BLOG PAGES

Tuesday, May 15, 2012

AUTOVOX JOLLY-2 YEAR 1970.




The AUTOVOX JOLLY-2 is a 12 inches B/W portable tellye with VHF and UHF channels.

- First AUTOVOX B/W portable television based completely on semiconductors.

The VHF AND UHF tuning is performed via large disk like knob in the like as in pocket radios, with tuning skala round disk designed and tuning circuits has a 2 potentiometers tuning system which use voltage controlled capacitances such as varactor diodes as the frequency determining elements, advantages are achieved in automatic frequency control circuitry for a television receiver which includes frequency discriminator means and gating means.

In the end of the 60's  increasingly attention was focused on the varicap diode tuner as the latest, sophisticated means of television receiver frontend tuning in both colour and black and white sets.
 The main purpose of this article is to investigate the servicing problems associated with this comparatively new method of tuning.

First however let's briefly recap on the principles involved in this tuning system:

 The tuners use variable capacitance (or "varicap") diodes as the variable tuning elements: the effective capacitance of the diodes is controlled by the reverse bias applied across them, tuning being achieved by varying this voltage. As the reverse bias across a varicap diode is increased so its junction depletion region widens thus reducing its capacitance.

A VHF/ UHF television tuner is constructed in accordance with the present invention includes a preselector tuned circuit having a solid state voltage controlled capacitor as its tunable element, a radio frequency amplifier coupled to the preselector circuit and alsoother circuit to perfect the signal receiving capability and the application the like.

Considering the Mechanical Tuner Problems:

To get the servicing problems in perspective let us next consider the tuning arrangements previously used.
 The earliest of these, employed on v.h.f., was the switched tuner which was either of the turret or incremental type.
 The turret tuner substituted a coil bearing "biscuit" mounted on the rotating drum or turret when channels were changed. Twelve positions were normally provided, with a fine tuning knob to adjust the local oscillator frequency. As its name suggests the incremental tuner simply added more inductance to the tuned circuits at every downward channel movement: thus the highest inductance was present on channel one and the least on channel 12 (which normally covered 13 as well with manipulation of the fine tuner).
The movement towards u.h.f. TV working, initially with dual standard sets and later with single standard ones, brought about the need for u.h.f. tuners. In the earliest u.h.f. receivers valve tuners which were not particularly efficient were used.

The drive mechanism was usually a dual  speed rotary system calibrated from channels 21 to 68. Experience in the field indicated that 625 line television was in many cases considered by the viewer to be inferior to 405 -line reception, on account of the poor signal to noise ratio achieved by the valve tuners. Many viewers were not prepared to use external u.h.f. aerials of course, having achieved satisfactory reception on v.h.f. with an indoor aerial: this aggravated the situation even more.
Another aspect which caused difficulty was the care needed to tune in a u.h.f. channel using a rotary tuner covering the whole of Bands IV and V. Many viewers simply could not tune in BBC 2  or ZDF or ORF or any channel correctly with such a tuning mechanism, finding that they had passed right over the channel they wanted before realising what they had done.
The advent of transistor tuners rapidly improved the quality of u.h.f. reception but use of a rotary mechanism was continued by many manufacturers. Thus while potential reception was improved the same tuning difficulties remained and viewers continued to gravitate towards 405 line viewing using the "old faithful" switched tuner. The operational breakthrough came with the introduction of the push-button u.h.f. channel change. 

The mechanism is basically simple. Adjustable push buttons press down on a lever bar which in turn rotates the tuner's variable capacitors to the appropriate position. Each button is capable of tuning over the entire u.h.f. bands and this leads to customer confusion at times when after some adjustments which were too heavy handed they find themselves receiving ITV on a BBC button or a ORF and ZDF broadcasting or any channel possible !

Mechanical Faults:

 Mechanical tuning obviously has its snags. There are for example contact springs which earth the tuning capacitor and go intermittent. This gives rise to the most random tuning defects, capable of driving the. most patient viewer to a state of total exasperation. It is also possible for the rotation mechanism to hang up and jam intermittently, or just become sticky, so that the reset accuracy of the mechanism is impaired and the receiver has to be retuned every time the channel is changed.

The vanes in the tuning capacitor can also short out at different settings, thereby eliminating some channels. The  Varicap Tuner It will be seen then that mechanical defects can cause very irritating fault symptoms. If one thinks along the lines that anything mechanical is nasty, then the elimination of mechanical parts can only be to the good.

