PHILIPS TDA5330T VHF, UHF and Hyperband mixer/oscillator for TV and VCR 3-band tuners
GENERAL DESCRIPTION
The TDA5330T is a monolithic integrated circuit that performs the band A, band B and band C mixer/oscillator functions
in TV and VCR tuners. This device gives the designer the capability to design an economical and physically small 3-band
tuner which will be capable of meeting the most stringent requirements e.g. FTZ or FCC. The tuner development time
can be drastically reduced by using this device.
Features
· Balanced mixer with a common emitter input for band A
· Amplitude-controlled oscillator for band A
· Balanced mixer with common base input for band B and C
· Balanced oscillator for band B and C
· Local oscillator buffer output for external prescaler
· SAW filter preamplifier with an output impedance of 100 W
· Bandgap voltage stabilizer for oscillator stability
· Electronic bandswitch
------------------------------------------------------------
PHILIPS TSA5511 1.3 GHz Bidirectional I2C-bus
FEATURES
· Complete 1.3 GHz single chip system
· Low power 5 V, 35 mA
· I2C-bus programming
· In-lock flag
· Varicap drive disable
· Low radiation
· Address selection for Picture-In-Picture (PIP), DBS
tuner (3 addresses)
· Analog-to-digital converter
· 8 bus controlled ports (5 for TSA5511T), 4 current
limited outputs (1 for TSA5511T), 4 open collector
outputs (bi-directional)
· Power-down flag
APPLICATIONS
· TV tuners
· VCR Tuners
GENERAL DESCRIPTION
The TSA5511 is a single chip PLL frequency synthesizer
designed for TV tuning systems. Control data is entered
via the I2C-bus; five serial bytes are required to address
the device, select the oscillator frequency, programme the
eight output ports and set the charge-pump current. Four
of these ports can also be used as input ports (three
general purpose I/O ports, one ADC). Digital information
concerning those ports can be read out of the PHILIPS TSA5511 on
the SDA line (one status byte) during a READ operation.
A flag is set when the loop is “in-lock” and is read during a
READ operation. The device has one fixed I2C-bus
address and 3 programmable addresses, programmed by
applying a specific voltage on Port 3. The phase
comparator operates at 7.8125 kHz when a 4 MHz crystal
is used.
controlled synthesizer
------------------------------------
PHILIPS TDA8341 Television IF amplifier and demodulator
DESCRIPTION
The TDA8340;Q and TDA8341;Q are integrated IF
amplifier and demodulator circuits for colour or black/white
television receivers, the TDA8340;Q is for application with
n-p-n tuners and the TDA8341;Q for p-n-p tuners.
The TDA8340;Q and TDA8341;Q are pin-compatible
successors with improved performance to types
TDA2540/2541;Q and TDA3540/3541;Q.
Features
· Full range gain-controlled wide-band IF amplifier
· Linear synchronous demodulator with excellent
intermodulation performance
· White spot inverter
· Wide-band video amplifier with noise protection
· AFC circuit with AFC on/off switching and
sample-and-hold function
· Low impedance AFC output
· AGC circuit with noise gating
· Tuner AGC output for n-p-n tuners (TDA8340) or p-n-p
tuners (TDA8341)
· External video switch for switching-off the video output
· Reduced sensitivity for high sound carriers
· Integrated filter to limit second harmonic IF signals
· Wide supply voltage range
· Requires few external components.
MIVAR 20L1T CHASSIS TV3492 TV3297/2 TEA2164 SWITCH MODE POWER SUPPLY PRIMARY CIRCUIT
.POSITIVE AND NEGATIVE OUTPUT CURRENT
UP TO 1.2AAND – 1.7A .A TWO LEVEL COLLECTOR CURRENT LIMITATION
.COMPLETE TURN OFF AFTER LONG DURATION
OVERLOADS .UNDER AND OVER VOLTAGELOCK-OUT .SOFT START BY PROGRESSIVE CURRENT
LIMITATION .DOUBLE PULSE SUPPRESSION .BURST MODE OPERATION UNDER STANDBY
CONDITIONS
DESCRIPTION:
In a master slave architecture, the TEA2164control
IC achieves the slave function. Primarily designed
for TV receivers and monitors applications, this
circuit provides an easy synchronizationand smart
solution for low power stand by operation.
Located at the primary side the TEA2164 Control
IC ensures :
- the power supply start-up
- the power supply control under stand-by conditions
- the process of the regulation signals sent by the
master circuit located at the secondary side
- directbasedrive of the bipolarswitching transistor
- the protection of the transistor and the power
supply under abnormal conditions.
II. GENERAL DESCRIPTION
In a master sla
ve architecture, the TEA2164 Control
IC, located at the primary side of an off line
power supply achievesthe slave function ;whereas
the master circuit is located at the secondary side.
The link between both circuits is realized by a small
pulse transformer.
In the operation of the master-slave architecture,
four majors cases must be considered :
- normal operating
- stand-bymode
- power supply start-up
- abnormal conditions : off load, short circuit, ...
II.1. Normal Operating (master slave mode)
In this configuration, the master circuit generatesa
pulse widthmodulatedsignal issued from themonitoring
of the output voltage which needs the best
accuracy (in TV applications : the horizontal deflection
stagesupplyvoltage).Themaster circuit power
supply can be supplied by another output.
The PWM signal are sent towards the primary side
through small differentiating transformer. For the
TEA2164 positive pulses are transistor switchingon
commands ; and negative pulses are transistor
switching-offcommands (Figure 4). In this configuration,
only by synchronizing the master oscillator,
the switching transistor may be synchronized with
an external signal.
II.2. Stand-by Mode
In this configuration the master circuit no longer
sends PWM signals, the structure is not synchronized
; and the TEA2164 operates in burst mode.
The average power consumption at the secondary
side may be very low 1W 3 P 3 6W (as it is
consumed in TV set during stand by).
By action on the maximum duty cycle control, a
primary loop maintains a semi-regulation of the
output voltages.Voltage on feed-back is applied on
Pin 9.
Burst period is externally programmedby capacitor
C1.
II.3. Power Supply Start-up
After the mains have been switched-on, the VCC
storage capacitor of the TEA2164 is charged
through a high value resistor connected to the
rectified high voltage.When Vcc reaches VCC start
threshold (9V typ), the TEA2164 starts operatingin
burst mode. Since available output power is low in
burst mode the output power consumption must
remain low before complete setting-up of output
voltage. In TV application it can be achieved by
maintaining the TV in stand-by mode during startup.
Overvoltage Protection
When VCC exceeds VCC max, an internal flip-flop
stops output conduction signals. The circuit will
start again after the capacitor C1 discharge ; it
means : after loss of synchronization or after Vcc
stop crossing (Figure 7).
In flyback converters, this function protects the
power supply against output voltage runaway.
MIVAR 20L1T CHASSIS TV3492 Synchronized switch-mode power supply:
In a switch mode power supply, a first switching transistor is couple
d
to a primary winding of an isolation transformer. A second switching
transistor periodically applies a low impedance across a second winding
of the transformer that is coupled to an oscillator for synchronizing
the oscillator to the horizontal frequency. A third winding of the
transformer is coupled via a switching diode to a capacitor of a control
circuit for developing a DC control voltage in the capacitor that
varies in accordance with a supply voltage B+. The control voltage is
applied via the transformer to a pulse width modulator that is
responsive to the oscillator output signal for producing a pulse-width
modulated control signal. The control signal is applied to a mains
coupled chopper transistor for generating and regulating the supply
voltage B+ in accordance with the pulse width modulation of the control
signal.
Description:
The invention relates to switch-mode power supplies.
So
me
television receivers have signal terminals for receiving, for example,
external video input signals such as R, G and B input signals, that are
to be developed relative to the common conductor of the receiver. Such
signal terminals and the receiver common conductor may be coupled to
corresponding signal terminals and common conductors of external
devices, such as, for example, a VCR or a teletext decoder.
To
simplify the coupling of signals between the external devices and the
television receiver, the common conductors of the receiver and of the
external devices are connected together so that all are at the same
potential. The signal lines of each external device are coupled to the
corresponding signal terminals of the receiver. In such an arrangement,
the common conductor of each device, such as of the television receiver,
may be held "floating", or conductively isolated, relative to the
corresponding AC mains supply source that energizes the device. When the
common conductor is held floating, a user touching a terminal that is
at the potential of the common conductor will not suffer an electrical
shock.
Therefore, it may be desirable to isolate the
common conductor, or ground, of, for example, the television receiver
from the potentials of the terminals of the AC mains supply source that
provide power to the television receiver. Such isolation is typically
achieved by a transformer. The isolated common conductor is sometimes
referred to as a "cold" ground conductor.
In a typical switch mode power
supply
(SMPS) of a television receiver the AC mains supply voltage is coupled,
for example, directly, and without using transformer coupling, to a
bridge rectifier. An unregulated direct current (DC) input supply
voltage is produced that is, for example, referenced to a common
conductor, referred to as "hot" ground, and that is conductively
isolated from the cold ground conductor. A pulse width modulator
controls the duty cycle of a chopper transistor switch that applies the
unregulated supply voltage across a primary winding of an isolating
flyback transformer. A flyback voltage at a frequency that is determined
by the modulator is developed at a secondary winding of the transformer
and is rectified to produce a DC output supply voltage such as a
voltage B+ that energizes a horizontal deflection circuit of the
television receiver. The primary winding of the flyback transformer is,
for example, conductively coupled to the hot ground conductor. The
secondary winding of the flyback transformer and voltage B+ may be
conductively isolated from the hot ground conductor by the hot-cold
barrier formed by the transformer.
It may be desirable
to synchronize the operation of the chopper transistor to horizontal
scanning frequency for preventing the occurrence of an objectionable
visual pattern in an image displayed in a display of the television
receiver.
It
may be further desirable to couple a horizontal synchronizing signal
that is referenced to the cold ground to the pulse-width modulator that
is referenced to the hot ground such that isolation is maintained.
