahn Relaisstellwerke und elektronische Stellwerke mit den dazugehörigen Außenanlagen (Signale, Gleisfreimeldeanlagen, Weichenantriebe) sowie die Linienzugbeeinflussung entwickelt und gebaut, welche auch bei ausländischen Bahnen Abnehmer fanden. Der Bereich gehört seit 2007 als Thales Transportation Systems GmbH (seit 02.2011 vorher Thales Rail Signalling Solutions GmbH) zum Thales-Konzern. Die bereits 1998 ausgegliederten Bereiche Alcatel Air Navigation Systems und SEL Verteidigungssysteme sind ebenfalls heute in Thales Deutschland beheimatet.[1]
Fernseher Illustraphon 743 von 1957
„Goldsuper Stereo 20“ (1961)
Das Flaggschiff der erfolgreichen Schaub-Lorenz Kofferradios der sechziger Jahre: Touring 70 Universal
Erster Digitalfernseher der Welt (1983)
Bis 1987 gehörte SEL zusammen mit anderen auf dem Sektor Telekommunikation in anderen Ländern tätigen Schwesterfirmen zum US-amerikanischen Mischkonzern International Telephone and Telegraph (ITT). ITT verkaufte die Aktien-Mehrheit an den ITT-Telekommunikationsfirmen an die französische Compagnie Générale d’Electricité (CGE), die nach der Zusammenfassung mit den eigenen Telekommunikationsaktivitäten daraus die Alcatel N.V. bildete.
Die Standard Elektrik Lorenz AG wurde 1993 in Alcatel SEL AG umbenannt. Die Aktienmehrheit liegt mit über 99 % bei der Alcatel. Mit der Fusion von Alcatel und Lucent zu Alcatel-Lucent am 1. Dezember 2006 und der Neu-Firmierung beider Unternehmen in Deutschland zur Alcatel-Lucent Deutschland AG entfiel der Zusatz SEL.
Geschichte
Die beiden Stammfirmen des Unternehmens, die Mix & Genest AG und die Telegraphenbauanstalt von C. Lorenz, wurden 1879 bzw. 1880 gegründet. Das erste Patent von Mix & Genest datiert von 1883, das erste Patent von C. Lorenz ist aus dem Jahr 1902.
Das Unternehmen Mix & Genest war wesentlicher Teil der Standard Elektrizitäts-Gesellschaft (SEG), in die auch die Süddeutsche Apparatefabrik (SAF), die 1875 von F. Heller als "Friedrich Heller, Fabrik Elektrotechnischer Apparate" gegründet wurde, integriert wurde. Der technische Schwerpunkt von Mix & Genest bzw. SEG sowie der C. Lorenz AG war der klassischen Fernmelde- bzw. Funktechnik zuzuordnen. Die C. Lorenz AG baute in den 1920er und 1930er Jahren Großsender für den neu gegründeten Rundfunk.
1930 übernahm die International Telephone and Telegraph Company (ITT) die Aktienmehrheit der Mix & Genest AG und der C. Lorenz AG. [2]
Die C. Lorenz AG positionierte sich mit der Übernahme der G. Schaub Apparatebau-Gesellschaft mbH im Jahr 1940 in der Entwicklung und Herstellung von Rundfunkempfängern. Ab dem Jahr 1950 wurden alle Geräte bei Schaub in Pforzheim gefertigt. 1952 wurde das Typenprogramm beider Unternehmen verschmolzen und der Lorenz-Radio-Vertrieb in die Firma Schaub integriert. Ab 1955 wurden die Geräte unter dem Namen Schaub-Lorenz vertrieben.
1956 wurde das Unternehmen SEG in Standard Elektrik AG umbenannt. Ebenfalls 1956 wurde ein Kabelwerk gegründet. Wesentlicher Motor für das 1957 gegründete Informatikwerk war Karl Steinbuch, der von 1948–1958 dem Unternehmen, zuletzt als Technischer Direktor und Leiter der Zentralen Forschung, angehörte.
1958 erfolgte die Vereinigung der Standard Elektrik AG mit der C. Lorenz AG zur Standard Elektrik Lorenz AG (SEL).
