LOEWE ARCADA 72-100 PIP  is 29 Inches color television  100HZ frame rate TELEVISION In a known 
arrangement, the frame rate of a television signal is doubled
 by using a field store. In a first operating mode, each field of the 
television signal is entered into the field store in this arrangement 
and read out twice at twice the frequency. In a second mode, only every 
second field is entered into the field store and read out four times at 
twice the frequency. In an arrangement for converting an original picture signal representing
 a sequence of frames, each of which is composed of two interlaced 
fields, into a converted picture signal which has a double field 
frequency with respect to the original picture signal, is for doubling 
the field frequency, for the purpose of noise reduction, motion 
compensation and line flicker reduction with 100HZ Digital Technology.,display system with increased field frequency ; digital scan
 converter means including field-memory means supplied with an input 
video signal of an interlaced television system having a selected 
plurality of fields per second different from PHILIPS 100HZ
 scan system. The chassis chipset is featuring both  - 
ITT and PHILIPS chipset in video ignal processing with the chassis LOEWE 
Q2100. (Featuring an analog television component signal with a standard line frequency of 
15.625 kHz is converted in the coder  into an internal digital signal
 with a bit rate of 32,765Khz and 625 Mbit/s.) A method for reducing flickering in a television receiver, in which the 
television signal (Se) received field by field is divided into its 
high-frequency and low-frequency components (Ah, Bh, At, Bt; HA, TA) 
with respect to the spatial frequency by a spatially acting filter (1; 
5; 15), these high-frequency and low-frequency components (Ah, Bh, At, 
Bt; HA, TA) are subjected to a signal processing based on the use of 
motion vectors (BV) and are subsequently combined again, and in which 
the television signal (Se) processed in this manner is reproduced with 
twice the vertical frequency in accordance with the line interlace 
method.
The  LOEWE Arcada 72-100 was the worldwide most complex digital 100Hz video signal circuit for CRT Television with microdigital chassis  Q2100 developed by Matsushita/Panasonic (E2100).
Features the combination of 2 Techology toghether:
- DIGIVISION ITT DIGIT2000: FOR several years now the use of digital techniques in television has been growing. A considerable impetus came initially from the need for high -quality Tv standards conversion. The IBA's DICE (Digital Intercontinental Conversion Equipment) standards converter came into operational use in 1972. It's success demonstrated convincingly the advantages of processing video signals in digital form - digital signals are neither phase nor level dependent. The trend since then has been towards the all - digital studio: digital effects generators have been in use for some time, and digital telecines were announced earlier this year. An earlier example of the application of digital techniques to television was the BBC's sound-in-syncs system, in which the sound signal is converted to digital form so that it can be added to the video signal for network distribution. The sound-in-syncs system first came into use in 1969, and is was widely employed in pay tv systems alongside with video scrambling methods in the 80's. Digital techniques have already appeared on the domestic TV scene. The teletext signals are digital, and require digital processing. In modern remote control systems the commands from the remote control transmitter are in digital form, and require digital decoding and digital - to -analogue conversion in the receiver before the required control action can be put into effect. Allied to this, digital techniques are used for the more sophisticated channel tuning systems. The basic TV receiver itself continues to use analogue techniques however. Are we about to see major changes here?
 
ITT Semiconductors in W. Germany
 have been working on the application of digital techniques to basic TV 
receiver signal processing since 1977 with the supervision of the 
Engineer Micic Ljubomir, and at the recent Berlin Radio Show presented a
 set of digital chips for processing the video, audio and deflection 
signals in a TV receiver. The set consists of a' couple of l.s.i. and 
six v.l.s.i. chips - and by very large scale integration (v.l.s.i.) 
we're talking about chips that contain some more 200,000 transistors. 
What are the advantages? 
For
 the setmaker, there's reduction in the component count and simpler, 
automated receiver alignment - alignment data is simply fed into a 
programmable memory in the receiver, which then adjusts itself. 
Subsequently, the use of feedback enables the set to maintain its 
performance as it ages. From the user's viewpoint, the advantages are 
improved performance and the fact that extra features such as picture 
-within -a -picture (two pictures on the screen at the same time) and 
still pictures become relatively simple to incorporate. The disadvantage
 of course is the need for a lot of extra circuitry. Since the received 
signals remain in analogue form, analogue -to -digital conversion is 
required before signal processing is undertaken. As the c.r.t. requires 
analogue drive signals, digital -to -analogue conversion is required 
prior to the RGB output stages - the situation is somewhat different in 
the timebase and audio departments, since the line drive is basically 
digital anyway and class D amplifier techniques can be used in the field
 and audio output stages. In between the A -D conversion and the various
 output stages, handling the signals in digital form calls for much more
 elaborate circuitry - hence those chips with 200,000 or so transistors.
 The extra circuitry is all incorporated within a handful of chips of 
course, but the big question is if and when the use of these chips will 
become an economic proposition, taking into account reduced receiver 
assembly/setting up costs, compared to the use of the present analogue 
technology - after all, colour receiver component counts are already 
very low. With the present digital technology, it's not feasible to 
convert the signals to digital form at i.f. So conversion takes place 
following video and sound demodulation. 
Fig.
 1 shows in simple block diagram form the basic video and deflection 
signal processing arrangement used in the system devised by ITT 
Semiconductors. Before going into detail, two basic points have to be 
considered - the rate at which the incoming analogue signals are sampled for conversion to digital form,
 and the number of digits required for signal coding. Consider the 
example shown in Fig. 2. At both (a) and (b) the signals are sampled at 
times Ti, T2 etc. In (a) the signal is changing at a much faster rate 
than the sampling rate. So very little of the signal information would 
be present in the samples. In (b) the rate at which the signal is 
changing is much slower, and since the sampling rate is the same the 
samples will contain the signal information accurately. In practice, the
 sampling rate has to be at least twice
 the bandwidth of the signal being sampled. Once you've got your 
samples, the next question is how many digits are required for adequate 
resolution of the signal, i.e. how many steps are required on the 
vertical (signal level) scale in Fig. 2 The use of a four -digit code, 
i.e. 0000, 0001 etc., gives 16 possible signal levels. Doubling the 
number of digits to eight gives 256 signal levels and so on. ITT's 
experience shows that the luminance signal requires 8 bits (digits), the
 colour -difference signals require 6 bits, the audio signal requires 12
 bits (14 for hi-fi quality) while 13 bits are required for a linear 
horizontal scan on a 26inch tube. These digital signals are handled as parallel data streams in the subsequent signal processing.
 Returning to Fig. 1, the A -D and D -A conversion required in the video
 channel is carried out by a single chip which ITT call the video codec 
(coder/decoder). A clock pulse generator i.c. is required to produce the
 various pulse trains necessary for the digital signal processing, and a
 control i.c. is used to act as a computer for the whole digital system and
 also to provide interfacing to enable the external controls 
(brightness, volume, colour etc.) to produce the desired effects. In 
addition, the control i.c. incorporates the digital channel selection 
system. The video codec i.c. uses parallel A-D/D-A conversion, i.e. a 
string of voltage comparators connected in parallel. This system places a
 high premium on the number of bits used to code the signal in digital 
form, so ITT have devised a technique of biasing the converter to 
achieve 8 -bit resolution using only 7 bits (the viewer's eye does some 
averaging on alternate lines, as with Simple PAL, but this time 
averaging luminance levels). The A -D comparators provide grey -encoded outputs, so the first stage in the video processor i.c. is a grey -to -binary transcoder. As Fig.