A
synchronized switch mode power supply, embodying an aspect of the
invention, includes a transfromer having first and second windings. A
first switching arrangement is coupled to the first winding for
generating a first switching current in the first winding to
periodically energize the second winding. A source of a synchronizing
input signal at a frequency that is related to a deflection frequency is
provided. A second switching arrangement responsive to the input signal
and coupled to the second winding periodically applies a low impedance
across the energized second winding that by transformer action produces a
substantial increase in the first switching current. A periodic first
control signal is generated. The increase in the first switching current
is sensed to synchronize the first control signal to the input signal.
An output supply voltage is generated from an input supply voltage in
accordance with the first control signal.
TEA2164/TEA2165
EXTENDED OVERLOAD PROTECTION CIRCUIT FOR A SWITCH MODE POWER SUPPLY
HAVING CYCLE DETECTOR, MEMORY AND FLIP-FLOP INHIBITION:
A
protection device for switch mode power supplies includes a main switch
controlled by the output signals of a flip-flop. The flip-flop input
receives regulation control signals. A first protection circuit supplies
priority signals with respect to the regulation signals on the reset
input of the flip-flop. The protection device also includes a cycle
detector of the first protection circuit, a memory for accumulating at
each cycle a value proportional to the duration between a signal of the
detector and the set signal associated with the regulation cycle of the
following cycle, and inhibiting of the flip-flop when the memory has
accumulated a signal higher than a predetermined threshold.
Inventors:Maige, Philippe (Syssinet Pariset, FR) Thomson-csf (Paris, FR)
1.
A device for protection against long duration overloading in switch
mode power supplies comprising a main switch controlled by output
signals from a first flip-flop, the set and reset inputs of which
receive regulation control signals, a first protection circuit supplying
on the reset input priority signals with respect to the regulation
signals when the current in the main switch exceeds a predetermined
threshold, further comprising a second protection circuit itself
comprising:
means for detecting cycles for which the first
protection circuit is active and interrupts the on state of the main
switch prior to the arrival of the order for the off state of the
regulation signal;
memorization means accumulating at each cycle a
value proportional to the duration between a signal from the detection
means and the set signal associated with the regulation signal of the
following cycle; and
inhibition means for inhibiting the set
input of the flip-flop when the memorization means has accumulated a
signal higher than a predetermined threshold;
wherein the means
for detecting includes a second flip-flop, a third flip-flop and an AND
gate, the second flip-flop receiving at its reset input the starting
output of the regulation signal, the set input of the second flip-flop
receiving the output of the AND gate and the output of the second
flip-flop controlling the memorization means; the third flip-flop having
its set input connected to the reset input of the second flip-flop, the
reset input of the third flip-flop connected to the reset regulation
signal and the output of the third flip-flop connected to a first input
of the AND gate; the second input of the AND gate being connected to the
output of the first protection circuit.
2. A device for
protection according to claim 1, wherein the memorization means comprise
a capacitor permanently discharged by a discharging means and
temporarily charged by a charging means only when the detection means
supplies a signal.
3. A device for protection according to claim
2, wherein the charge and discharge means are current supplies and the
charge current supply is connected to the capacitor through a controlled
switch actuated by the output of the second flip-flop of the detection
means.
4. A device for protection according to claim 1, wherein
the inhibition means comprise a comparator comparing the signal
accumulated by the memorization means with a reference value, the output
signal of this comparator inhibiting the set input of the first
flip-flop when the memorized signal becomes higher than a reference
value.
5. A device for protection according to claim 4, wherein
the output of said comparator is connected to the set input of a fourth
flip-flop of which the output is connected to the set input of the first
flip-flop through an AND gate of which the other input receives the
sginal for triggering the regulation signal.
6. A device for
protection according to claim 5, wherein the AND gate connected to the
validation input of the first flip-flop receives other inhibition
signals issuing from other switch mode power circuits, such as automatic
starting control circuits.
Description:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention concerns stabilized power supplies known as "switch mode power supplies".
A
switch mode supply functions in the following manner: a primary
transformer winding receives a current that is, for example, issuing
from a rectifying bridge receiving power from the alternating power
mains. The current in the transformer is chopped by a switch (for
example a power transistor) placed in series with the primary winding.
A
control circuit of the transistor establishes periodic square pulses to
turn on the transistor. During the square pulse period current passage
is authorized; outside of this square pulse period current passage is
prohibited.
On one (or several) secondary winding(s) of the
transformer, an alternating voltage is thus received. This voltage is
rectified and filtered in order to produce a direct voltage that is the
output direct voltage of the switch mode supply.
In order to
stabilize the value of this direct voltage, the duty cycle of the switch
is modified, i.e. the ratio between the conduction duration and the
blocking duration in a chopped period.
FIG. 1 represents by way
of example a switch mode power structure manufactured by the applicant
in which two integrated circuits are used. One of the circuits, CI1,
acts to control the base of a power switching transistor Tp for applying
thereto periodic control signals for putting under conduction and
blocking control. This base control circuit CI1 is placed on the side of
the primary winding EP of the transformer TA for reasons which will
become apparent from the description given herein-below. The other
integrated circuit, regulation circuit CI2, is on the contrary placed on
the side of the secondary winding ES1 and is used to examine the output
voltage Vs of the power supply in order to produce regulation signals
that it transmits to the first integrated circuit through a small
transformer TX. The first integrated circuit CI1 uses these regulation
signals to modify the duty cycle of conduction of the switching
transistor Tp and thus of adjusting the output voltage Vs of the power
supply.
FIG.
1 shows the line of the public electric distribution mains under
reference 10 (local supply circuit or mains at 110 or 220 volts, 50 or
60 hertz). This line is connected through a filter 12 to the input of a
rectifying bridge 14, the output of which is connected on the one hand
to a primary electric mass, represented throughout by a black triangle
pointing downwards, and on the other hand to one end of the primary
winding EP of the supply transformer TA.
A filtering capacitor 16
is placed in parallel on the outputs of the rectifying bridge 14. The
other end of the primary winding is connected to the collector of the
switching transistor Tp, the emitter of which is connected to the
primary mass through a small current measuring resistance 18.
The
transformer is provided with several secondary windings that are
preferably galvanically insulated from the mains and connected for
example to a secondary electric mass galvanically insulated from the
primary mass.
In the present description, each of the secondary
windings has one end connected to the secondary mass. The other end
supplies a respective low-pass filtering capacitor through a respective
rectifying diode.
Reference in the following description will be
made to a single secondary winding ES1, connected by a diode 20 to a
capacitor 22. The direct output voltage of the switch mode supply is the
voltage Vs at the terminals of the capacitor 22; but it is well
understood that other direct output voltages can be obtained at the
terminals of the other filtering capacitors connected to the secondary
windings. These output voltages constitute stabilized power supplies for
utilization circuits (not represented). By way of example, a secondary
winding ES2 supplies a stabilized power voltage of several volts for the
regulation integrated circuit CI2 to which reference was made
herein-above. It is thus checked that the circuit is not powered and
therefore cannot supply signals as long as the switching does not
function.
The same is true a priori for the base control
integrated circuit CI1 of the power transistor Tp, which circuit is
powered by a stabilized voltage supplied from a secondary winding ES3,
from a diode 24 and from a capacitor 26 (it will be noted that this
winding, although being a secondary winding is connected to the primary
ground and not to the secondary mass, this for the very simple reason
that the integrated circuit CI1 is necessarily galvanically connected to
the primary).
However, as it is necessary to ensure starting of
the chopped power supply, it has been foreseen that the power terminal
28 of the integrated circuit CI1 is also directly connected to the mains
through a high resistance 30 and a diode 32; this is possible since the
integrated circuit CI1 is connected to the primary ground; it is not
possible for the circuit CI2 which must remain galvanically insulated
from the mains. Once the switch mode power supply functions normally,
the stabilized direct voltage issuing from the winding ES3 and from the
diode 24 has priority over the voltage issuing from the mains and from
the diode 32; this diode 32 is blocked and the direct power supply
through the mains no longer intervenes after the initial starting phase.
The role of the integrated circuits CI1 and CI2 will now be defined.
The
regulation circuit CI2 receives from a divider bridge 34, placed at the
terminals of the capacitor 22, i.e. at the output of the stabilized
power supply, data as to the value of the voltage to be stabilized Vs.
This
data is compared with a desired value and applied to a pulse width
modulator that establishes periodic square pulses having variable width
in function of the value of the output voltage Vs; the lower is Vs the
larger will be the width of the square pulses.
The square pulses
are established at the switching frequency of the switch mode supply.
This frequency is thus established on the side of the secondary of the
circuit; it is generated either inside the circuit CI2, or outside in a
circuit (not shown) in the form of a saw-tooth shaped voltage at the
selected switching frequency. This saw-tooth voltage is used in a manner
known per se to perform the width modulation.
The variable width
square pulses, at the switching frequency, are applied to a primary
winding 36 of a small transformer TX, the secondary winding, 38, of
which is galvanically insulated from the primary, supplies positive and
negative pulses to the rising and descending edges, respectively of the
variable width square pulses.
It is these position and frequency
pulses determined by the regulation circuit CI2, which constitute
regulation signals applied to an input 40 of the base control circuit
CI1.
The transformer TX is constituted by several coil turns
wound on a ferrite rod, the turns of the primary and the turns of the
secondary being sufficiently spaced apart from one another to respect
the galvanic insulation standards between primary circuits and secondary
circuits of the switch mode supply.
The base control integrated
circuit CI1 comprises various inputs among which have been mentioned
herein-above a power input 28 and a regulation signal input 40; a
current measuring input 44 connected to the current measuring resistor
18; and an inhibition input allowing to check the magnetization state of
a transformer. Furthermore, inputs can be provided to connect the
elements (resistors, capacitors) that should form part of the integrated
circuit itself but which for technological reasons (of bulk) or for
practical reasons (possibilities of adjustment by the user) are
externally mounted.
The integrated circuit CI1 furthermore
comprises an output 46 which is intended to be connected by a direct
galvanic connection to the base of the power transistor Tp. This output
supplies square pulses for bringing the transistor Tp to the on or off
state.
FIG. 2 represents partially the general structure of the integrated circuit CI1.
The
output 46 of the circuit, intended for the base control of the
transistor Tp, is the output of a push-pull amplification stage
designated by the reference 48, this stage preferably comprising two
separated amplifiers one of which receives square pulses which are
inverted and delayed by several microseconds for to producing to the on
state. Such amplifiers are well known.