The logic of this is splendid provided the electronic replacement for the mechanical system is more reliable! Otherwise we are leaping out of the frying pan into the fire! In the light of experience gained with mechanical tuning devices it seems great that with the varicap tuner we have at last dispensed with the dreaded rotary tuning capacitor, replacing it instead with a variable voltage to the tuner. 
Let us think about this however since things are never quite as simple as they first appear. The tuning voltage has to be variable in order to tune the receiver. Obviously then a means of varying the voltage has to be provided to act as the tuning control.
As it is a voltage that has to be varied the tuning control takes the form of a potentiometer., Now we have returned to a mechanical system again, though in a less complex form.
A potentiometer is required for each channel, selected by pressing the appropriate channel button.

We have lost a tuning capacitor and its rotating mechanism and gained a set of pots and selector switches therefore. Provided the pots and switches are mechanically more reliable than the tuning capacitor we should be better off-or should we? 

Need for Voltage Stabilisation.
 The voltage selected by the pots cannot be allowed to drift otherwise the receiver will go off -tune. The voltage supply to the potentiometers has to be stabilised therefore and a stabilising zener diode or integrated circuit (TAA550) .is needed for this purpose.

Any failure in this part of the circuit will give rise to tuning drift or worse, a total loss of reception. A short-circuit TAA550 for example will completely remove the tuning voltage while if it is open circuit the tuning can vary with picture brightness. Likewise any intermittency in the potentiometers or associated switching and/or resistors can also cause problems.

Relative Reliability of Tuners:

 It  will be seen then that in order to lose our troublesome mechanical arrangement we have had to introduce considerably more electronics which we trust are going to be more reliable. In addition we have not so far considered the relative reliability of the varicap tuner itself compared with the mechanical type. Since two r.f. transistors are generally used to compensate for the reduced Q of the varicap tuned circuits we immediately have twice the likelihood of an r.f. stage breaking down! 

And being semiconductors the varicap diodes themselves are more likely to fail than the sections of a ganged tuning capacitor. It is reasonable then to conclude that if mechanical faults are the most prevalent the use of varicap tuners will make life easier. Mechanical faults are generally not too difficult to sort out however and the field engineer can often cope with them in the home. 
Can the same be said of the varicap tuner? It seems that this type of tuner does not need so much attention as its mechanical counterpart but is likely to throw up some much more difficult faults when it does, resulting in bench repairs being needed. So far my own experience has indicated that varicap tuning faults nearly always need servicing on the bench.
Generally speaking it seems true to say that varicap tuners themselves are adequately reliable: the snags result from the tuning system and stabilised power supply.

Tuning Drift with Varicap Tuners:

 If a varicap tuned receiver is constantly drifting off tune the +30V supply should be the number one suspect. It is best to connect an Avometer permanently to the supply so that it can be precisely monitored-if necessary write down the exact voltage measured.

 If the receiver drifts, check the voltage. If it has changed, even slightly, this may well be enough to be the cause of the fault. To pinpoint and confirm the diagnosis aerosol freezer should be applied to the stabiliser i.c. or zener. If the voltage returns to normal or changes wildly for the worse the stabiliser is almost certainly the cause of the trouble and should be replaced.
A prolonged soak test should then be carried out. Another point concerning varicap tuners arises with their use in colour receivers.


 There were  makers of the most expensive colour receiver on the market still didn't use a varicap tuner but instead use a mechanical one. The makers' claim is that the signal to-noise ratio of the varicap tuner is inadequate for their colour standards. Undoubtedly the results obtained on the receiver seem to confirm this. Interestingly, the same manufacturers use varicap tuners in their black -and -white receivers, and the tuning button system is often full of troublesome intermittent contacts. The varicap tuner has its advantages and disadvantages then. Probably the simplest comment would be to say that when it is good it is very very good but when it is bad it is horrid!


AUTOVOX SpA HISTORY

Giordano Bruno Verdesi founded in Rome in 1933 the Industry Italian Radio engineering, IRI, for the production of professional apparates, but this had its single development in 1945 with the war reconstruction post.

Previewing a strong development of the motorization, with Carlo Daroda, it comes up the Autovox SpA, with the specialization car radio production.