 3 shows, the processes carried out in the video processor i.c. then 
follow the normal practice, though everything's done in digital form. 
The key to this processing is the use of digital filters. These are clocked at rates up to 18MHz, and provide delays, addition and multiplication. The glass chroma delay
 line required for PAL decoding in a conventional analogue decoder 
consists of blocks of RAM (random-access memory) occupying only three 
square millimeters of chip area each. As an example of the ingenuity of 
the ITT design, the digital delay line used for chroma signal 
averaging/separation in the PAL system is used in the NTSC version of 
the chip as a luminance/chrominance signal separating comb filter. Fig. 4
 shows the basic processes carried out in the deflection processor i.c. 
This employs the sorts of techniques we're becoming used to in the 
latest generation of sync processor i.c.s. Digital video goes in, and 
the main outputs consist of a horizontal drive pulse plus drives to the 
field output and 
EW
 modulator circuits. The latter are produced by a pulse -width modulator
 arrangement, i.e. the sort of thing employed with class D output 
stages. The necessary gating and blanking pulses are also provided. A 
further chip provides audio signal processing. One might wonder why the 
relatively simple audio department calls for this sort of treatment. The
 W. German networks are already equipping themselves for dual -channel 
sound however, and the audio processor i.c. contains the circuitry 
required to sort out the two -carrier sound signals. These chips represent a major step in digitalizing the domestic TV receiver. It seems likely that some enterprising setmaker will in due course announce a "digital TV set".
 The interesting point then will be whether the chip yields, and the 
chip prices as production increases, will eventually make it worthwhile 
for all setmakers to follow this path (in 1984).
Therefore
 digital television signal processing system introduced in 1984 by the 
Worldwide Semiconductor Group (Freiburg, West Germany) of International 
Telephone and Telegraph Corporation is described in an ITT Corporation 
publication titled "VLSI Digital TV System--DIGIT 2000."
In that system 
color video signals, after being processed in digital (binary) form, are
 converted to analog form by means of digital-to-analog converters 
before being coupled to an image displaying kinescope. The analog color 
video signals are coupled to the kinescope via analog buffer amplifiers 
and video output kinescope driver amplifiers which provide video output 
signals at a high level suitable for driving intensity control 
electrodes of the kinescope.
- PHILIPS 100HZ TECHNOLOGY A conventional TV shows a picture by scanning 50 times per second (50 Hz). This frequency can be detected by the human eye in the form of a flickering picture. 100 Hz sets show a picture by scanning 100 times per second eliminating field flickering. Philips' digital scan doubles the rate of line flicker, making it undetectable. The result is a more stable picture.
 
The set has outstanding features as listed:
Multistandard:
TV signals are defined primarily the National Television Standards Committee (NTSC), the Phase Alternative Line (PAL) or the Sequential Couleur Avec Memoire (SECAM) systems, and used in different countries around the world. An analog TV signal utilizes mainly two or three RF carriers, combined in the same channel band. One carrier may commonly be amplitude modulated (AM) with video content, and the other may be frequency modulated (FM) and/or amplitude modulated (AM) with audio content. An analog TV receiver functions by performing a series of operations comprising adjusting the signal power, separating the video and audio carriers, and locking to each carrier in order to down-convert the signals to baseband. The baseband video signal may then be decoded and displayed by achieving horizontal and vertical synchronization and extracting the luminance and color information. After demodulating the received signal, the resulting baseband audio may be decoded, and left, right, surround channels and/or other information may be extracted.- The LOEWE ARCADA 72-100 PIP Features a digital multistandard PAL/SECAM/NTSC 3.58 & 4.43 CCIR B/G/H/I/L/D/K/M. The different coding processes, e.g. NTSC, PAL and SECAM, introduced into the known colour television standards, differ in the nature of the chrominance transmission and in particular the different systems make use of different colour subcarrier frequencies and different line frequencies.
The following explanations relate to the PAL and NTSC systems, but correspondingly apply to video signals of other standards and non-standardized signals.
The colour subcarrier frequency (fsc) of a PAL system and a NTSC system is fsc(NTSC) = 3.58 MHz or fsc(PAL) = 4.43 MHz.
In addition, in PAL and NTSC systems the relationships of the colour subcarrier frequency (fsc) to the line frequency (fh) are given by fsc(NTSC) = 227.50 * fh or 4•fsc(NTSC) = 910 • fh fsc(PAL) = 283.75 * fh or 4•fsc(PAL) = 1135 • fh so that the phase of the colour subcarrier in the case of NTSC is changed by 180°/line and in PAL by 270°/line.
The invention relates to a digital multistandard decoder for video signals and to a method for decoding video signals. Colour video signals, so-called composite video, blanking and sync signals (CVBS) (chroma-video-blanking-sync) signal is a signal comprising both the chrominance and the luminance component of the video signal. Therefore, the CVBS video signal may be PAL video signal, a SECAM video signal, or an NTSC video signal. are essentially composed of a brightness signal or luminance component (Y), two colour difference signals or chrominance components (U, V or I, Q), vertical and horizontal sync signals (VS, HS) and a blanking signal (BL).
In order to decode a video signal and restore a color image, a color TV set has to identify the color TV standard used at the emission. Conventional color TV sets are equipped with a system for automatically identifying the norm or standard of the color TV set used for the emission. The invention more particularly relates to an automatic method for identifying a color TV standard in a multistandard TV set.
Presently, the most commonly used color TV standards are PAL, NTSC and SECAM standards. For these three standards, each line of the composite video signal comprises a synchronization pulse, a burst of a few oscillations of the chrominance sub-carrier signal, then the signal itself corresponding to the image, comprising superimposed luminance and chrominance information, the latter information being carried by the luminance signal.
The characteristics of the chrominance sub-carrier in the various PAL, NTSC and SECAM standards are defined in the published documents concerning these standards and will not be described in detail here. However, the main characteristics of these various standards will be briefly reminded because these indications are useful for a better understanding of the invention.
In the PAL standard, the frequency of the chrominance sub-carrier is equal for all the lines, but the phase of one of the modulation vectors varies + or -90° from one line to another. The frequency of the chrominance sub-carrier is standardized at 4.43 Mhz. In this system, the burst signal is also shifted by + or -90° from one line to the next.
In the NTSC standard, the chrominance sub-carrier is equal for all the lines.
In the SECAM standard, one uses two chrominance sub-carrier frequencies which alternate from one line to another, at 4.25 Mhz and 4.40 Mhz, respectively. These two chrominance sub-carriers are frequency modulated.
The multistandard color TV sets must have distinct internal systems designed to decode the luminance and chrominance signals for each standard used.
Therefore, these TV sets have to previously identify the received standard.