The signals for switching
to the on stae are issued from a logic flip-flop 50 having a set input
52 and a reset input 54. The set input triggers the on state of the
power transistor. The reset input triggers the off state.
The set
input 52(S) receives the pulses that pass through an AND gate 58, so
that the triggering of the on state only occurs when several conditions
are simultaneously satisfied; if a single condition is not satisfied,
this is sufficient to inhibit the triggering of the on state.
The
reset input 54(R) receives the pulses which pass through an OR gate 60,
so that the interruption of the on state (after triggering of the on
state) occurs once a halt signal is present on one of the inputs of this
gate.
On the diagram of FIG. 2, the AND gate 58 has three
inputs. One of these inputs receives periodic pulses issuing from an
output 62 of a high frequency oscillator 64; the other inputs act to
inhibit the transmission of these pulses.
The oscillator defines
the switching period of the power supply (20 kilohertz for example). In
normal operating state the oscillator 64 is synchronized by the
regulation signals. In starting state it is self-oscillating at a free
frequency defined by the values of a resistor Ro and of a capacitor Co
outside the integrated circuit CI1 and respectively connected to an
access terminal 66 and an access terminal 68. The free frequency Fo is
as a rule slightly lower than the normal switching frequency.
The
oscillator 64 is a relaxation oscillator that produces on an output 70 a
saw-tooth, the reset to zero of which is set by the appearance of a
positive pulse arriving at the terminal 40. This is the reason why the
oscillator 64 is represented with an input connected to an output 72 of a
separation and shaping circuit 74 that receives the regulation signals
from the terminal 40 and shapes them by separating the positive pulses
from the negative pulses. The shaping circuit 74 has two outputs: 72 for
the positive pulses, 76 for the negative pulses (the notation of
positive pulse and negative pulse will be retained in order to
distinguish the triggering pulses for the on state and the triggering
pulses for the off state even if the shaping circuit establishes pulses
of a single sign on its two outputs 72 and 76).
The oscillator 64
has two outputs; an output 70 supplying a saw-tooth signal and an
output 62 supplying a short pulse when the saw-tooth is reset to zero.
A pulse width modulator 78 is connected on the one
hand to the output 70 of the oscillator and on the other hand to an
adjustable reference voltage through a resistor R1 outside the
integrated circuit and connected to an access terminal 80 to the
circuit. The modulator 78 supplies periodic square pulses synchronized
with the oscillator signals, these square pulses defining a maximal
duration of the on state Tmax beyond which the off state of the power
transistor must be triggered in any case as a matter of security. These
square pulses of modulator 78 are applied to an input of the OR gate 60.
The duration Tmax is adjustable through the external resistor R1.
The
elements that have been described herein-above ensure the essential of
the operating at normal condition of the integrated circuit CI1. The
following elements are more specifically provided for controlling the
anomalous operating or the starting of the power supply.
A very
low frequency oscillator 82 is connected to an external capacitor C2
through an access terminal 86. This external capacitor adjusts the very
low oscillation frequency. The frequency can be 1 hertz, for example.
The
oscillator 82 is a relaxation oscillator supplying a saw-tooth signal
which is applied on the one hand to a threshold comparator 88 which
establishes periodic square pulses which are synchronized on the
saw-tooth at a low frequency of the oscillator. These square pulses have
a brief duration compared to the saw-tooth period. This duration is
fixed by the threshold of the comparator 88. It can be for example of
10% of the period. It must be long with respect to the free oscillation
period of the high frequency oscillator 64 so that a burst of numerous
pulses of the high frequency oscillator can be emitted and utilized
during this 10% of the period at very low frequency. This burst defines
an attempt at starting during the first part of a starting cycle. It is
followed by a pause during the remainder of the period, i.e. during the
remaining 90% of the period.
The oscillator 82 only functions for
the starting. It is inhibited when the regulation signals appear on the
terminal 40 and indicate that the switch mode supply is functioning.
This is the reason why an inhibition control of this oscillator has been
represented, connected to the output 72 of the shaping circuit 74
through a flip-flop 89 which changes its condition under the effect of
the pulses appearing at the output 72. It is returned to its initial
condition by the output 62 of the oscillator 64 when there are no more
pulses on the output 71.
The saw-tooth signals of the oscillator
at very low frequency are furthermore transmitted to a circuit 90 for
producing a variable threshold whose function is to establish a
threshold signal (current or voltage) having a first value Vs1 in normal
operating condition, and a cyclically variable threshold between the
first value and a second value at starting condition.
The
threshold signal established by the circuit 90 is applied to an input of
a comparator 92, the other input of which is connected to the terminal
44 already mentioned, in order to receive on this input a signal that is
representative of the amplitude of the current flowing through the
power switching device. The output of the comparator 92 is applied to an
input of the OR gate 60. It thus triggers the off state of the power
transistor Tp, after an on state firing, the off state occuring, when
exceeding the threshold (fixed or variable) defined by the circuit 90
has been detected.
Another threshold comparator 94 has an input
connected to the current measuring terminal 44 while another input
receives a signal representing a third threshold value Vs3. The third
value Vs3 corresponds to a current in the switch which is higher than
the first value vs1 defined by the circuit 90. The output of the
comparator 94 is connected through a latch 96 to an input of the AND
gate 58 whereby if the current in the power switch exceeds the third
threshold value Vs3, an interruption of the on state of the transistor
Tp is not triggered (this interruption is triggered by the comparator
92) but an inhibition of any firing of the transistor. This inhibition
lasts until the flip-flop 96 is reset to its initial state corresponding
to a normal operating.
As a rule, this return will only occur
when the integrated circuit CI1 will have ceased to be normally supplied
with power and will be again set under voltage. For example, the return
of the latch 96 occurs through a hysteresis threshold comparator 98
which compares one fraction of the power supply voltage Vcc of the
circuit (drawn off from the terminal 28) with a reference value and
which resets the latch during the first passage of Vcc above this
reference after a drop of Vcc below another reference value that is
lower than the first one (hysteresis).
Moreover, it can be
specified that the output of the flip-flop 89 (which detects the
presence of regulation signals on the terminal 40 thus the normal
operating of the power supply) is connected to an input of an OR gate
100 which receives on another input the output of the comparator 88 so
that the output of the comparator 88 ceases to inhibit the firing of the
transistor Tp (inhibition during 90% of the very low frequency cycles)
once the operating of the power circuit becomes normal.
OBJECT OF THE INVENTION
Therefore,
in the device previously manufactured by the applicant and described in
detail herein-above, particular procedures for the starting phases and
particular protective procedures in the case of functioning incidents
are foreseen.
The present invention aims at further improving the
operating safety by detecting operating deficiencies over a longer
period of time than was the case with circuits of the prior art.
Although the invention presents a novel and distinct contribution with
respect to the process of the prior art, the prior device has been
described in full detail herein-above in order to render apparent the
numerous restrictions which are imposed during production of a novel
safety device which must take into account all the possible types of
operating foreseen in an already existing circuit without introducing
deficiencies or blockages in the normal operating of the circuit in its
differnt modes. Consequently, any novel contribution to a complex
structure such as that described herein-above requires numerous
selections and very numerous attempts between various solutions that
could appear a priori as simple must be carried out.
SUMMARY OF THE INVENTION
Therefore,
the present invention provides a device for protection against extended
overloading in switch mode power supplies comprising a main switch
controlled by output signals from a flip-flop of which the inputs for
setting to 1 and for resetting to zero receive regulation control
signals, a first protection circuit supplying on the input for resetting
to zero signals which have priority with respect to the regulation
signals when the current in the main switch exceeds a predetermined
threshold, further comprising a second protection circuit itself
comprising:
means for detecting cycles for which the first
protection circuit operates and interrupts the on state of the main
switch prior to the arrival of the switching off order of the regulation
signal;
memorization means accumulating at each cycle a value
proportional to the duration between a signal of the detection means and
the setting to 1 signal associated to the regulation signal of the
following cycle; and
inhibition means for inhibiting the set
input of the flip-flop when the memorization means have accumulated a
signal higher than a predetermined threshold.
According to one
embodiment of the present invention, the detection means comprise a
second flip-flop, a third flip-flop and an AND gate:
the second
flip-flop receiving at its reset input the output for starting the
regulation, the set input of this flip-flop receiving the output of the
AND gate and the output of this flip-flop controlling the memorization
means;
the third flip-flop having its set input connected to the
reset input of the second flip-flop, its reset input connected to the
reset signal of the regulation signal, and its output connected to a
first input of the AND gate,
the second input of the AND gate being connected to the output of the first protection circuit.
According
to one embodiment of the present invention, the memorization means
comprise a capacitor permanently discharged by discharging means and
temporarily charged by charging means only when the detection circuit
supplies a signal.
According to another embodiment of the
invention, the inhibition means comprise a comparator comparing the
signal accumulated by the memorization means with a reference value, the
output signal of this comparator inhibiting the set input of the
flip-flop when the memorized signal becomes higher than a reference
value.
BRIEF DESCRIPTION OF THE DRAWING
These objects,
features and advantages and others of the present invention will become
apparent from the following embodiment given by way of non-limitative
illustration with reference to the appended drawing in which:
FIGS. 1 and 2 illustrate a switch mode power supply according to the prior art and have been described herein-above;
FIG.
3 is a simplified representation of a protection circuit against the
overloading of a switch mode power supply according to the prior art;
FIG.
4 illustrates the protection circuit against overloads of long duration
according to the present invention for switch mode power supplies; and
FIGS. 5-a to to 5-b are time charts intended to illustrates the functioning of the circuits represented in FIGS. 3 and 4.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG.
3 once again represents in a simplified manner the essential components
of the circuit represented in FIG. 2 constituting a protection circuit
against the excess currents in the main transistor Tp. The on state in
the transistor Tp is normally controlled by a signal available on a
terminal 40, resulting from a pulse width modulation circuit which
controls a flip-flop 50 through a shaping circuit 74. The flip-flop 50
energizes the base of the power transistor Tp through a preamplification
circuit (driver) 48 and an access terminal 46. When the current in the
power transistor exceeds a given threshold, the voltage at the terminals
of a resistor 18 available at the terminal 44 is compared with a
threshold voltage Vs by a comparator 92 and, should this voltage exceed
the threshold, the reset input R of the flip-flop 50 is energized
through an OR gate 60, the other input of which receives an output
signal from the shaping circuit 74.