Die Standard Elektrik Lorenz AG übernahm 1961 die Graetz KG. Die Firmenteile Schaub-Lorenz und Graetz waren zusammen mit einem Bildröhrenwerk Bestandteil der Unternehmensgruppe Audio Video der SEL AG, die 1979 als Audio-Video-Elektronik in die ITT ausgegliedert wurde. Die Produkte, die unter anderem Fernsehgeräte, Radios, Autoradios, Kassettenrecorder, Weltempfänger und Lautsprecherboxen umfassen, wurden fortan unter dem Namen ITT Schaub-Lorenz vertrieben.[2]
Versuche, auf dem neuen Gebiet der Raumfahrt-Elektronik Fuß zu fassen, waren auf folgende Produkte beschränkt:
* AZUR: Telemetrie/Telekommandogeräte
* Spacelab: Datenerfassung/Kommandoterminal.
SEL entwickelte zu Beginn der 1970er Jahre das Präzisionsanflugverfahren SETAC. Dieser Unternehmensbereich wurde im Jahre 1987 von der finnischen Firma Nokia übernommen.
1976 hatte SEL ein Grundkapital von 357 Mio. DM bei 33.000 Beschäftigten und einem Umsatz von 2,6 Mrd. DM.
1983 stellte SEL auf der Internationalen Funkausstellung Berlin 1983 mit dem ITT Digivision den weltweit ersten Fernseher mit digitaler Signalverarbeitung vor.
2003 wurden die Markenrechte am Namen Schaub Lorenz an die italienische General Trading SpA verkauft. Die neugegründete Schaub Lorenz International GmbH vertreibt seitdem unter dem alten Markennamen Schaub-Lorenz importierte Konsumelektronik aus dem unteren Preisbereich.
References:
Demerjian, Dave (25 October 2007). "As Skies Grow Crowded, FAA Preps Air Traffic Control 2.0". Wired.com. Archived from the original on 14 June 2013. Retrieved 25 May 2013.
"ITT Corporation 2017 Annual Report Form (10-K)" (XBRL). United States Securities and Exchange Commission. February 14, 2018.
"ITT Corporation 2016 Annual Report Form (8-K)" (XBRL). United States Securities and Exchange Commission. February 14, 2017. Archived from the original on March 16, 2017.
"ITT History". ITT Inc. Archived from the original on 2017-08-03. Retrieved 2017-08-02.
"At A Glance | ITT Inc". www.itt.com. Retrieved 2019-01-09.
www.itt.com https://www.itt.com/CMSPages/GetFile.aspx?guid=10cffa55-7c3c-4e27-b649-d0378feddc07. Retrieved 2019-01-09. Missing or empty
|title=
(help)
"ITT to break itself up, fueling share rally". Reuters. January 12, 2011. Archived from the original on July 1, 2012. Retrieved July 14, 2011.
Jacobs, Karen (July 14, 2011). "UPDATE 1-ITT sets names for planned spin-offs". Reuters. Archived from the original on July 1, 2012. Retrieved July 14, 2011.
Sobel, Robert (2000). ITT: The Management of Opportunity. Beard Books. pp. 35ff.
Macintosh, Norman B.; Paolo Quattrone (2009). Management Accounting and Control Systems. John Wiley and Sons. pp. 155–6.
Ingham, John N. (1983). Biographical dictionary of American business leaders, Volume 1. Greenwood Publishing Group. pp. 62–4.
Sampson, Anthony. The Sovereign State of ITT, Hodder and Stoughton, 1973. ISBN 0-340-17195-2
Garcia Algarra, Javier (2010). "The American influence in Telefónica's public relations strategy during the 20s and 30s" Archived 2013-06-01 at the Wayback Machine, IEEE HISTELCON 2010
AMERICAN VISITS HITLER. Behn of National City Bank Confers With Chancellor in Alps. New York Times, 1933-08-04, "Archived copy". Archived from the original on 2014-03-07. Retrieved 2013-05-16.
»Empfänge beim Reichskanzler«, Vossische Zeitung, Berlin 1933-08-04, Abendausgabe, Seite 3, "Archived copy". Archived from the original on 2014-03-07. Retrieved 2013-05-03.
The Office of Military Government US Zone in Post-war Germany 1946-1949, declassified per Executive Order 12958, Section 3.5 NND Project Number: NND 775057 by: NND Date: 1977
Leidig, Ludwig. Bombshell. sbpra, 2013 ISBN 978-1-62516-346-2
Farnsworth, Emma. "Farnsworth, Philo T. and Elma G." J. Willard Marriott Library, University of Utah. Archived from the original on 14 July 2014. Retrieved 8 July 2014.
"KONI shock absorbers". Archived from the original on 2015-05-18.