Systems for automatically identifying the standard used already exist. Generally, for such an automatic standard identification, the systems known use the bursts of the chrominance sub-carrier signal that are present at the beginning of each line. In fact, these bursts are standardized and calibrated samples of the chrominance sub-carrier transmitted on the video signal and comprise all the characteristic information concerning the transmitted color standard. The information contained in these bursts represents the frequency, the phase of one of the modulation vectors and the frequency or phase variation of one line with repect to the next one.
Full digital Processing both video and audio:The foregoing object and other objects of the invention have been achieved by the provision of a digital video audio processing apparatus comprising: apparatus for digital video and audio processing including information input and output processing devices for input, output, and processing of pictures and sounds.
Stereo sound 4 speakers
Tone controls
- Teletext 1000 Pages Teletext is a television-based communication technique in which a given horizontal video line is utilized for broadcasting textual and graphical information encoded in a digital binary representation. Such horizontal video line signal that contains teletext data is referred to herein as a Data-line. It is assumed herein, for explanation purposes, that teletext is sent by the broadcaster only during the vertical blanking interval (VBI), when no other picture information is sent. The organization of the binary information in the broadcast signal is determined by the standard employed by the broadcaster. By way of an example only, references are made herein to a teletext based on a standard referred to by the British Broadcasting Corporation (BBC) as CEEFAX.
 
Each Data-line carries data synchronizing and address information and the codes for a Row of 40 characters. The synchronizing information includes a clock run-in sequence followed by an 8-bit framing code sequence. Each Data-line contains a 3 bit code referred to as the Magazine number. A teletext Page includes 24 Rows of 40 characters, including a special top Row called the Page-Header. Each ROW is contained in a corresponding Data-line. A user selected Page is intended to be displayed in place of, or added to a corresponding television picture frame. A Magazine is defined to include Pages having Data-lines containing a corresponding Magazine number. The transmission of a selected Page begins with, and includes its Page Header and ends with and excludes the next Page Header of the selected Magazine number. All intermediate Data lines carrying the selected Magazine number relate to the selected Page.
LTI Luminance transient Improvement:Luminance transient improvement (LTI) is a conventional technique for sharpening a video image by steepening edge transitions, which thereby increases the original signal bandwidth. There are two general approaches to making an edge steeper. One technique increases pixel values on the high side of any edge and decreases pixel values on the other side of the edge, thereby making a gradual transition more abrupt. The other technique is to replace pixel values near the edge with pixel values from further away from the edge. In steepening an edge, the LTI algorithm creates additional high frequency components around the edges.
- CTI Color transient Improvement Picture Improvements circuitry in which colour signal, e.g. the line-sequential colour difference signals (R-Y,B-Y), is processed by an edge steepening circuit e.g. a colour transient improver and/or a two-line delay line in which the colour signals from two lines are added. The delay line may be part of a drop-out compensation circuit in which the colour signal of line n is replaced by the signal present for line n-2. A CCD-line may be used as the two-line delay line, and an amplitude limiter included. ADVANTAGE - Increased picture sharpness and improved signal-to-noise ratio.
 
Picture Noise reduction:To this end, a first aspect of the invention provides a method of image data noise filtering in dependence upon a local image spectrum, wherein the filtering is stronger for low frequencies than for higher frequencies. A second aspect of the invention provides a device for image data noise filtering in dependence upon a local image spectrum, wherein the filtering is stronger for low frequencies than for higher frequencies. A third aspect of the invention provides a display apparatus comprising a display device (D) and a image data noise filtering device, as noted above, in a video signal processing path connected to said display device (D).A primary aspect of the invention provides a method of image data noise filtering in dependence upon a local image spectrum, wherein the filtering is stronger for low frequencies than for higher frequencies.
- 100Hz Scanning technology To improve the picture quality in a television receiver which displays the received television signal in accordance with the line interlace method, frame stores are increasingly used. The remaining system-related flicker disturbances caused by the line interlace method require different signal processing for stationary and moving frame sequences in known flicker reduction processes, in which the receiver switches from flicker-free to motion-correct 100-Hz field repetition rate even with a relatively slight movement. To reduce system-related line flicker disturbances with line interlace reproduction, the signals contained in the frame store are in each case divided by vertical filtering in the television receiver into a vertical high-frequency and low-frequency signal as determined by the position frequency, these signals are differently processed in dependence on movement and the processed high-frequency and low-frequency signals are reproduced with twice the vertical frequency in line interlace. The flicker reduction method according to the invention can be used in all television receivers in which the television signal is reproduced at twice the vertical frequency in line interlace,
 
- DVM Dynamic Velocity Modulation When the phosphor screen of a video signal reproducing apparatus, such as, the screen of the cathode ray tube in a television receiver, is scanned by an electron beam or beams so as to form a picture or image on the screen, the beam current varies with the luminance or brightness level of the input video signal. Therefore, each electron beam forms on the phosphor screen a beam spot whose size is larger at high brightness levels than at low brightness levels of the image so that sharpness of the reproduced picture is deteriorated, particularly at the demarcation between bright and dark portions or areas of the picture. Further, when a beam scanning the screen in the line-scanning direction moves across the demaraction or edge between dark and bright areas of the picture, for example, black and white areas, respectively, the frequency response of the receiver does not permit the beam intensity to change instantly from the low level characteristic of the black area to the high level characteristic of the white area. Therefore, the sharpness of the reproduced image is degraded at portions of the image where sudden changes in brightness occur in response to transient changes in the luminance or brightness of the video signal being reproduced. The increase in the beam current and in the beam spot size for bright portions of the reproduced picture or image and the inadequate frequency response of the television receiver to sudden changes in the brightness or luminance level of the incomming video signal are additive in respect to the degradation of the horizontal sharpness of the reproduced image or picture.
 
It is well known that an improvement in apparent picture resolution 
can be achieved by modulating the beam scan velocity in accordance with 
the derivative of the video signal which controls the beam intensity. 
This video signal is referred to as the luminance signal and the 
derivative of the luminance signal is employed for such control. An 
advantage of this method over a peaking approach to picture sharpness 
enhancement is the avoidance of blooming of peaked white picture 
elements. 
It is known in the prior art to apply a differentiated 
video signal to the input of a double ended limiter incorporating a pair
 of threshold circuits. The limiter consists of two separate 
differential amplifiers, where each amplifier is separately biased to 
provide double ended limiting as well as to provide coring. The limiter 
arrangement develops a doubly clipped signal output which does not 
respond to excursions of the differentiated signal which lie below 
selected threshold magnitudes. Thus the gain of the limiter is such as 
to provide sharpness enhancement for slow transients while precluding 
excessive supplemental beam deflection with fast transients. The coring 
capability of the limiter arrangement significantly lessens the 
likelihood of noise visibility. 