This protection device
effectively protects the switch Tp against a current overloading but
does not always allow good protection of the power supply, for example
in the case of long duration overloading. In fact, there is no
protection against excessive heating of the transformer TA or of the
rectifying diodes 20 (cf. FIG. 1) or of other components of the circuit
connected to the secondary of the main transformer and it is generally
necessary to over-size these components in order to take into account
long duration overloadings which could occur as a result, for example,
of short-circuiting on the secondary winding.
The invention which
will be described herein-below with respect to FIGS. 4 and 5 concerns a
device which, added to the conventional current limitation circuit
described herein-above, provokes the total and definitive shut down of
the power supply in the case of long duration functioning of the current
limitation system. Expensive over-sizing of certain components is thus
avoided and the operating safety of the power supply is as a whole
increased.
The restarting of the power supply can be obtained by
the momentary setting out of voltage of the system or at least of the
device concerned.
As represented on FIG. 4, the present invention
comprises a circuit 100 for detecting the operating of an overload
circuit, comprising flip-flops FF2 and FF3 and an AND gate 101, and a
circuit 102 for memorization and inhibition of the switch mode power
supply. The circuit 102 operates the above described base current
control flip-flop 50 through an AND gate 58.
The memorization and
inhibition circuit 102 comprises a capacitor 103, a discharge system
constituted by a current supply 104 functioning permanently, a system
for charging this capacitor constituted by a current supply 105
controlled in all or nothing by a switch 107 receiving the output of the
detection circuit 100. When the detection circuit 100 indicates that
the current limitation circuit in the power switch Tp does not function,
only the discharge system 104 functions and the capacitor 103 remains
discharged. When the current limitation system 100 is energized, the
charge system (current supply 105) is activated. The ratio between the
discharge current and the charge current is selected so that overall the
capacitor 103 is charged. When the voltage at the terminals of the
capacitor reaches a determined value, fixed by a comparator 106, a
flip-flop FF4 is triggered which definitively inhibits the on state of
the switch Tp.
In the circuit 100 for detecting the functioning
of the current limitation circuit, the flip-flop FF2 has its reset input
R2 connected to the output 72 of the form shaping circuit 74, its set
input S2 connected to the output of the AND gate 101 and its output Q2
connected to the control terminal of the switch 107 of the circuit 102.
The second flip-flop FF3 has its set input S3 connected to the output 72
of the shaping circuit 74, its reset input R3 connected to the output
76 of this shaping circuit and its output Q3 connected to a first input
of the AND gate 101 of which the other input is connected to the output
of the comparator 92 detecting the excess currents in the power
transistor Tp.
FIG.
5 indicates a time chart of the signals appearing in different points
of the circuit in four particular operating cases. In FIG. 5
the
line a indicates the signals present at the terminal 40 or more exactly
the control signals from which result the signals at the terminal 40
following the action of the insulating transformer TX (cf. FIG. 1).
Those signals correspond to more or less long square pulses according to
the error signal detected;
the line b indicates the signal
present at the output 76 of the shaping circuit 74, normally provoking
the setting to 1 of the flip-flop 50;
the line c indicates the signal at the output 76 of the shaping circuit 74, normally controlling the reset of the flip-flop 50;
the line d indicates the signal at the output Q2 of the flip-flop FF2 controlling the switch 107;
the line e indicates the signal Q3 at the output of the flip-flop FF3;
the
line f indicates the signal at the input R of the flip-flop 50, i.e.
the signal at the output of the OR gate 60. This signal corresponds to
the rising edge of the pulse at the output 76 of the shaping circuit 74
or at the output of the comparator 92;
the line g indicates the
current in the power transistor that corresponds to the signal present
on the input 44 of the comparator 92;
the line h indicates the signal at the output of the comparator.
The operating of this circuit in four possible functioning modes will now be studied.
1. Normal operating without overloading
No
signal is supplied to the output of the comparator 92 and it is the
outputs 72 and 76 (signals of lines b and c) that control the inputs S
and R of the flip-flop 50. The circuit 102 not receiving any output
signal from the circuit 100 supplies to the output Q4 of the flip-flop
FF4 a high level signal and the AND gate 58 is validated thereby
allowing the output signal 72 of the shaping circuit 74 to reach the
input S of the flip-flop 50.
2. Functioning in lower overloading limit
As shown by line g of FIG. 5, it concerns the case where the
reset pulse of the flip-flop 50 tends to bring the switch Tp at the off
state prior to an overloading detection (current in Tp higher than I
Max) occuring, but where an overloading occurs between the off state
order and the effective off state of the power transistor. This delay is
due to the blocking period or storing time ts of the switch which is
not nil in particular in the case where a high voltage bipolar
transistor is utilized. The current limitation comparator 92 is thus
energized. However, the output signal of the comparator 92 does not
reach the flip-flop FF2 to supply an output signal Q2 since the
flip-flop FF3 has been previously reset by the signal 76 and blocks the
AND gate 101. the flip-flop FF2 thus remains at zero and as in the
preceding case, the circuit 102 is not energized and the regulation
circuit continues to operate normally. It would in fact be inconvenient
to shut down the operating of the chopping power supply in this
particular case.
3. Operating in moderate overloading
As
in the previous case, it is the output signal 72 of the shaping circuit
74 that provokes the bringing to the on state of the power transistor
but, as shown by line g, the overload level of the power transistor Tp
is reached prior to the normal off state signal of the transistor (line
c) occuring. In this case, the comparator 92 supplies a signal which is
transmitted through AND gate 101 enabled by the flip-flop FF3 to the
flip-flop Q2 which is set to 1. The switch 107 of the memorization and
inhibition circuit 102 is thus closed and the charge process of the
capacitor 103 begins.
It will be noted that the signal Q2 (line
d) remains at high level until the triggering pulse of the following
cycle (bringing of the output 72 at high level). Therefore, the earlier
overloading arrives in the cycle, the more the signal Q2 is present
during a long period. After several functioning cycles, the voltage
accumulated on the capacitor 103 will be higher than the reference
voltage VRef applied to the second terminal of the comparator 106.
Subsequently, the flip-flop FF4 supplies a signal at low level to its
output Q4 and the AND gate 58 invalidates the input S of the flip-flop
50. This occurs only if the overloading lasts over a certain number of
cycles. Thus, the functioning of the switch mode power supply is
definitively brought to the off state indicating an operating failure of
the device, for example a short-circuiting of a secondary winding of
the transformer TA (cf. FIG. 1). To start up again the switch mode power
supply, it is necessary to apply a new signal to the input R4 of the
flip-flop FF4. This input can for example be connected to an
initialization device when the whole of the switch mode power supply is
powered.
4. Operating under strong overloading
This
operating mode is illustrated on the right side of FIG. 5. It is as a
whole identical to the case of a moderate overloading but it has been
represented only to show the elongation of the pulses Q2 when the
overloading occurs very early in an operating cycle of the switch mode
power supply.
The various advantages of the present invention
thus become apparent. On the one hand; the operating delay time is
easily programmable by means of a single component, for example the
value of the capacity of the capacitor 103. On the other hand,
automatically, due to the elongation of the pulse Q2 when the
overloading occurs early in a cycle, the action delay is modulated in
function of the intensity of the overloading. Therefore, the greater is
the overloading, the shorter is the operating delay time.
Another
advantage lies in the perfect simultaneity of the triggering of the
timing of the device according to the invention and of the operating of
the conventional limitation of the current as described in the
description of the prior art. This results in very good operating
security. The risk of spurious triggering of the device close to the
lower current limit is thus prevented.
On the other hand, as has
been seen, the device according to the invention operates well with a
power switch constituted by a bipolar transistor in which the storage
time is relatively long, but this circuit is perfectly adaptable to a
switch of which the off state delay tends towards zero such as a MOS
power transistor.
Similarly, accordng to another advantage of the
invention, this circuit is perfectly compatible with the other
protection and starting assistance circuits which utilized the circuits
according
to the prior art. Indeed, it will be noted that the components of the
circuit according to the invention are perfectly compatible with the
components of the current limitation circuit described herein-above.
Furthermore, the AND gate 58 that has the circuit at the off state when
it is not operating bears the same reference as the AND gate 58
described in relation with FIG. 2. In fact, it can be the same gate
comprising simply a supplementary input. Herein lies another advantage
of the invention, i.e. it is perfectly compatible with the automatic
starting circuit described in relation with FIGS. 1 and 2. In this
automatic starting mode, which may be called burst mode, it is also
desired to be able to detect and stop the power supply in the case of
overloading. However, as mentioned herein-above in the initial burst
method, the circuit operates only with a duty cycle of about 10%. In
this case, the capacitor 103 risks to be insufficiently charged during
this brief action period and to discharge during the 90% of
non-operating. To overcome this, it is foreseen according to the present
invention to inhibit the discharging of the capacitor 103 by providing a
controlled switch (not represented) in series with the discharge
current supply 104 and energized by a signal indicative of the fact that
operating is taking place in the burst mode. Therefore, in the case of
overloading in the burst method, the capacitor is charged a little at
each burst and retains its voltage between the bursts. It is therefore
possible to reach the voltage VRef after a certain number of burst.
THOMSON TEA2162 / TEA2164 / TEA2165 WORKING OF A CHOPPED POWER SUPPLY CONTROL CIRCUIT WITH AUTOMATIC START-UP:
I
nventors: De Sartre, Jean (Meylan, FR) ; Thomson-csf (Paris, FR)
The invention provides an integrated chopped power supply
control circuit intended to receive regulation control signals and to
produce square waves for enabling a switch. It comprises automatic start
up means producing, in the absence of regulation signals, bursts of
start up attempts with a very low recurrence period. Each burst lasts
about 10% of this period and is followed by a rest time.