International Telephone and Telegraph Corporation Archived 2012-01-22 at the Wayback Machine at Funding Universe
Knippers Black, Jan (1977). United States Penetration of Brazil. The University of Pennsylvania Press. pp. 40–49.
Langguth, A. J. (1979). Hidden Terrors: The Truth about U.S. Police Operations in Latin America. New York: Pantheon Books.
Green, James (2010). We Cannot Remain Silent: Opposition to the Brazilian Military Dictatorship in the United States. Durham and London: Duke University Press. p. 89. ISBN 978-0-8223-4735-4.
Burn Before Reading, Admiral Stansfield Turner, 2005, Hyperion, pg. 99. Also see the article on Humberto de Alencar Castelo Branco. Also see BRAZIL MARKS 40th ANNIVERSARY OF MILITARY COUP Archived 2008-11-20 at the Wayback Machine, National Security Archive, George Washington University. Edited by Peter Kornbluh, 2004.
Ancona, Vincent S. (Fall 1992). "When the Elephants Marched out of San Diego". Journal of San Diego History. San Diego Historical Society. 38 (4). Archived from the original on 2013-07-05.
"ITT: No charges". Time Magazine. June 10, 1974. Archived from the original on 19 October 2012. Retrieved 24 October 2012. United States and American History: 1972 Archived 2007-03-18 at the Wayback Machine at trivia-library.com
Hinchey Report Archived 2009-10-20 at the Wayback Machine at US Dept. of State
Stout, David (January 30, 2003). "Edward Korry, 81, Is Dead; Falsely Tied to Chile Coup". The New York Times. Archived from the original on May 12, 2013. Retrieved May 5, 2010.
The Pinochet File: How U.S. Politicians, Banks and Corporations Aided Chilean Coup, Dictatorship Archived 2015-09-12 at the Wayback Machine. Democracy Now! September 10, 2013.
Montgomery, Paul L. (September 29, 1973). "I.T.T. OFFICE HERE DAMAGED BY BOMB; Caller Linked Explosion at Latin-American Section to 'Crimes in Chile' I.T.T. Latin-American Office on Madison Ave. Damaged by Bomb Fire in Rome Office Bombing on the Coast Rally the Opponents". The New York Times. Archived from the original on May 12, 2011. Retrieved May 5, 2010.
Ayers, Bill. Sing a Battle Song: The Revolutionary Poetry, Statements, and Communiques of The Weather Underground
Wasserstein, Bruce. Big deal: the battle for control of America's leading corporations
Associated Press (23 November 1997). "Obituary: Harold Geneen, 87; Led ITT's Growth for 18 Years". The New York Times. Archived from the original on 27 March 2016.
Viswanathan, T. Telecommunication Switching Systems and Networks, p.225.
US Patent 4,201,891 at freepatentsonline.com
International Telephone Telegraph Corp at encyclopedia.com
Magnet, Myron; Andrew Evan Serwer (11 November 1985). "IS ITT FIGHTING SHADOWS -- OR RAIDERS?". Fortune. Archived from the original on 29 April 2014.
Chapuis, Robert J.; Joel, Amos E., Jr. "IX-7: "The ITT (now Alcatel) System 12"". 100 Years of Telephone Switching.
"ITT Earnings Decline 33% for 3rd Quarter" Archived 2011-12-24 at Wikiwix, Los Angeles Times, 5 November 1985.
Bartlett, Christopher A.; Ghoshal, Sumantra (2002). Managing Across Borders (2 ed.). Harvard Business School Press. ISBN 978-1-57851-707-7.
ITT Telecom Archived 2016-12-20 at the Wayback Machine, The New York Times, 26 June 1984.
"ITT Makes Sale To Southern Bell" Archived 2016-12-20 at the Wayback Machine, The New York Times, 21 March 1985.
ITT System 12 Archived 2016-09-20 at the Wayback Machine at frankoverstreet.com
Hinman, Catherine."ITT Division In Brevard Will Furlough 60" Archived 2011-12-23 at Wikiwix, Orlando Sentinel, 14 March 1986.
Alcatel-Lucent Timeline Archived 2012-02-03 at the Wayback Machine at alcatel-lucent.com
Alcatel SA Company History Archived 2012-01-22 at the Wayback Machine at Funding Universe
"ITT Accepts $3.6 Billion Alcatel Sale" Archived 2016-03-06 at the Wayback Machine, The New York Times, 4 March 1992.