- Full dialog center on screen display (OSD) arrangements employed in video processing systems include a switching (or "multiplexing") network for switching between graphic image representative signals and normal video signals so that a graphic image can be displayed on the screen of a picture reproduction device either in place of the image represented by the video signals or together with (inserted in) the image. The graphic image can take the form of alphanumeric symbols or-pictorial graphics, and can be used to indicate status information, such as channel numbers or time, or operating instructions. In an OSD arrangement for use in an analog video signal processing system, the multiplexing network typically operates to switch in levels corresponding to the desired intensity of respective portions of the graphic image at the time the graphic image portions are to be displayed. In such an arrangement the graphic image representative signals take the form of timing pulses which occur when the graphic image portions are to be displayed and are used to control the multiplexing network. Such an analog OSD arrangement can also be used in a digital video processing system, but requires that the video signals be first converted to analog form. While digital video signal processing systems typically include a digital-to-analog converter section in which the digital video signals are converted to analog form, it may be more cost effective for the OSD arrangement to be incorporated as an integral part of the digital video processing section.
 
A remote control system, particularly for television sets, includes a 
remote control receiver and a remote control transmitter. The receiver 
and transmitter are switched to the menu mode by means of a menu key. At
 least two menu fields are associated with the remote control receiver 
and are displayed on the screen of the television set. The menu fields 
are individually selectable by means of the remote control transmitter. 
The selection is preferably accomplished by manually aligning the remote
 control transmitter with the displayed menu field to be selected.
- PIP picture-in-picture (PIP or pix-in-pix) feature; in a digital television system having a picture-in-picture (PIP or pix-in-pix) feature, two images from possibly unrelated sources are displayed simultaneously on the TV screen as a single composite image. The composite image includes a small picture (defined by an auxiliary video signal, for example, from a VCR) displayed as an inset within a large main picture (defined by a primary video signal, for example, from the TV antenna). The output signal of one tuner or of other TV signal sources in the base band are digitized and stored in a part of a memory. After automatic switching over to another TV-channel, this new signal is stored in another part of the memory and so on. The whole memory is then read out continuously and produces the displayed multipicture on the screen.
 
More specifically, the present invention pertains to a television receiver with a multipicture display. 
In
 a television receiver with multipicture display a single video signal 
can be reproduced simultaneously in two or more subareas, or two or more
 different video signals can each be reproduced in associated subareas. 
Each of the subareas can display either a reduced-size picture or a part
 of the picture supplied by a video-signal source. A digital 
signal-processing circuit converts the signals from the video-signal 
source to picture data consisting of luminance and color data for each 
picture element. A random-access memory (RAM) holds the picture data of 
the entire screen. A control unit controls the writing of the picture 
data into an area of the RAM depending on the number of video signals to
 be reproduced and the line-by-line readout, with only selected lines 
being transferred from the video-signal source into the associated 
memory area. A digital-to-analg converted which is furnished with the 
picture data read from the RAM delivers the analog red, green, and blue 
signals. 
A television receiver of this kind is described in a 
printed publication by Intermetall Semiconductors ITT, "VMC Video Memory
 Controller", August 1985. 
That television receiver circuit uses 
random-access memories (RAMs). For the multipicture display, the screen 
is divided into up to nine equal-sized subareas which each contain a 
part of a picture of normal size or a complete picture of reduced size. 
In that mode, successively produced "snapshots" of up to nine different 
video signals can be displayed simultaneously. The switching of the 
video signals takes place manually. 
Offenlegungsschrift DE No. 24
 13 839 A1 describes a circuit for a television receiver with a facility
 for simultaneously reproducing two or more programs. In a part of the 
picture of the directly received main program, the secondary program, 
received with a single switchable tuner, is stored in a memory with a 
reduced number of lines and is called up line by line when the electron 
beam of the picture tube sweeps across the predetermined part of the 
picture. The disadvantage of this method lies in horizontal grating-like
 interference in the main picture which results from the fact that lines
 of the main picture are missing at regular intervals when the tuner has
 been switched to the secondary program, and which can only be 
incompletely compensated. 
Accordingly,
 the problem to be solved by the invention is to provide a circuit of 
the above kind with which the grating-like interference caused during 
reproduction using the above-described single-tuner switching method is 
eliminated. 
The output signal of one tuner or of other TV signal 
sources in the base band are digitize and stored in part of a memory. 
After automatic switching over to another TV-channel, this new signal is
 stored in another part of the memory and so on. 
The whole memory
 is then read out continuously and produces the multi-picture display on
 the screen. Another advantage consists in the fact that, for the 
construction of the whole screen picture, all picture data are withdrawn
 from the RAM, so that the usual picture-improvement techniques can be 
applied. By fast readout from the memory rows, the displayed picture is 
freed from both line flicker and background flicker. 
By changing 
the sampling rates of the different video-signal sources, it is readily 
possible to monitor the latter, nearly up to the still picture. In an 
arrangement in accordance with the invention digital picture processing 
and digital storage are used thereby permitting the circuit to process 
analog or digital signals,from video signal sources.
Programs with 200 channels tuning capabilty
 
 Picture tube: PHILIPS Black Line+S (invar) 4:3/29”", picture diagonal length: 72 cm, deflection angle 110°, heating voltage 6,3 Vrms (28 Vp-p)/290 mA, degauss- ing each time the power is switched on.
Vertical frequency: 100 Hz (120 Hz NTSC-M)
Horizontal freq.: ©31270 Hz (31500 Hz NTSC-M)
Connections:(front) Headphone jack with separate setting, front AV for Y/C and sound input(back EURO jack 1 for RGB, Y/C input signals, RC 5, CVBS and sound input/output, EURO jack 2 for RC 5, CVBS, Y/C and sound input/output, two cinch jacks for sound output (regulable), (jacks progra-mable via dialogue control system), AV through antenna jack, secondary loudspeaker jacks.
Features: Dialogue control system, stereo-dual-sound decoder, tuning and memory system digital, automatic station programming, digital chan- nel selector, 100 programme locations in memory 00 to 99, OSD indication, S PAL, electronic alignment with the remote control hyperband tuner multistandard 8 MHz:47 MHz - 860 MHZ *) SAT tuner: 954 MHz - 2054 MHZ PAL-B/G/D/KA/L ¢ SECAM-B/G/D/K/L NTSC-VIDEO * NTSC-M
Standard selection by means with the remote control, teletext decoder as standard feature (TOP/FLOF)
Audio system:Rated power at an audio modulation frequency of 1 kHz: 4x 15 W for an impedance of 8 Ohm, harmonic distortion less than 1 per cent, two loudspeakers/switch-off through jacks for ex- ternal loudspeakers, base broadening for stereo, spatial sound for mono.
Power requirement: 200 to 260 V~, 50 or 60 Hz
Power consumption: 100 W (SB mode <1 W) *) SAT SB mode < 60 W
Dimensions: 79,5 x 57,2 x 50,6 (W x Hx D)
Weight: 45 kg.
 -------------------------------------
LOEWE AG
The
 Loewe brand values have been shaped consistently over a long period  of
 time. It all began in Berlin in 1923, with the brothers Dr. Siegmund  
and David Ludwig Loewe. Since then, one principle has always been  
adhered to: setting new standards with innovation for the senses.
Loewe
  established an impressive level of quality as early as 1931, with the 
 first public television transmission worldwide. Loewe has been 
producing  quality made in Germany at its location in Kronach since 
1948. In the  last 20 years, in addition to the Art 1 from 1985 becoming
 a design  classic, Loewe has received numerous national and 
international awards.