1. A chopped power supply control circuit intended to receive periodic
regulation control signals and to produce periodic square waves enabling
a main switch of the power supply, the square waves having a variable
width as a function of their regulation control signals, which circuit
comprises:
means for detecting the presence of regulation control signals,
a
very low frequency oscillator controlled by the detection means, this
oscillator producing, in the absence of regulation signals, a succession
of very low frequency periodic cycles, the oscillator being inhibited
by the regulation control signal detection means,
a high
frequency oscillator producing chopping signals palliating the absence
of regulation signals for producing enabling square waves,
an
inhibition means for allowing transmission of the chopping siganls to
the switch only during a first phase of each very low frequency periodic
cycle and for preventing such transmission during the rest of the
cycle, the first phase of each cycle having a duration which is long
compared with the period of the high frequency oscillator and short
compared with the period of the very low frequency oscillator.
2.
The control circuit as claimed in claim 1, wherein said high frequency
oscillator has a free oscillation period slightly greater than the
period of the regulation control signals and it is synchronized by these
signals when they are present.
3. The control circuit as claimed
in claim 1, wherein the regulation control signals comprise a positive
pulse followed by a negative pulse, one of them being used for
synchronizing the high frequency oscillator, the positive pulse being
transmitted through the inhibition means to a set input of a flip flop
for triggering off the beginning of conduction of the main switch, and
the negative pulse being transmitted to a reset input of the flip flop
for causing stopping of the conduction of the switch.
4. The control circuit according to claim 1 further comprising:
a
threshold comparator for receiving a signal measuring the current in
said switch and for outputting a signal stopping the conduction of said
switch when a threshold is exceeded;
means for varying the
threshold of said comparator including a means for producing a first
threshold value during normal operation of said circuit, a means for
producing a second threshold value at the beginning of said first phase
of said very low frequency cycle, said second threshold corresponding to
a current in said switch which is lower than during said normal
operation, and a means for producing a gradually decreasing threshold
during said first phase of said very low frequency cycle.
5.
The control circuit as claimed in claim 4, wherein said very low
frequency oscillator is a relaxation oscillator delivering a saw tooth
signal and the means for varying the threshold is driven by the output
of the very low frequency oscillator.
6. The control circuit as
claimed in one of claims 4 and 5, wherein another threshold converter is
provided receiving a signal of measurement of the current in the main
switch and delivering a signal for complete inhibition of enabling of
the switch when the current in the switch exceeds a third threshold
value higher than the first value.
7. The control circuit as
claimed in claim 6, wherein said inhibition signal delivered by the
other comparator is cancelled out when the circuit, after having
partially or totally ceased to be supplied with power, is again normally
supplied.
Description:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to stabilized power supplies called chopped power supplies.
A
chopped power supply operates in the following way: a transformer
primary winding receives a current which comes for example from a
rectifier bridge receiving the power from the AC mains. The current in
the transformer is chopped by a switch (for example a power transistor)
placed in series with the primary winding.
A circuit controlling
the transistor establishes periodic square waves for enabling the
transistor. For the duration of the square wave the current is allowed
to pass; outside the square wave, the passage of the current is
prevented.
On one (or more) secondary windings of the transformer
an AC voltage is then collected. This voltage is rectified and filtered
so as to obtain a DC voltage which is the DC output voltage of the
chopped power supply.
To stabilize the value of this DC voltage,
the cyclic periodic conduction ratio of the switch is adjusted, that is
to say the ratio between the conduction time and the disablement time in
a chopping period.
2. Discussion of Background
In a
chopped power supply architecture proposed by the applicant and shown in
FIG. 1, two integrated circuits are used. One of the circuits, CI1,
serves for controlling the base of a power transistor Tp for applying
thereto periodic enabling and disabling control signals. The space
control circuit CI1 is placed on the primary winding side (EP) of the
transformer (TA) for reasons which will be better understood further on
in the description. The integrated circuit, regulation circuit CI2, is
on the contary placed on the secondary side (winding ES1) and its serves
for examining the output voltage Vs of the power supply for elaborating
regulation signals which it transmits to the first integrated circuit
through a small transformer TX. The first integrated circuit CI1 uses
these regulation signals for modifying the cyclic conduction ratio of
the switching transistor TP and thus for regulating the output voltage
Vs of the power supply.
We will come back in more detail hereafter to the circuit shown in FIG. 1.
Numerous
problems arise during designing of a chopped power supply, and the
problems with which we will be particulary concerned here are problems
of starting up the power supply and problems of safety should over
voltages or over currents occur at different points in the circuit. The
first problem which is met with is that of starting up the power supply :
on switching on, the regulation circuit CI2 will tend to cause the base
control circuit CI1 to generate square waves of maximum cyclic ratio
until the power supply has reached its nominal output voltage. This is
all the more harmful since there is then a heavy current drain on the
side of the secondary windings which are connected to initially
discharged filtering capacitors. There is a risk of destruction of the
power transistor through over-currents during the start-up phase.
Progressive
start-up circuits have already been proposed which limit the duration
of the enabling square waves during a start-up phase, on switching on
the device; the U.S. Pat. No. 3,959,714 describes such a circuit in
which charging of a capacitor from switch-on defines initially short
square waves which gradually increase in duration until these square
waves reach the duration which the regulation circuit normally assigns
thereto. The short square waves have priority; but, since they become
gradually longer during the start-up phase, after a certain time they
cease to have priority; this time is defined by the charging time
constant of the capacitor.
Another problem which arises is the
risk of accidental overcurrents, or sometimes overvoltages which may
occur in the circuit. These over-currents and over-voltages may cause
damage and often result in the destruction of the power transistor if
nothing is done to eliminate them. In particular, a short circuit at the
output of the stabilized power supply rapidly destroys the power
transistor. If the short circuit occurs on start-up of the power supply,
it is not the gradual start-up system with short square waves which
gradually increase which will allow the over-currents resulting from
this short circuit to be efficiently accomodated.
Finally,
another problem, particularly important in an architecture such as the
one shown in FIG. 1, is the risk of disappearance of the regulation
signals which should be emitted by the regulation circuit CI2 and
received by the base control circuit CI1: these signals determine not
only the width of the square waves for enabling the power transistor but
also their periodicity; in other words, they serve for establishing the
chopping frequency, possibly synchronized from a signal produced on the
secondary side of the transformer. The disappearance of these signals
causes a particular disturbance which must be taken into account.
Furthermore,
the architecture of FIG. 1, in which the secondary circuits have been
voluntarily separated galvanically from the primary circuits, is such
that the base control circuit may function rapidly after switch on, as
will be explained further on, whereas the regulation circuit CI2 can
only function if the chopped power supply is in operation; consequently,
at the beginning, the base control circuit CI1 does not receive any
regulation signals and this difficulty must be taken into account.
SUMMARY OF THE INVENTION
In
an attempt to resolve as well as possible the whole of these different
problems which relate to safety against accidental disturbances in the
operation of the power supply (initial start-up being able to be
considered moreover as transitory disturbed operating phase), the
present invention proposes an improved chopped power supply control
circuit which accomplishes a function of gradual start-up of the power
supply on switch-on and a function of passing to the safety mode should a
malfunction occur such as a disappearance of appropriate regulation
signals: the safety mode consists of a succession of very low frequency
periodic cycles, each cycle consisting in a gradual start-up attempt
during a first phase which is short compared with the period of the
cycle and long compared with the chopping period of the chopped power
supply, the first phase being followed by a pause at the end of the
cycle, and periodic cycles succeeding each other until normal operation
of the power supply is established or re-established; a very low
frequency oscillator establishes these cycles when the power supply is
not normal operating conditions (start up or malfunction); this
oscillation is disabled when normal operation is ascertained; a high
frequency oscillator generates a burst of chopping signals palliating
the absence of regulation signals; these signals are transmitted solely
during the first phase of each cycle; they are inhibited during the
second phase.
According to a very important characteristic of the
invention; gradual start-up operates not by limiting the duration of
the square waves from the charging of a capacitor with a fixed time
constant, but by limiting the current in the power transistor to a
maximum value, this maximum value increasing gradually during the
start-up phase, overshooting of this current value causing interruption
of the power transistor.
Thus, even in the case of a quasi short
circuit, the value of a current in the transistor is limited, which was
not the case in gradual start-up circuits of the prior art.
More
precisely, the chopped power supply control circuit, intended to receive
periodic regulation control signals and to produce periodic square
waves for enabling a main switch of the power supply, the square waves
having a variable width depending on the regulation control signals;
comprises:
a means for detecting the presence of regulation control signals,
a
very low frequency oscillator controlled by the detection means, this
oscillator establishing, in the case of absence of regulation signals, a
succession of very low frequency periodic cycles, the oscillator being
inhibited by the detection means when regulation control signals are
present,
a high frequency oscillator producing chopping signals
palliating the absence of regulation signals for producing enabling
square waves,
an inhibition means only allowing chopping signals
to be transmitted to the switch during a first phase of each very low
frequency periodic cycle and for preventing such transmission during the
rest of the cycle, the first phase of each cycle having a duration
which is long compared with the period of the high frequency oscillator
and short compared with the period of the very low frequency oscillator.
Preferably,
the high frequency oscillator has a free oscillation period slightly
greater than the period of the regulation control signals and it is
synchronized by these signals when they are present.
The
regulation control signals may comprise a positive pulse followed by a
negative pulse, one of them serving for synchronizing the high frequency
oscillator, the positive pulse being transmitted through the inhibition
means to a set input of a flip flop for enabling the switch, whereas
the negative pulse is transmitted to the reset input of this flip flop
for disabling.
In so far as limiting the current to a gradually
increasing value during the start-up cycles is concerned, a threshold
comparator (92) is preferably provided receiving a signal for measuring
the current in the switch in order to generate a signal for disabling
the switch should the threshold be exceeded and a means (90) for causing
the threshold of the comparator to vary in the following way:
under normal operating conditions the threshold is fixed at a first value;
at
the beginning of the first phase of each very low frequency periodic
cycle, the threshold passes suddenly from the first value to a second
value corresponding to a lower current in the switch;
during the first phase of each cycle the threshold passes gradually back from the second value to the first one.
