The SALORA 1F6C is a 22 inches color television with 16 programs and VSt tuning automatic search system.
Was first SALORA featuring the TMS1100 controller from Texas Instruments specially programmed to perform the functions to drive and operate tuning search system and operational remote functions.
With tuning system having a non-volatile memory for storing digital tune words is electrically updated by a microcomputer type architecture control circuitry. A ROM memory matrix is provided for the storage of VHF minimum and maximum binary tune words corresponding to each of twelve VHF channels in addition to a UHF minimum and maximum binary tune word encompassing all possible 72 UHF channels. Tuning of individual VHF and UHF chanels is accomplished by incrementing or decrementing a given tune word within the minimum and maximum limits established in the ROM memory matrix by means of a microcomputer processing approach.
Furthermore was first SALORA TV chassis with mains isolated chassis at primary side and featuring the VIDEOCOLOR PIL S4 CRT TUBE.
- Horizontal Beam Deflection and high voltage generating circuits realized with Thyristors circuits.
The massive demand for colour television receivers in Europe/Germany
in the 70's brought about an influx of sets from the continent. Many of
these use the thin -neck (29mm) type of 110° shadowmask tube and the
Philips 20AX CRT Tube, plus the already Delta Gun CRT .
Scanning
of these tubes is accomplished by means of a toroidally wound
deflection yoke (conventional 90° and thick -neck 110° tubes operate
with
saddle -wound deflection coils). The inductance of a toroidal yoke is
very much less than that of a saddle -wound yoke, thus higher scan currents are required.
The deflection current necessary for the line scan is about 12A peak
-to -peak. This could be provided by a transistor line output stage but a
current step-up transformer, which is bulky and both difficult and
costly to manufacture, would be required.
An entirely different
approach, pioneered by RCA in America and developed by them and by ITT
(SEL) in Germany, is the thyristor line output stage. In this system the
scanning current is provided via two thyristors and two switching diodes
which due to their characteristics can supply the deflection yoke
without a step-up transformer (a small transformer is still required to
obtain the input voltage pulse for the e.h.t. tripler). The purpose of
this article is to explain the basic operation of such circuits. The
thyristor line output circuit offers high reliability since all
switching occurs at zero current level. C.R.T. flashovers, which can
produce high current surges (up to 60A), have no detrimental effects on
the switching diodes or thyristors since the forward voltage drop across
these devices is small and the duration of the current pulses short. If
a surge limiting resistor is pro- vided in the tube's final anode
circuit the peak voltages produced by flashovers seldom exceed the
normal repetitive circuit voltages by more than 50-100V. This is well
within the device ratings.
It's a very good system to use where the line scan coils require large
peak currents with only a moderate flyback voltage an intrinsic
characteristic of toroidally wound deflection coils. The basic thyristor
line output stage arrangement used in all these chassis is shown in
Fig. 1it was originally devised by RCA. Many sets fitted with 110°, narrow -neck delta -gun tubes used a thyristor line output stage - for example those in the Grundig and Saba ranges and the Finlux Peacock , Indesit, Siemens, Salora, Metz, Nordmende, Blaupunkt, ITT, Seleco, REX, Mivar, Emerson, Brionvega, Loewe, Galaxi, Stern, Zanussi, Wega, Philco. The circuit continued to find favour in earlier chassis designed for use with in -line gun tubes, examples being found in the Grundig and Korting ranges - also, Indesit, Siemens, Salora, Metz, Nordmende, Blaupunkt, ITT, Seleco, REX, Mivar, Emerson, Brionvega, Loewe, Galaxi, Stern, Zanussi, Wega, Philco the Rediffusion Mk. III chassis. Deflection currents of up to 13A peak -to -peak are commonly encountered with 110° tubes, with a flyback voltage of only some 600V peak to peak. The total energy requirement is of the order of 6mJ, which is 50 per cent higher than modern 110° tubes of the 30AX and S4 variety with their saddle -wound line scan coils. The only problem with this type of circuit is the large amount of energy that shuttles back and forth at line frequency. This places a heavy stress on certain components. Circuit losses produce quite high temperatures, which are concentrated at certain points, in particular the commutating combi coil. This leads to deterioration of the soldered joints around the coil, a common cause of failure. This can have a cumulative effect, a high resistance joint increasing the local heating until the joint becomes well and truly dry -a classic symptom with some Grundig / Emerson sets. The wound components themselves can be a source of trouble, due to losses - particularly the combi coil and the regulating transductor. Later chassis are less prone to this sort of thing, partly because of the use of later generation, higher efficiency yokes but mainly due to more generous and better design of the wound components. The ideal dielectric for use in the tuning capacitors is polypropylene (either metalised or film). It's a truly won- derful dielectric - very stable, with very small losses, and capable of operation at high frequencies and elevated temperatures. It's also nowadays reasonably inexpensive. Unfortunately many earlier chassis of this type used polyester capacitors, and it's no surprise that they were inclined to give up. When replacing the tuning capacitors in a thyristor line output stage it's essential to use polypropylene types -a good range of axial components with values ranging from 0.001µF to 047µF is available from RS Components, enabling even non-standard values to be made up from an appropriate combination. Using polypropylene capacitors in place of polyester ones will not only ensure capacitor reliability but will also lower the stress on other components by reducing the circuit losses (and hence power consumption).
Numerous circuit designs for completely transistorized television receivers either have been incorporated in commercially available receivers or have been described in detail in various technical publications. One of the most troublesome areas in such transistor receivers, from the point of View of reliability and economy, lies in the horizontal deflection circuits.
As an attempt to avoid the voltage and current limitations of transistor deflection circuits, a number of circuits have been proposed utilizing the silicon controlled rectifier (SCR), a semiconductor device capable of handling substantially higher currents and voltages than transistors.
The circuit utilizes two bi-directionally conductive switching means which serve respectively as trace and commutating switches. Particularly, each of the switching means comprises the parallel combination of a silicon controlled rectifier (SCR) and a diode. The commutating switch is triggered on shortly before the desired beginning of retrace and, in conjunction with a resonant commutating circuit having an inductor and two capacitors, serves to turn off the trace switch to initiate retrace. The commutating circuit is also arranged to turn oft the commutating SCR before the end of retrace.
History of Salora
History starts beginning 1928 in Salo (Finland), where Messrs Nordell and Koskinen built crystal receivers for the new Finish broadcasting station. Rapidly other radios followed, on battery and in 1930 on home electricity. In 1945, after WO II, the company was renamed SALORA oy. This name was a combination of the town SALO and the product RAdio. "Salora" grew and 15,000 radios were produced yearly by 300 people.
In 1957 Salora started the production of black/white TV-sets and in the beginning of the seventies, 2,000 people were employed and they built 1,000 TV-sets per day. At the end of the fifties they started the production of wireless phones for the army and the railways.
In 1966 the export of televisions to Sweden was starting and at the end of the seventies 60% of the production was destined for export. In 1978 a co-operation was founded with NOKIA – under the name MOBIRA – for the production of mobile phones.
In 1981 monitors for IBM were taken into production as well. Thereafter, in 1982, the mobile phone division was sold to NOKIA and in 1984 NOKIA bought the majority of the SALORA shares. In the same year SALORA started to make TV-sets for a famous Japanese brand for the total European market. In 1992 NOKIA took over SALORA completely.In February 2006 the brandname SALORA is being secured and from now on Albers Trading B.V. will supply her complete range of products under the name SALORA.
No comments:
Post a Comment
The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.
Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!
The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.
Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.
Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.
Your choice.........Live or DIE.
That indeed is where your liberty lies.
Note: Only a member of this blog may post a comment.