In  2005, Loewe became the 
leading premium flat screen television provider.  It made its 
breakthrough with the Loewe Individual: the first flat  screen 
television with individualised housing versions, set-up options  and 
inset colours. In 2008, with the Loewe Connect, Loewe heralded a  new, 
digital television age where non-system end devices could be  connected 
to a flat screen television set. One year later, Loewe  combined 
uncompromising ultraslim design with leading state-of-the-art  
technology in the Reference range. In 2010, Loewe ultimately introduced 
 the Mediacenter, which provides perfect entertainment networking  
throughout the home. Another step towards the future.
Loewe AG
  (pronounced [ˈløːvə]) is the parent company of the German Loewe group.
  The Loewe group develops, manufactures and sells a wide variety of  
electronic, electrical and mechanical products and systems, and  
specialises in the field of consumer and communication technology. The  
company was founded in Berlin in 1923 by brothers Siegmund and David L. 
 Loewe. The company has its headquarters and sole production facilities 
 in Kronach, Franconia. Today, the range has expanded to include  
televisions, Blu-ray players, DVD recorders, hard disk recorders,  
multiroom systems, speakers and racks. The trend is shifting from  
individual products to complete home entertainment systems. Loewe AG is 
 also represented internationally by sales partners and subsidiaries.  
These include subsidiaries in the Benelux countries, France, Italy,  
Austria and the UK. There are exclusive Loewe Galeries acting as  
flagship stores in many cities around the world, including Madrid,  
London, Paris, Amsterdam, Rome, Copenhagen, Vienna, Moscow and Hong  
Kong.
LOEWE Company history
It all began in 1923 in
  Berlin, when Dr Siegmund Loewe and his brother David Ludwig Loewe  
established a radio manufacturing company called Radiofrequenz GmbH.  
Their work with the young physicist Manfred von Ardenne in 1926 led to  
the development of the triple tube, which was first used in the Loewe  
OE333 radio receiver. This tube prompted Loewe’s multi-tube production  
and is today lauded as the world’s first integrated circuit.
Television
  development began at Loewe in 1929. The company worked together with  
British television pioneer John Logie Baird. In 1931, Manfred von  
Ardenne presented the world’s first fully electronic television to the  
public on the Loewe stand at the 8th Berlin Radio Show.
When
  Hitler came to power in Germany, Siegmund Loewe had to emigrate to the
  USA in 1938, where he developed friendship with yet another forced  
emigrant, Albert Einstein.
In 1949, Siegmund Loewe 
regained  possession of company property and took over as chairman of 
the  supervisory board. In the 1950s, Loewe began producing the 
Optaphon, the  first cassette tape recorder, and manufacturing 
televisions in Kronach.  1961 saw the first European video recorder, the
 Optacord 500, enter  mass production.
In 1962, the 
family company tradition ended with  the death of Siegmund Loewe. 
Subsidiaries of the Philips group took  over the majority of shares. 
Under this management, which continued  until 1985, the company 
increasingly specialised in the development and  production of 
televisions.
In 1963, the first portable  television, 
Loewe Optaport, was launched. It had a 25cm screen and  built-in FM 
radio. The first Loewe colour televisions were launched  along with the 
introduction of colour television in Germany. Loewe  revolutionised 
television production in 1979 with a fully integrated  chassis 
(everything on a single board). The first European stereo  television 
followed in 1981.
In 1985, management made Loewe a  
privately owned company again after Philips sold its shares. In the same
  year, Loewe created the Art 1, a new generation of TVs with a focus on
  design.
The CS1 represented another international 
first in 1995  as the world’s first fully recyclable television. At this
 time, the  course was also set for systematic further development as a 
multimedia  specialist.
1998 marked two more milestones
 in the company  history: the launch of the Xelos @ media, the first 
television with  internet access, and that of the Spheros, the first 
Loewe flat-screen  television. In the following year, Loewe AG became a 
publicly listed  company.
With the Individual, the 
first flat-screen TV with  individual housing options, set-up solutions 
and inset colours, Loewe  took a decisive step and became a premium 
flat-screen TV manufacturer.
Loewe  Connect, the 
world's first smart TV with fully integrated network  capability for 
wireless access to picture, music and video files on a  computer or 
external hard drive followed in 2008.
LED technology  
was adopted at Loewe in 2010 in the new Individual. In the following  
year, Loewe introduced 3D picture display to its Individual range.
01.07.2019 With Loewe, it's over now, here is why..............
The plant in Kronach remains largely deserted from this Monday on: The Upper Franconian TV manufacturer Loewe ceases operations. Most of the more than 400 employees no longer show up for work.
Loewe has been in a crisis for years and now, at least for the time being, the production of televisions in Kronach, Upper Franconia, has come to an end. On Monday, the bankrupt manufacturer with a long tradition ceases operations. The majority of the more than 400 employees are released from work and do not have to come to work. According to the provisional insolvency administrator Rüdiger Weiß, only a core team of ten to fifteen employees remains.
The remaining few employees will continue to look for a rescuing investor in the coming months. One of the most urgent tasks for the insolvency administrator and the Loewe works council is now to negotiate a social plan for the workforce. According to Weiß, he hopes to be able to conclude this by mid-July.
Although the employees are currently released from their duties and no longer receive a salary from Loewe, no one has been dismissed so far. This can only be done after an agreement has been reached on a social plan and a reconciliation of interests. According to Weiß, if no investor is found, the employment contracts could be kept until the end of October at the latest.
Dispute with IG Metall
According to the insolvency administrator's assessment, it will take that long even in the event of another rescue until there is clarity. "We expect the investor process to take another four months," said Weiß. "We will do everything we can to find someone, there have already been initial discussions with investors.
For Loewe, this is the second crisis in a few years to threaten its very existence. "Loewe has been running a loss-making business for years," said Weiß. "Everyone in the company agrees that the compensation structure is not appropriate. To cover personnel costs alone, annual sales of EUR 150 million would be required; for a black zero, we would need sales of EUR 180 million. In fact, it was 120 million in the end."
However, there are fierce disputes with the trade union. The Bavarian IG Metall district manager Johann Horn accuses the British investment company Riverrock of deliberately refusing Loewe new loans. There is some evidence that "the financial investor Riverrock is waiting until Loewe has finally bled out, only to earn money with the ruins of the company afterwards," Horn recently said. In addition, he pointed out that the investor wanted to implement such drastic wage cuts and worse working conditions.
Postbank plays an important role
According to IG Metall, Riverrock has kept Loewe afloat in the past with a double-digit million euro loan, but has now refused a new loan. The former management has also pledged the Loewe brand name to Riverrock.
The preliminary insolvency administrator rejects these accusations: "I cannot understand the criticism of IG Metall," said Weiß. In the presence of the union, all possible models for restructuring had been agreed. "We needed EUR 5.5 million to continue operations until the end of the year and a further EUR 3.4 million for a qualification and employment company for all employees.
According to Weiß, Riverrock was willing to finance this company - but made it dependent on Postbank's decision to take over Loewes' outstanding debts, to pay them on behalf of Loewes and to collect them from customers. So far, Postbank has refused to do so.
In December 2019, Skytec Group Ltd took over the brand.