BRIEF DESCRIPTION OF THE DRAWINGS
Other
features and advantages of the invention will be clear from the
following detailed description made with reference to the accompanying
drawings in which:
FIG. 1 shows a general chopped power supply
diagram using two integrated circuits placed respectively on the primary
side and on the secondary side of a transformer,
FIG. 2 shows a diagram of an integrated circuit for controlling the power transistor placed on the primary side,
FIGS. 3 to 6 show timing diagrams of signals at different points of the circuit, and
FIG. 7 shows a circuit detail for producing a variable threshold.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring
again to FIG. 1, which represents a chopped power supply architecture
given by way of example illustrating the utility of the invention, the
line of the public electric mains has been designated by the reference
10 (mains at 100 or 220 volts, 50 or 60 hertz). This line is connected
through a filter 12 to the input of a rectifier bridge 14 whose output
is connected on the one hand to a primary electric ground, shown
throughout by a black triangle pointing downward and, on the other hand,
to one end of the primary winding EP of the power transformer TA.
A
filtering capacitor 16 is placed in parallel across the outputs of the
rectifier bridge 14. The other end of the primary winding is connected
to the collector of a switching transistor TP whose emitter is connected
to the primary ground through a small current measuring resistor 18.
The
transformer has several secondary windings which are preferably
isolated galvanically from the mains and connected for exmaple to a
secondary electric ground isolated galvanically from the primary ground.
Here,
each of the secondary windings has one end connected to the secondary
ground. The other end feeds a respective low pass filtering capacitor
through a respective rectifier diode.
The description hereafter
will refer to a single secondary winding ES1, connected by a diode 20 to
a capacitor 22. The DC output voltage of the chopped power supply is
the voltage Vs at the terminals of the capacitor 22; but of course other
DC output voltages may be obtained at the terminals of the other
filtering capacitors connected to secondary windings. These output
voltages forms stabilized power supply voltages for user circuits not
shown. By way of example, a secondary winding ES2 supplies a stabilized
voltage of a few volts for the integrated regulation circuit CI2, which
has already been discussed. It can be verified therefore in this
connection that this circuit is not fed with power and cannot therefore
deliver signals as long as the chopped power supply is not operating.
The
same goes a priori for the integrated circuit CI1 controlling the base
of the power transistor TP, which circuit is supplied with a stabilized
voltage delivered from a secondary winding ES3, a diode 24 and a
capacitor 26 (it will be noted in passing that this winding, although a
secondary winding, is connected to the primary ground and not to the
secondary ground, for the very simple reason that the integrated circuit
CI1 is necessarily coupled galvanically to the primary).
However,
since start-up of the chopped power supply must be ensured, it is
provided for the power supply terminal 28 of the integrated circuit CI1
to be also connected directly to the mains through a high resistor 30
and a diode 32; this is possible since the integrated circuit CI1 is
connected to the primary gorund; this is not possible for the integrated
circuit CI2 which must remain galvanically isolated from the mains. As
soon as the chopped power supply is operating normally, the stabilized
DC voltage delivered by winding ES3 and diode 24 take precedence over
the voltage from the mains and diode 32; this diode 32 is disabled and
the direct supply from the mains no longer occurs after the initial
start-up phase.
The role of integrated circuits CI1 and CI2 will now be described.
The
regulation circuit CI2 receives, from a divider bridge 34 placed at the
terminals of the capacitor 22 that is to say at the output of the
stabilized power supply, information concerning the value of the voltage
to be stabilized Vs.
This information is compared with a
reference value and applied to a pulse width modulator which produces
periodic square waves of variable width depending on the value of the
output voltage Vs; the lower Vs the wider the square waves.
The
square waves are produced at the chopping frequency of the chopped power
supply. This frequency is therefore established on the secondary side
of the circuit; it is generated either inside circuit CI2, or outside in
a circuit not shown, in the form of a saw tooth voltage at the chosen
chopping frequency. This saw tooth voltage is used in a way known per se
for obtaining width modulation.
The
variable width square waves, at the chopping frequency, are applied to a
primary winding 36 of a small transformer TX whose secondary winding
38, isolated galvanically from the primary, delivers positive and
negative pulses at the rising and falling fronts respectively of the
variable width square waves.
It is these pulses, whose position
and frequency are determined by the regulation circuit CI2, which form
regulation signals applied to an input 40 of the base control circuit
CI1.
Transformer TX is formed by a few turns wound on a ferrite
rod, the turns of the primary and the turns of the secondary being
sufficiently spaced apart from each other for complying with the
standards of galvanic isolation between primary circuits and secondary
circuits in the chopped power supply.
The integrated base control
circuit CI1 comprises different inputs among which have already been
mentioned a power supply input 28 and a regulation signal input 40; a
current measuring input 44 is connected to the current measuring
resistor 18; an inhibition input monitors the magnetization condition of
a transformer. Finally, inputs may be provided for connecting elements
(resistors, capacitors) which should form part of the integrated circuit
itself but which, for technological reasons (space) or for practical
reasons (possiblities of adjustment by the user) are mounted on the
outside.
The integrated circuit CI1 finally comprises an output
46 which is intended to be coupled by direct galvanic coupling to the
base of the power transistor Tp. This output delivers square waves for
enabling and disabling the transistor Tp.
FIG. 2 shows the
general architecture of the integrated circuit CI1, limited to the
elements which relate more particularly to the invention.
The
output 46 of the circuit is the output of a push-pull amplification
stage designated as a whole by the reference 48, this stage comprising
preferably two separate amplifiers one of which receives enabling square
waves and the other of which receives disabling signals formed by
enabling square waves inverted and delayed by a few microseconds. Such
amplifiers are now well known.
The enabling signals are delivered
by a logic flip flop 50 having a set input 52 and a reset input 54. The
set input causes the power transistor to be enabled. The reset input
causes it to be disabled.
The set input 52 receives the pulses
which pass through a logic AND gate 58, so that enabling only occurs if
several conditions are simultaneously satisfied; one unsatisfied
condition will be sufficient to inhibit enabling.
The reset input
54 receives the pulses which pass through a logic OR gate 60, so that
disabling (after enabling) will occur as soon as a disabling signal is
present at one of the inputs of this gate.
In the diagram of FIG.
2, the AND gate 58 has three inputs. One of these inputs receives
periodic pulses from an output 62 of a high frequency oscillator 64; the
other inputs serve for inhibiting the transmission of these pulses.
The
oscillator defines the periodicity of the chopping of the power supply
(20 kilohertz for example). Under normal operating conditions, the
oscillator is synchronized by the regulation signals; under start-up
conditions, it is self oscillating at a free frequency defined by the
values of a resistor Ro and a capacitor Co external to the integrated
circuit CI1 and connected respectively to an access terminal 66 and an
access terminal 68. The free frequency fo is in theory slightly lower
than the normal chopping frequency.
Oscillator 64 is a relaxation
oscillator which produces at an output 70 a saw tooth whose zero return
is caused by the appearance of a positive pulse arriving at terminal
40. This is why oscillator 64 is shown with one input connected to an
output 72 of a separation and shaping circuit 74 which receives the
regulation signals from terminal 40 and shapes them while separating the
positive pulses from the negative pulses. The shaping circuit 74 has
two outputs; 72 for the positive pulses, 76 for the negative pulses (the
notation of positive pulses, negative pulse will be kept for
distinguishing the enabling pulses and the disabling pulses even if the
shaping circuit produces pulses of the same sign at both its outputs 72
and 76).
Oscillator 64 has two outputs: one output 70 delivering a
saw tooth and one output 62 delivering a short pulse at the time of the
zero return of the saw tooth.
A pulse width modulator 78 is
connected on the one hand to the output 70 of the oscillator and on the
other to a reference voltage adjustable by means of a resistor R1
external to the integrated circuit and connected to a terminal 80 giving
access to the circuit. Modulator 78 delivers periodic square waves
synchronized with the signals of the oscillator, these square waves
defining a maximum conduction duration Tmax beyond which the power
transistor must be disabled in any case for safety reasons. These square
waves and modulator 78 are applied to an input of the OR gate 60. The
duration Tmax is adjustable by means of the external resistor R1.
The
elements which have just been described ensure the essential part of
the operation under normal conditions of the integrated circuit CI1. The
following elements are more specifically provided for controlling
abnormal operation or start-up of the power supply.
A very low
frequency oscillator 82 is connected to an external capacitor C2 through
an access terminal 86. This external capacitor allows the very low
frequency oscillation to be adjusted. The frequency may be 1 hertz for
example.
Oscillator 82 is a relaxation oscillator delivering a
saw tooth. This saw tooth is applied on the one hand to a threshold
comparator 88 which causes periodic square waves to be produced
synchronized with the very low frequency saw tooth of the oscillator.
These square waves have a brief duration compared with the period of a
saw tooth; this duration is fixed by the threshold of comparator 88; it
may be for example be 10% of the period; it must be long compared with
the free oscillation period of the high frequency oscillator 64 so that a
burst of numerous pulses from the high frequency oscillator may be
emitted and used during this 10% of the very low frequency period; this
burst defines at start-up attempt during the first part of a start-up
cycle; it is followed by a pause during the rest of the period, i.e.
during the remaining 90%.
The oscillator only serves at start up;
it is inhibited when regulation signals appear at terminal 40 and
indicate that the chopped power supply is operating. This is why a
control has been shown for inhibiting this oscillator, connected to the
output 72 of the shaping circuit 74 through a flip flop 89. This flip
flop switches under the action of the pulses appearing at the output 72.
It is brought back to its initial state by the output 62 of oscillator
64 when there are no longer any pulses at output 71.
The saw
teeth of the very low frequency oscillator are further transmitted to a
circuit 90 producing a variable threshold whose purpose is to produce a
threshold signal (current or voltage) having a first value Vs1 under
normal operating conditions, and a threshold cyclically variable between
a first value and a second value under start-up conditions. The method
of varying this threshold will be described further on, but it may
already be noted that the variation is driven by the very low frequency
saw tooth.
The
threshold signal produced by circuit 90 is applied to an input of a
comparator 92 another input of which is connected to the terminal 44
already mentioned, for receiving at this input a signal representative
of the amplitude of the current flowing through the power switch. The
output of comparator 92 is applied to an input of the OR gate 60. It
therefore acts for disabling the power transistor Tp, after it has been
enabled, disabling occurring as soon as overshooting of the threshold
(fixed or variable) defined by circuit 90 has been detected.