In 1953 the company is upgraded and constructed on the way Pays wages to Rome, the new plant for the production of television sets, antennas, car radio, transistor radio receivers, beyond a production of radiosondes and professional apparatuses for the aeronautical meteorology.

With the planning of the first car radio in the world, the leggendaria Bikini, in 1942 it begins a long season of successes like with the car radio Piper, the blue line with the first tuning electronic, the Kanguro the first car extractable stereo, mythical the Shuttle and Challenger the first car radio with the frequency synthesis, represents for Autovox, the flag stones in the development of new technologies, beyond to a complete range of television set (in black and white) of great reliability and from the pretty aesthetic. 

Successively it realizes first in Europe, a color television set with fully transistorized chassis. (CLICK HERE TO SEE).


(To see the Internal Chassis Just click on Older Post Button on bottom page, that's simple !)


Some references and  Notes:

^ AA.VV., Capitolium vol. 43, 1968, p. 14 ^ "L' agonia dell'Autovox, cinquant'anni di fatti e misfatti romani" - Corriere della Sera, 10 aprile 1996 ^ Bruce Weber, Kusisto envisions rainbows ahead, in Billboard, 15 gennaio 1972. ^ Richard Robson, Motorola UK bows cassette units, in Billboard, 1º luglio 1972.
Istituto Mobiliare Italiano, SpA v. Motorola, 689 F. Supp. 812 (N.D. Ill. 1988), su Justia Law. URL consultato il 26 gennaio 2016. ^ Aldo Grandi, Insurrezione Armata, BUR - Rizzoli, 2005, ISBN 978-88-17-00758-0. ^ Il Mondo vol. 36, 1985, p. 65 ^ "ALLA FINANZIARIA PUBBLICA REL IL 54% DELLA NUOVA AUTOVOX" - Repubblica, 8 giugno 1985 ^ "CONVOCATI DAL TRIBUNALE I CREDITORI DELL' AUTOVOX" - Repubblica, 12 novembre 1987 ^ "AUTOVOX, BATTAGLIA VUOLE IL FALLIMENTO" - Repubblica, 19 novembre 1987 ^ "NOVE ' IN CORDATA' PER SALVARE L' AUTOVOX" - Repubblica, 4 luglio 1992 ^ *** ATTO COMPLETO ***, su www.gazzettaufficiale.it. URL consultato il 21 gennaio 2016. ^ nuova autovox: a nissan Italia complesso aziendale Capena | Agi Archivio, su archivio.agi.it. URL consultato il 20 gennaio 2016 (archiviato dall'url originale l'8 marzo 2016). ^ LA NISSAN FAVORITA PER L'ACQUISTO AUTOVOX - la Repubblica.it, su Archivio - la Repubblica.it. URL consultato il 20 gennaio 2016. ^ AUTOVOX, cordata romana per riaccendere l'autoradio, su archiviostorico.corriere.it. URL consultato il 20 gennaio 2016. ^ Nuova autovox:commissariata anche la autovox video system | Agi Archivio, su archivio.agi.it. URL consultato il 20 gennaio 2016 (archiviato dall'url originale il 2 febbraio 2016). ^ Rifiuti: a Roma nuovo impianto e prima centrale biogas | Agi Archivio, su archivio.agi.it. URL consultato il 20 gennaio 2016 (archiviato dall'url originale il 2 febbraio 2016). ^ ACCORDO AMA - AUTOVOX RISCHIO DI ROTTURA - la Repubblica.it, su Archivio - la Repubblica.it. URL consultato il 20 gennaio 2016. ^ "OCCUPAZIONE. L' Autovox licenzia 234 lavoratori" - Corriere della Sera, 11 giugno 1996 ^ Italia lavoro dismette quota in Roma multiservizi | Agi Archivio, su archivio.agi.it. URL consultato il 20 gennaio 2016 (archiviato dall'url originale il 2 febbraio 2016). ^ Studio Multimediale Hangloose, Impianto di selezione e produzione CDR Salario - Ama Roma S.p.A., su www.amaroma.it. URL consultato il 26 gennaio 2016.

Further reading;

P. Toscano - Le origini del capitalismo industriale nel Lazio: imprese e imprenditori a Roma dall'unità alla seconda guerra mondiale - Cassino, Università degli studi di Cassino, 2002, ISBN 888317089X.

No comments:

Post a Comment

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.

Note: Only a member of this blog may post a comment.