-------------------------------------
LOEWE HISTORY IN GERMAN:
Loewe
 war und ist immer ein besonderer Betrieb - und bis ins 21.  Jahrhundert
 aktiv und in privatem Besitz. Nicht nur «das erste IC», die  Röhre 3NF 
ist da zu erwähnen, sondern auch die Mitentwicklung des  elektronischen 
Fernsehens in Deutschland.
1923: Radiofrequenz-GmbH und Loewe-Audion GmbH, Berlin-Friedenau;
1926: Aktiengesellschaft D.S. Loewe, Berlin-Steglitz;
1930: Radio-Aktien-Gesellschaft Dr. S. Loewe;
1933 (nach): Löwe-Radio AG;
1942: Opta-Radio AG;
1949: Loewe-Opta AG;
1965: Loewe Opta GmbH, Kronach.
Radios: 1923 bis 1926, Loewe 1927 bis 1978. TV-Fabrikation danach.
Nach
  Studium der Physik und Elektrotechnik promoviert Siegmund Loewe 
(Berlin  6.11.1885-28.5.1962 USA) unter Max Wien mit magna cum laude zum
 Dr.  phil. Er tritt bei der Firma Telefunken ein und wechselt 1915 zur 
Firma  Huth, wo er die Leitung der Laboratorien und der Patentabteilung 
 übernimmt. 1918 mietet Loewe in Berlin SW61 eine 7-Zimmer-Wohnung und  
erstellt mit einer kleinen Entwicklungsgruppe einen  
Telefonie-Röhrensender, dessen Sendungen in dem nicht weit entfernten  
Haus des Scherl-Verlages von Otto Kappelmayer zu empfangen sind. Um  
seine Kenntnisse zu erweitern, begibt sich Loewe in die USA. Einen  
ausführlichen Bericht von und über Loewe finden Sie in [1-99], woraus  
Sie erkennen können, dass Loewe das treibende Element für den Rundfunk  
in Deutschland war. Wie er gegen den Monopolanspruch von  
Telefunken/Lorenz/Huth (Funkkartell «Rundfunk GmbH») kämpfte und weitere
  Details finden Sie in [6-121].
Nach seiner Rückkehr 
aus den USA  wird das Versuchslabor von Loewe zum Kristallisationspunkt 
der jungen  Funktechnik. Im Dezember 1921 erhält Loewe Besuch von Lee de
 Forest, und  sie verbessern gemeinsam Röhren. 1921 entstehen auch zwei 
grundlegende  Patente für den Konus-Lautsprecher. Loewe eröffnet ein 
zweites  Laboratorium und gründet 1923 die Loewe-Audion-GmbH für die 
Herstellung  von Radioröhren sowie die Radiosender GmbH.
Im
 Dezember 1921  lernt der Realschüler Manfred von Ardenne den 
Radiopionier Loewe in  einem Elektrikergeschäft kennen und ist darauf 
häufiger Gast in den  Laboratorien von Loewe. Ein Autor schreibt, dass 
Loewe zum «Ziehvater»  des jungen von Ardenne wird und er in der Familie
 aufgenommen ist, doch  von Ardenne beschreibt dies in seinem Buch «Eine
 glückliche Jugend im  Zeichen der Technik» (DDR) nicht.
Die wahrsc
heinlich
  1923 gegründete Loewe Radio GmbH führt der jüngste Loewe-Bruder  
Bernhard. Das D bei D.S. Loewe steht für den älteren Bruder, David  
(Teilhaber).
Radiofrequenz GmbH und Loewe-Audion GmbH (1923-27):
Am
  22.1.23 erwirbt Dr. Siegmund Loewe die seit 1918/19 bestehende  
Mechanische Werkstatt Grüttner & Lütgert in Berlin-Friedenau und  
gründet die Radiofrequenz GmbH. Die ersten Geräte sind für den Export  
bestimmt. Davon sind mir die Typen EA51, EA52 und EA54 bekannt. EA steht
  für «Empfangs-Apparat».
Im Jahr darauf stellt der 
Betrieb die  Ziffer 9 vor die laufende Nummer. Der Sprung von EA958 auf 
EA980 deutet  auf andere Artikel hin (z.B. Trichterlautsprecher und 
kombinierte Geräte  etc.). Nachher ist keine Nummernsystematik mehr zu 
erkennen, ausser den  Buchstabenkombinationen wie OE (Orts-Empfänger), 
FE (Fern-Empfänger),  KV (KW-Vorsetzer), RO 
(Rückkopplungs-Ortsempfänger) etc.
1927 gibt  Loewe den Namen 
Radiofrequenz auf und verwendet seinen eigenen Namen.  Die drei Geräte 
OE333, 2H3N und NVG gibt es unter beiden Namen, da sie  Loewe 1927/28 
ohne neue Modelle weiter produziert. Mehr als eine Million  dieser 
Geräte lassen sich zum Stückpreis von 39.50 RM verkaufen, und  die 
Tagesproduktion erreicht zeitweise 2000 Einheiten.
Im 
Oktober  1923 gründet Loewe eine weitere Gesellschaft zur Herstellung 
von  Rundfunkröhren mit dem Namen Loewe-Audion GmbH, ebenfalls an der  
Niedstrasse 5 in Berlin-Friedenau gelegen. Zuerst entstehen dort  
Wolfram-, dann Thoriumröhren als «Sparröhren». Im September 1924 meldet 
 Loewe die grundlegenden Patente zur Dreifachröhre mit integrierten  
Bauteilen an, die 1926 als 3NF mit dem «Loewe Ortsempfänger OE333» einen
  legendären Ruf erreicht.
Loewe, Löwe, Opta, Loewe-Opta
Die
  Schrift «Loewe-Story» aus dem Hause Loewe-Opta zeigt die Abbildung 
eines  «Detektor-Empfängers» mit zwei Steckspulen, der angeblich zur 
Eröffnung  des Rundfunks bereitstand. Es ist aber ein umfunktionierter 
Sperrkreis  für den Empfänger 2H3N, Baujahr 1927, was auch aus dem 
Firmenschild mit  «Berlin-Steglitz» hervorgeht.
1926 
entsteht die  Aktiengesellschaft D.S. Loewe, Berlin-Steglitz. Als 
zweites Gerät unter  der neuen Marke Loewe bzw. Loewe Radio gilt der auf
 der Funkausstellung  im September 1926 gezeigte Fernempfänger 2H3N zu 
RM 150. Auch  Lautsprecherboxen mit Loewe-Konus-Lautsprecher und 
Stoffbezug im  «Südsee-look» sind nun erhältlich. Wegen der steigenden 
Anzahl  Rundfunksender treten Trennschärfeprobleme auf, so dass die  
Dreifachröhre für den Einbezug einer Rückkopplung einen siebten  
Anschluss erhält. Diese «3NF7» baut Loewe ab 1928 in alle OE333, 2H3N  
und in das dritte Gerät, den RO433 ein. Die elektrische  
Schallplatten-Abtastdose LR150 erregt Aufsehen; Gewicht 260 g! Die Dose 
 verlangt einen Abspielwinkel von 55 Grad. Die 3NF gibt es nun auch mit 
 Oxydkathode als 3NFB mit einem Verbrauch von 0,13 statt 0,34 A 
Heizstrom  - zudem beträgt die Verstärkung etwa das Doppelte. Weitere 
Details zu  Firmengründungen von Loewe siehe [638967]. Es sind dies z.B.
 die  Eudarit-Pressgut GmbH für Bakelitgehäuse etc. und die  
Ortophon-Apparatebau GmbH für den Lautsprecherbau.