Another
threshold comparator 94 has one input connected to the current
measuring terminal 44 whereas another input receives a signal
representing a third threshold value Vs3. The third value Vs3
corresponds to a current in the switch higher than the first value Vs1
defined by the circuit 90. The output of comparator 94 is connected
through a storage flip flop 96 to an input of the AND gate 58 so that,
if the current in the power switch exceeds the third threshold value
Vs3, disabling of transistor Tp is not caused (such disabling being
caused by the comparator 92) but any new enabling of the transistor is
inhibited. Such inhibition lasts until the flip flop 96 is switched back
to its initial state corresponding to normal operation.
In
theory, this resetting will only take place when the integrated circuit
CI1 has ceased to be supplied normally with power and is again switched
on. For example, resetting of flip flop 96 is caused through a
hysteresis threshold comparator 98 which compares a fraction of the
power supply voltage Vcc of the circuit (taken from terminal 28) with a
reference value and which resets the flip flop when Vcc first passes
above this reference after dropping below another reference value lower
than the first one (hysteresis).
Finally, it may be stated that
the output of the flip flop 89 (which detects the presence of regulation
signals at terminal 40 therefore normal operation of the power supply),
is connected to an input of an OR gate 100 which receives at another
input the output of comparator 88 so that the output of comparator 88
ceases to inhibit enabling of transistor Tp (inhibition during 90% of
the very low frequency cycles) as soon as operation of the power supply
has become normal.
OPERATION OF THE BASE CONTROL CIRCUIT
This
operation will be described by illustrating it with voltage wave forms
inside the chopped power supply and inside the integrated circuit CI1.
(a) Start-up on switching on
At the outset, the integrated circuit is not supplied with power at all.
The
voltage at the power supply terminal 28 increases from 0 to a value Vaa
which is not the nominal value Vcc but which is a lower value supplied
by diode 32 and resistor 30 (cf. FIG. 1) as long as the chopped power
supply does not deliver its nominal output voltage Vcc at terminal 28.
Vaa is a voltage sufficient for ensuring practically normal operation of
all the elements of the circuit CI1. Vaa is also sufficient for
reinitializing the flip flop 96 which, as soon as that happens, no
longer inhibits enabling of the power transistor Tp.
There are no
regulation signals at the input 40. Consequently, the high frequency
oscillator oscillates with its free frequency and the very low frequency
oscillator also oscillates (it is not inhibited by the flip flop 89
since this latter does not receive any regulation signals from the
output 72 of the shaper circuit 74).
The very low frequency
oscillator 82 and comparator 88 define periodic cycles of start-up
attempts repeated at a very low frequency.
Each cycle comprises a
first part defined by the square waves of short duration at the output
of comparator 88, and a second part formed by the end of the very low
frequency period; the first part is an effective attempt at start-up.
The second part is a pause if the effective attempt has failed. The
pause lasts much longer than the effective attempt so as to limit power
consumption.
During the first part of the cycle, the enabling
signals delivered by the high frequency oscillator 64 are allowed to
pass through the AND gate 58. They are then prevented from passing. Each
pulse from the output 62 of the oscillator 64 enables the transistor
Tp. There is therefore a burst of enabling pulses which is emitted for
about 10% of the very low frequency period.
During start-up, the
current intensities in the transistor tend to be very high. It is
essentially comparator 92 which causes interruption of the conduction,
after each enabling pulse delivered by oscillator 64, as soon as the
current exceeds the threshold imposed by the variable threshold
elaboration circuit 90. If comparator 92 does not cause enabling,
modulator 78 will do so in any case at the end of the time Tmax.
The
threshold elaboration circuit, which delivers to the comparator 90 a
first fixed threshold value Vs1 under normal operating conditions (i.e.
when the very low frequency oscillator 82 is disabled by the flip flop
89), delivers a variable threshold as a function of the saw tooth of the
very low frequency oscillator in in the following way:
at the
initial outset of a start-up attempt cycle (beginning of the saw tooth
or zero return of the preceding saw tooth), the threshold passes
suddenly from the first value Vs1 to a second value Vs2 corresponding to
a lower current than the first value, then this threshold increases
gradually (because driven by the very low frequency saw tooth) from the
second value to the first. The growth time coincides preferably with the
duration of a start-up attempt square wave (i.e. about 10% of the very
low frequency period).
Then the threshold is stabilized at the
first value Vs1 until the end of the period, but in any case if the
circuit has not started up at that time, comparator 88 closes gate 58,
through the OR gate 100 and inhibits any further enabling of the power
transistor during the rest of the very low frequency period (90%). It is
then the second part of the start-up attempt cycle which takes place: a
pause during which the pulses of oscillator 64 are not transmitted
through the AND gate 58.
Thus, the start-up cycles act from two
points of view: on the one hand, a burst of enabling pulses is emitted
(10% of the time) then stopped (90% of the time) until the next cycle;
on the other hand, during this burst, the current limitation threshold
passes gradually from its second relatively low value to its normal
higher value.
Consequently, if the peak amplitude of the current
in transistor Tp is observed during the start-up bursts, it can be seen
that in practice it increases linearly from the second value to the
first. Thus gradual start-up is obtained by a much more efficient action
than that which consists simply for example in causing the duration
Tmax to increase from a low value to a nominal value.
If start-up
is not successful, a new burst of enabling pulses is transmitted during
the first part of the next cycle (it will be recalled that this cycle
is repeated about once per second and that the burst may last 100
milliseconds).
If start-up is successful, regulation signals
appear at terminal 40. These signals are shaped by circuit 74. They
cause the very low frequency oscillator 82 to be stopped by the flip
flop 89 which prevents the zero return of the saw tooth. Furthermore,
flip flop 89 sends through the OR gate 100 a signal for cancelling out
the inhibition effect imposed by the comparator 88. Finally, as soon as
start-up is successful, the regulation signals cause the high frequency
oscillator 64 to be synchronized.
FIG. 3 illustrates the high frequency signals during the start-up period:
line a: saw tooth at the output 70 of the oscillator 64 (free oscillation at frequency fo, period To),
line
b: pulses for enabling the transistor Tp : these pulses coincide with
the zero return of the saw tooth signal (output 62 of oscillator 64);
line c: output square waves from modulator 78 defining the maximum cyclic conduction time of the transistor,
line
d: pulses delivered comparator 92 when the current in the switch
exceeds the threshold (gradually increasing during start up) defined by
the circuit 90.
The conduction of transistor Tp, after being
enabled by a pulse from line b, is stopped either by the square waves of
line c if the current threshold is not exceeded, or by an output pulse
from comparator 92.
FIG. 4 shows the very lwo frequency signals
during the start-up cycles. The diagrams are not to the same time scale
as in FIG. 3 since it will be recalled that an example of the frequency
of the high frequency oscillator 64 is 20 kilohertz whereas an example
of the very low frequency of oscillator 82 is 1 hertz. The high
frequency pulses have however been shown symbolically in FIG. 4, in
number more limited than in reality for facilitating the representation.
line e: saw tooth output of the very low frequency oscillator (frequency f2, period T2),
line
f: output of comparator 88 showing the first phase (start-up attempt by
allowing conduction of transistor Tp) and the second phase (pause by
inhibiting the conduction of each very low frequency start up cycle,
line g: pulses delivered by the freely oscillating high frequency oscillator,
line h: bursts of enabling pulses at the output of the AND gate 58,
line
i: diagram of the cyclic variation of the threshold produced by circuit
90 during the start-up cycles: fixed value Vs1 in theory, sudden drop
to Vs2 at the beginning of the very low frequency saw tooth, and gradual
rise from Vs2 to Vs1, driven by the linear growth of the saw tooth,
during the start-up burst.
(b) Operation of the power supply under normal established operating
conditions
The very low frequency oscillator is not operating.
The high frequency oscillator is synchronized by the regulation signals.
The
zero return of the high frequency saw tooth, coinciding with the
positive pulses of the regulation signals, causes enabling of transistor
Tp (no inhbition by the AND gate 58 during normal operating
conditions). The negative pulses cause disabling, through the OR gate
64, except if such disabling has been caused:
either by overshooting of the first current threshold value, detected by the comparator 92,
or
by the modulator 78 if the time interval between the positive pulse and
the negative pulse which immediately follows it is greater than the
maximum duration Tmax which is allowed.
FIG. 5 shows the high frequency signals under normal operating conditions,
line
j: alternate positive and negative pulses received at the input 40 of
the circuit (these are the regulation signals defining the times at the
beginning and end of conduction of the power transistor Tp),
line
k: shaped pulses at the output 72 of the separation and shaping circuit
74: they correspond to the positive pulses only of the regulation
signals,
line
l: saw tooth at the output 70 of oscillator 62; the saw tooth is
synchronized with the regulation signals in that its zero return
coincides with the pulses of line k,
line m: pulses at output 62 of oscillator 64; these pulses are emitted during zero returns of the saw tooth of line l,
line n: output square waves of modulator 78 further defining the maximum conduction time of the power transistor;
line
o: pulses from the output 76 of the separation and shaping circuit 74:
these pulses correspond to the negative pulses of the regulation
signals,
line p: as a reminder, pulses have been shown at the
output of comparator 92 in the case where the current in the power
transistor exceeds the threshold corresponding to Vs1.
The
conduction of transistor Tp, after being enabled by a pulse of line k,
is normally stopped by the pulse from line o which immediately follows
it, or, more exceptionally by the pulses from line p if the threshold
Vs1 is exceeded before the apearance of the pulse of line o, or else, by
the square waves of line n if the threshold is not exceeded and if the
pulse of line o appears after the beginning of a square wave of line n.
FIG.
6 shows the very low frequency signals at the time of passing over from
start-up conditions to normal operating conditions (same scale as FIG.
4).
line q: regulation signals at the input 40; these signals are initially absent and appear at a certain moment,
line r: output of the flip flop 89 indicating the absence then the presence of regulation signals,
line
s: very low frequency saw tooth which rises to its high level and does
not drop again if the output o the flip flop 89 is at the high level
(indicating the presence of regulation signals)
line t: output of
the OR gate 100 showing initially a square wave of short duration,
delivered by comparator 88 and causing a start-up burst (cf. FIG. 4),
then blocking at the high level which prevents subsequent inhibition of
the AND gate 58 by the comparator 88.
(c) Safety mode in the case of a malfunction
The safety mode consists in fact in establishing start-up cycles as during switch on.