"Archived copy". Archived from the original on 2016-09-08. Retrieved 2016-09-13. ITT Tech closes its doors, blaming ‘unconstitutional’ US sanctions
"COMPANY NEWS; Metromedia Deal For 2 ITT Units" Archived 2017-12-19 at the Wayback Machine, The New York Times, 16 March 1989.
"Company News; Starwood Lodging in $2.1 Billion Deal with Vnu". The New York Times. 1997-12-19. ISSN 0362-4331. Retrieved 2018-05-29.
Webpage at ITTESI.com Archived October 22, 2006, at the Wayback Machine
Nunez, Michael (September 6, 2016). "ITT Tech Is Officially Closing". Gizmodo. Archived from the original on September 6, 2016. Retrieved September 6, 2016.
Center, Arbitration and Mediation. "WIPO Domain Name Decision: D2001-0166". Archived from the original on 2001-06-10.
Lindsey, Sue. "ITT Fined $100M for Illegal Tech Exports"[dead link], Associated Press, March 27, 2007.
Cullen, Drew. "ITT Fined for Illegal Exports" Archived 2011-02-24 at Wikiwix, The Register, 27 March 2007.
"Consent Agreement, 2007: ITT Corporation" Archived 2009-10-10 at the Wayback Machine U.S. State Department, 2007.
"ITT fined $100 million for illegal exports". CNN. 27 March 2007. Archived from the original on 28 March 2010. Retrieved May 5, 2010.
"ITT Corp. Acquires EDO in $1.7B Deal". Archived from the original on 2016-08-17.
"Archived copy". Archived from the original on 2011-09-23. Retrieved 2009-01-03. 67 (block): The International Telephone and Telegraph Building, erected in 1928 by Garment District developer Abraham Lefcourt as the Lefcourt Exchange Building, was almost immediately bought by ITT--which expanded the building to take over the whole block by 1930.
Holusha, John. "Commercial Property /75 Broad Street; Turning Buildings Into Telecommunications Hubs" Archived 2016-03-16 at the Wayback Machine, The New York Times, 10 October 1999.
http://www.thecityreview.com/parkave.html. Archived from the original on 2012-01-20. Missing or empty
|title=
(help)
Deutsch, Claudia H. (21 May 1989). "REFORGING THE 'GENEEN MACHINE'". The New York Times. Archived from the original on 28 August 2016.
"International Telephone & Telegraph ITT Information and History". Archived from the original on 2016-03-29.
"Radio Tower Demolished". The New York Times. 5 April 1996. Archived from the original on 22 July 2010. Retrieved 2010-07-23.
"ITT Avionics Gets $19.6M Air Force Pact". Bergen Record. 19 September 1991. Archived from the original on 18 May 2013. Retrieved 2010-07-23.
(August 20, 2004.) "ITT Industries Receives Contract for $24.9 Million." Archived 2012-04-20 at the Wayback Machine Impeller.net Archived 2011-11-01 at the Wayback Machine. Accessed November 2011.
(in German) https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhnKTQ77fJC1zPOqLucj9Ld9DOZoteOPpCdq21SAyBjdDgHDWGgFfxgS6C__apBgbZyyouh4vXtL2fUJUK8DWbrPlzriwCroyMR-ci_t_9Ti3Yf5vGJw-jrBSZV7J8LsyvLEYYfGm61RkUU/s1600/ITT-2805_SLK-AD2.jpg. Archived from the original on 2018-05-01. Missing or empty
|title=
(help)
"Consola "pong" Tele-Match (versión con paddle) (1977)". retroordenadoresorty.blogspot.it (in Spanish). Archived from the original on 1 May 2018. Retrieved 14 February 2018.
"ITT DIGIVISION 3447 OSCAR YEAR 1986". Obsolete Technology Tellye. Retrieved 14 February 2018.
"Kellogg Switchboard & Supply Co". Dictionary of Leading Chicago Businesses. Archived from the original on 18 August 2015. Retrieved 15 February 2018.
"Über ITT - ITT". www.itt-deutschland.de (in German). Archived from the original on 17 October 2017. Retrieved 15 February 2018.
"Nokia Announces Final Sale of its Television Manufacturing Business - Nokia". Nokia. Archived from the original on 2017-07-29.
"Über Karcher - ITT". www.itt-deutschland.de (in German). Archived from the original on 22 December 2016. Retrieved 14 February 2018.
--------------------------------------------------------------------------------------------------------------------------------------------------------------
No comments:
Post a Comment
The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.
Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!
The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.
Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.
Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.
Your choice.........Live or DIE.
That indeed is where your liberty lies.
Note: Only a member of this blog may post a comment.