1929
 bringen  die Loewe-Firmen den «Vollnetzanschluss-Empfänger R533» 
heraus, der mit  einer nochmals verbesserten Dreifachröhre, der 3NFW mit
 indirekter  Heizung, ausgestattet ist. 1929 entsteht Loewe's  
Berliner-Radio-Handels-Aktiengesellschaft. Die Baird Television Company 
 Ltd., London, bietet Loewe die Auswertung und Entwicklung ihrer  
Schutzrechte und Entwicklungsarbeiten auf dem Fernsehgebiet in  
Deutschland an. Da dieses Angebot die finanziellen Möglichkeiten von  
Loewe übersteigt, regt Dr. Loewe eine Beteiligung von Zeiss Ikon,  
Dresden, und Robert Bosch, Stuttgart, an. Es kommt Mitte 1929 zur  
Gründung der Fernseh-AG in Berlin, die 1939 im Firmenverband Robert  
Bosch aufgeht.
1930 fasst Loewe verschiedene seiner 
Firmen unter  dem Namen Radio-Aktien-Gesellschaft Dr. S. Loewe zusammen 
und mit dem  EB100W (1931 EB100G) beginnt die Reihe der Empfänger mit 
integriertem  Lautsprecher.
Im Auftrag der Loewe-Firmen
 bringt von Ardenne aus  seinem eigenen Labor 1930 erste brauchbare 
Vorschläge zur  Helligkeitssteuerung, um auf einem Bildschirm ein gut 
modulierbares  Bildraster zu schreiben. Meine gasgefüllte Braun'sche 
Röhre aus dem  Labor von Ardenne zeugt für die Forschung um 1926.
Auch
 auf der  Senderseite entwickelt Loewe elektronische Medien auf der 
Grundlage des  «Flying-spot-Abtasters», um Filme elektronisch übertragen
 zu können. Am  25.4.31 veranstalten Dr. S. Loewe und M. von Ardenne in 
den  Lichterfelder-Laboratorien eine Vorführung vor der Fachpresse. Bald
  darauf kann Loewe die Qualität der mechanischen Systeme erreichen und 
 übertreffen. Siehe [1-127f]. 1932 geht von Ardenne eigene Wege. 1933,  
ein Jahr vor den Mitbewerbern, erkennt Dr. Loewe die Notwendigkeit von  
Allstrom-Apparaten und bringt den 1-Kreis-Empfänger «Edda» auf den  
Markt. (Ganz so richtig ist das nicht: zumindest Emud kommt 1931 mit  
«Allstrom», EE). Zu der Zeit halten sich Wohnungen mit Gleich- bzw.  
Wechselstrom etwa die Waage und eine Familie, die umzieht, kann den  
transformatorlosen Apparat weiterverwenden. Der Apparat führt die  
Allstrom-Dreifachröhre WD33. Das Allstromkonzept führt Loewe auch für  
Mehrkreis- und Superhet-Empfänger mit den Röhren WG34, WG35 und WG36  
fort.
Auf dem in England bestellten Sattelschlepper mit
 einer  Fernseh-Sendereinrichtung steht anlässlich der Premiere vom Juli
 1934 in  London gross der Namenszug Radio A.G. D.S. Loewe. Das Regime 
in  Deutschland lässt die Firma jedoch bald in Löwe-Radio AG umtaufen 
und  1942 in Opta-Radio AG. Loewe wandert 1936 in die USA aus und 
gründet  dort die Loewe Radio Inc. Er hat 1938 aus dem Vorstand in 
Deutschland  auszuscheiden.
1941-44 fertigen die 
Opta-Betriebe ausschliesslich  Rüstungsgüter; Opta-Radios sind dann 
Fremdtypen [638966-19]. Man  gliedert Grassman in den Opta-Betrieb ein. 
Es entstehen  Auslagerungsbetriebe, z.B. in Oberlungwitz in Sachsen. In 
 Berlin-Weissensee entsteht während des Krieges ein Betrieb für 
Röhrenbau  [DRM94].
Noch im März 1945 verlagert das 
Unternehmen eine  wichtige Kriegsfertigung nach Küps bei Kronach. Dies 
ist die Keimzelle  der neuen Firma, denn 1948 kann S. Loewe seine  
Wiedergutmachungsansprüche durchsetzen und erhält das Sagen beim  
demontierten Hauptwerk in Berlin und der Auslagerungsstätte in Küps bei 
 Kronach. In Küps fabriziert Loewe ab 1946. Gemäss «Loewe-Story» gibt es
  vor November 1947 den «Kronach», wahrscheinlich 547W, in einer Auflage
  von zwei Geräten pro Tag. Ein getrenntes Werk in Düsseldorf-Heerdt  
offeriert als Firma Opta-Spezial GmbH von 1950 bis 1954  
Opta-Spezial-Radios [6-124]. Konsul Bruno Pieper wirkt als  
Generaldirektor.
Jedenfalls: Auf der Leipziger Messe 
von 1947  sind wieder Loewe-Entwicklungen zu sehen. Die Firma erzeugt 
1950 mit dem  «Optaphon» das erste deutsche Kassetten-Tonbandgerät. 1961
 ist Loewe  mit dem «Optacord 500», einer für den privaten Gebrauch 
konzipierten  Video-Anlage, führend beim Bildschirmtext und baut vor 
allem modernste  TV-Empfänger - ein Steckenpferd von Dr. S. Loewe. Er 
stirbt 1962.
Bis  1978 fertigt die Firma Radios in 
Berlin, löst diesen Betrieb aber auf.  Der Mitarbeiterbestand bei Loewe 
beträgt Ende der 80er Jahre ca. 1500.  Die Loewe Opta GmbH, Kronach, 
gehört in den 90er Jahren zu 51,9 % der  Management GBR (Gesellschaft 
leitender Mitarbeiter der GmbH) und zu 48,1  % zu Matsushita 
(Panasonic), wobei eine gute gegenseitige Befruchtung  für das 
Hauptprodukt, TV, zum Tragen kommt.
Loewe in Ostdeutschland:
Opta
  Leipzig, ab 1950 VEB Stern-Radio Leipzig genannt, geht 1952 im VEB  
Fernmeldewerk Leipzig auf. Die Radioproduktion endet 1950/51.
Nach
  dem Krieg versuchen Loewe-Mitarbeiter des Zweigwerkes in Oberlungwitz 
 in Sachsen, Maschinen und Vorrichtungen nach West-Berlin zu  
transportieren, doch die Sowjets verlangen, dass diese Güter in die  
Röhrenfabrik Berlin-Weissensee gelangen.
Dieser Loewe-Betrieb arbeitet mit der Röhrenfabrik in Berlin.
Loewe
  hat auch in anderen Ländern Produktionsstätten, so z.B. in  
Grossbritannien. Vor allem aber auch Handelsniederlassungen, wie Loewe  
Radio S.A., 3 quai de Willebroeck, Bruxelles (adress in 1932).
Literature
- 75 Jahre Loewe (1923-1998). Und die Zukunft geht weiter, author's edition 1998
 - Kilian J.L. Steiner: Ortsempfänger, Volksfernseher und Optaphon. Die Entwicklung der deutschen Radio- und Fernsehindustrie und das Unternehmen Loewe 1923-1962. Klartext Verlag, Essen 2005, ISBN 978-3-89861-492-4
 - Frank Keuper, Jürgen Kindervater, Heiko Dertinger, Andreas Heim (Hrsg.): Das Diktat der Markenführung. 11 Thesen zur nachhaltigen Markenführung und -implementierung. Mit einem umfassenden Fallbeispiel der Loewe AG, Gabler Fachverlage, Wiesbaden 2009, ISBN 978-3-8349-0852-0
 
References
- "Loewe klang 5 active speaker - Winner - Entertainment - German Design Award". www.german-design-award.com (in German). Retrieved 2017-09-13.
 - https://www.loewe.tv/de/legal/impressum
 - "German technology manufacturer Loewe declares bankruptcy"
 - Loewe AG: self-administration insolvency, a corporate press-release
 - "Investor consortium to rescue high-end TV maker Loewe". Deutsche Welle. Retrieved 17 January 2014.
 - "Münchener Investor übernimmt Loewe". Handelsblatt. Retrieved 6 January 2015.
 
Einzelnachweise:
loewe.tv: Impressum
Loewe bild 7 - Gold - Entertainment - German Design Award. Abgerufen am 9. Oktober 2017.
http://www.nordbayerischer-kurier.de/nachrichten/loewe-gliedert-markenrechte-aus_627658
 NDR: Manfred von Ardenne - Herr des Fernsehens. Abgerufen am 9. Oktober 2017.
 NDR: Manfred von Ardenne - Herr des Fernsehens. Abgerufen am 9. Oktober 2017.
 Loewe. Abgerufen am 13. September 2017 (englisch).
 Radioapparate. In: Berliner Adreßbuch, 1924, Teil 2, S. 475.
 Kilian J. L. Steiner: Die „Arisierung“ der Radioaktiengesellschaft D. S. Loewe in Berlin-Steglitz. In: Christof Biggeleben u. a.: „Arisierung“ in Berlin. Metropol Verlag, Berlin 2007, ISBN 978-3-938690-55-0, S. 226.
radiomuseum-bocket: Der OE333 Ortsempfänger. Abgerufen am 8. November 2016.
 radiomuseum.org: Ortsempfänger OE333. Abgerufen am 28. Januar 2016.
 radiomuseum.org: Röhre 3NF. Abgerufen am 28. Januar 2016.
 Die Loewe-Röhre 3NFB – Analyse einer Mehrfachröhre. (PDF; 170 kB)
 Kilian J. L. Steiner: Die „Arisierung“ der Radioaktiengesellschaft D. S. Loewe in Berlin-Steglitz. In: Christof Biggeleben u. a.: „Arisierung“ in Berlin. Metropol Verlag, Berlin 2007, ISBN 978-3-938690-55-0, S. 226.
Kilian J. L. Steiner: Die „Arisierung“ der Radioaktiengesellschaft D. S. Loewe in Berlin-Steglitz. In: Christof Biggeleben u. a.: „Arisierung“ in Berlin. Metropol Verlag, Berlin 2007, ISBN 978-3-938690-55-0, S. 226.
Joachim Hofer: Loewe will leben. In: Handelsblatt. 17. Juli 2013, S. 16 f.
Letzte Chance für Loewe. In: Handelsblatt. 17. Juli 2013, S. 1.
Loewe hofft auf den reichen Retter. Handelsblatt, 16. Juli 2013, abgerufen am 16. Juli 2013.
Loewe schwört trotz Krise auf Luxus-Geschäftsmodell. inFranken.de, 31. Juli 2013, abgerufen am 1. August 2013.
 Loewe: Partner kommt aus China. inFranken.de, 31. Juli 2013, abgerufen am 1. August 2013.
 Loewe: Kapitalmaßnahmen auf den Weg gebracht. (Nicht mehr online verfügbar.) Loewe AG, 7. August 2013, archiviert vom Original am 5. Oktober 2013; abgerufen am 1. September 2013. 
 Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.
Restrukturierungsprozess vor dem Abschluss. (Nicht mehr online verfügbar.) Loewe AG, 16. September 2013, archiviert vom Original am 26. September 2013; abgerufen am 17. September 2013. 
 
 Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.
 TV-Hersteller Loewe meldet Insolvenz an (1. Oktober 2013)
Loewe AG: Insolvenzverfahren in Eigenverwaltung bestätigt. (Memento des Originals vom 4. Oktober 2013 im Internet Archive) 
 Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis. Ad-hoc-Meldung auf: corporate.loewe.tv, 1. Oktober 2013.
 TV-Hersteller in der Krise: Loewe meldet Insolvenz an. auf: spiegel.de, 1. Oktober 2013.
 Bevollmächtigter gibt sich für Loewe optimistisch. FAZ.net. 13. Oktober 2013
 Insolventer TV-Hersteller: Loewe-Käufer machen Rückzieher. Spiegel Online, 24. Februar 2014, abgerufen am 24. Februar 2014.
Stargate Capital übernimmt Loewe, Handelsblatt, am 21. März 2014
 Neue Hoffnung für Loewe: Finanzinvestor übernimmt TV-Gerätebauer. In: Heise Online. 22. März 2014, abgerufen am 23. März 2014.
 Loewe findet neuen Investor. In: Süddeutsche Zeitung. 22. März 2014, abgerufen am 23. März 2014.
 Andreas Wilkens: Loewe-Rettung in trockenen Tüchern. 9. April 2014, abgerufen am 9. April 2014.
Loewe: 2016 noch kein Gewinn | Nordbayerischer Kurier. Abgerufen am 28. August 2017.
Loewe. Abgerufen am 9. Oktober 2017 (englisch).
Literature
- 75 Jahre Loewe (1923-1998). Und die Zukunft geht weiter, author's edition 1998
 - Kilian J.L. Steiner: Ortsempfänger, Volksfernseher und Optaphon. Die Entwicklung der deutschen Radio- und Fernsehindustrie und das Unternehmen Loewe 1923–1962. Klartext Verlag, Essen 2005, ISBN 978-3-89861-492-4
 - Frank Keuper, Jürgen Kindervater, Heiko Dertinger, Andreas Heim (Hrsg.): Das Diktat der Markenführung. 11 Thesen zur nachhaltigen Markenführung und -implementierung. Mit einem umfassenden Fallbeispiel der Loewe AG, Gabler Fachverlage, Wiesbaden 2009, ISBN 978-3-8349-0852-0
 








No comments:
Post a Comment
The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.
Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!
The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.
Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.
Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.
Your choice.........Live or DIE.
That indeed is where your liberty lies.
Note: Only a member of this blog may post a comment.