These
cycles are triggered by start up of the very low frequency oscillator
82 when the regulation signals disappear at input 40.
Flip flop
89 returns to an intial state when it no longer receives pulses from the
output 72 of the separation and shaping circuit 74. Thus, oscillator 82
will be able to oscillate again and the above described cycles are
established.
(d) Serious incident: very high over current
Whatever
the operating conditions, normal or start-up, over-currents in
transistor Tp are detected by the comparator 92 and cause interruption
of the conduction. But if there is for example a short circuit at the
output of the power supply, an over-current may occur such that the
current continues to increase before the conduction has time to be
completely interrupted. In this case, it is provided for the threshold
comparator 94 to deliver an order inhibiting the enabling when the
current in transistor Tp exceeds a third threshold value which is for
example greater by 30% than the first value. This inhibition order is
stored by flip flop 96 which switches under the action of the comparator
and disables the AND gate 58; flip flop 96 can only come back to its
initial state when the integrated circuit, after having partially or
totally ceased to be supplied with power, is again normally supplied.
For example, the power supply must be switched off and switched on again
to allow pulses to pass again for enabling the transistor Tp.
To
finish this description, there has been shown in FIG. 7 one example of
the circuit 90 which produces a variable threshold for the comparator
92: the very low frequency saw tooth deliveredy by the oscillator is
applied to a voltage/current converter 102 which produces a saw tooth
current increasing from 0 to a maximum value.
This current is
applied to a series assembly of a voltage source 104 (value Vs2) and a
resistor 106. A voltage clipper, represented by a Zener diode 108 (value
of the conduction threshold: Vs1) is connected in parallel across the
assembly 104, 106. The junction point between the output of the
converter 102, resistor 106 and the voltage clipper 108 forms the output
of circuit 90 and is connected to the input of comparator 92. Thus,
when the saw tooth returns to zero, the output voltage of circuit 90 is
Vs2. Then it increases as the current in the resistor 106 increases
(linearly). When the voltage at the terminals of resistor 106 reaches
and exceeds the value Vs1-Vs2, the voltage clipper conducts and diverts
the current surplus so that the output voltage remains limited to Vs1.
THOMSON TEA2162 / TEA2164 / TEA2165 WORKING OF CONTROL CIRCUIT FOR A CHOPPED POWER SUPPLY WITH PROGRESSIVE START UP :
A chopped power supply control circuit is provided intended
to receive regulation control signals and to produce square waves for
enabling a switch. A current comparator measures the current in the
switch and opens the switch when the threshold is exceeded. Under normal
operating conditions the threshold is fixed. Under start-up conditions
of should a malfunction occur a threshold variation circuit causes the
threshold to vary gradually from a low value to its normal value. Thus
the risk of over-current at start-up is reduced.
Inventors: De Sartre, Jean (Meylan, FR) ; Maige, Philippe (Syssinet Pariset, FR) Thomson-csf (Paris, FR)
1.
A chopped power supply control circuit intended to receive regulation
control signals and to produce square waves for enabling a mains switch
of the power supply, wherein said square waves having a variable width
depending on the signals received, said circuit comprising:
a
current limiting circuit including a threshold comparator receiving at
one input a signal and at another input a threshold signal;
a
means for said comparator to generate a signal for disabling the switch
when the threshold is exceeded, in order to ensure gradual start-up of
the chopped power supply at the beginning of its operation and in the
case of a disturbance of operation;
a means for establishing a variable threshold signals in response to circuit means which
establish a first fixed threshold value under normal established operating conditions,
establish periodically a threshold variation cycle in the opposite case, this cycle comprising
means
to cause the threshold to pass to a second value at a time representing
the beginning of a periodic threshold variation cycle, the second
threshold value corresponding to a lower current in the switch,
means to bring the threshold gradually back from the second value to the first in a first part of the threshold variation cycle,
means for maintaining the threshold at the first value until the end of the current cycle,
means
to begin a second start-up cycle again at the end of the current cycle
if regulation control signals are still not received at the end of the
first cycle,
means for stopping the establishment of threshold variation cycles when regulation control signals are received.
2.
The control circuit as claimed in claim 1 wherein the first part of
each periodic cycle corresponds to a short time compared with the period
of the cycle and a long time compared with the switching period of the
chopped power supply.
3. The control circuit as claimed in claim
1, wherein a very low frequency oscillator is provided for defining the
periodic two phase threshold variation cycles, said oscillator being
inhibited by the reception of appropriate regulation control signals.
4.
The control circuit as claimed in claim 3, wherein said very low
frequency oscillator is a relaxation oscillator delivering a saw tooth
signal driving the threshold establishment means for establishing:
a sudden variation of the threshold at the time of the zero return of the saw tooth,
a slow linear increase of the threshold at the beginning of the saw tooth.
5.
The control circuit as claimed in claim 4, wherein a high frequency
oscillator is provided producing chopping signals palliating the absence
of regulation signals for the production of square waves enabling the
switch and an inhibition means for allowing transmission of these
signals only during the first phase of each periodic cycle.
6.
The control circuit as claimed in claim 5, wherein said high frequency
oscillator has a free oscillation period slightly greater than the
period of the regulation control signals and it is synchronized by these
signals when they are received.
7. The control circuit as
claimed in claim 1, wherein a second threshold comparator is provided
for receiving a signal representative of the current in the switch and
delivering a signal completely inhibiting enabling of the switch in the
case where the current in the switch exceeds a third threshold value
greater than the first value, the signal only ceasing when the circuit,
after having partially or totally ceased to be supplied with power, is
again normally supplied.
Description:
BACKGROUND OF THE INVENTION
The present invention relates to stabilized power supplies called chopped supplies.
A
chopped power supply operates in the following way: a primary transfer
winding receives a current which is for example delivered by a rectifier
bridge receiving the power of the AC mains. The current in the
transformer is chopped by a switch (for example a power transistor)
placed in series with the primary winding.
A circuit for
controlling the transistor produces periodic square waves for enabling
the transistor. A current is allowed to pass for the duration of the
square waves; outside the square wave, the current cannot pass.
On
one (or more) secondary windings of the transformer, an AC voltage is
collected. This is rectified and filtered so as to obtain a DC voltage
which is the output DC voltage of the chopped power supply.
For
stabilizing the value of this DC voltage, the cyclic period conduction
ratio of the switch is adjusted, that is to say the ratio between the
duration of conduction and the duration of non conduction in a chopping
period.
In
chopped power supply architecture proposed by the applicant and shown
in FIG. 1, two integrated circuits are used. One of the circuits CI1,
serves for controlling the base of a power transistor Tp for applying
thereto periodic enabling and disabling control signals. The base
control circuit CI1 is placed on the primary winding side (EP) of the
transformer (TA) for reasons which will be better understood in the rest
of the description. The other integrated circuit, regulation circuit
CI2, is on the contrary placed on the secondary side (winding ES1) and
it serves for examining the output voltage Vs of the power supply for
forming regulation signals which it transmits to the first integrated
circuit through a small transformer TX. The first integrated circuit CI1
uses these regulation signals for modifying the cyclic conduction ratio
of the switching transistor Tp and thus regulating the output voltage
Vs of the power supply.
We will come back further on in more detail to the circuit of FIG. 1.
Numerous
problems arise during the design of a chopped power supply, and here we
will consider more particularly the problems of starting up the supply
and the problems of safety in the case of over voltages or over currents
at different points in the circuit.
The first problem which is
met with is that of starting up the power supply: at switch on, the
regulation circuit CI2 will tend to cause the base control circuit CI1
to generate maximum cyclic ratio square waves until the power supply has
reached its nominal output voltage. This is all the more harmful since
there is a high current drain on the side of the secondary windings
which are connected to initially discharged filtering capacitors. There
is a risk of destruction of the power transistor through an overcurrent
during the start up phase.
Circuits for gradual start up have
already been proposed which limit the duration of the enabling square
waves during a start up phase, on switching on the device; the U.S. Pat.
No. 3,959,714 describes such a circuit in which charging of a capacitor
from switch-on defines initially short square waves of gradually
increasing duration until these square waves reach the duration which
the regulation circuit normally assigns to them. The short square waves
have priority; but, since they become gradually longer during the start
up phase, they cease to have priority after a certain time; this time is
defined by the charging time constant of the capacitor.
Another
problem to be reckoned with is the risk of accidental over-currents, or
sometimes over-voltages which may occur in the circuit. These
overcurrents and over-voltages may be very detrimental and often result
in the destruction of a power transistor if nothing is done to eliminate
them. In particular, a short circuit at the output of the stabilized
power supply rapidly destroys the power transistor. If this short
circuit occurs on switching-on of the supply, it is not the gradual
start up system with short and progressively increasing square waves
which can efficiently accomodate the over-currents which result from
this short circuit.
Finally, another problem particularly
important in an architecture such as the one shown in FIG. 1, is the
risk of disappearance of the regulation signal which should be emitted
by the regulation circuit CI2 and received by the base control circuit
CI1: these signals determine not only the width of the square waves
enabling the power transistor but also their periodicity; in other
words, they serve for establishing the chopping frequency, possibly
synchronized from a signal produced on the secondary side of the
transformer. The appearance of these signals causes a particular
disturbance which must be taken into account.
Furthermore, the
architecture shown in FIG. 1, in which the secondary circuits have been
voluntarily separated galvanically from the primary circuits, is such
that the base control circuit may operate rapidly after switch-on, as
will be explained further on, whereas the regulation circuit CI2 can
only operate if the chopped power supply is operating; consequently, at
the beginning, the base control circuit CI1 does not receive any
regulation signals and this difficulty must be taken into account.
SUMMARY OF THE INVENTION
To
try and overcome as well as possible all these different problems which
relate to security against accidental disturbances in the operation of
the power supply (the initial start up being more-over considered as a
transitory disturbed operating phase), the present invention provides an
improved chopped power supply control circuit which provides a function
of gradual start-up power supply on switch on and a function of passing
to a safety mode in the case of an operating defect such as a
disappearance of appropriate regulation signals; the safety mode
consists of a succession of periodic cycles at a very low frequency,
each cycle consisting of a gradual start-up attempt during a first phase
which is short in comparison with the period of the cycle and long
compared with the chopping period of the chopped power supply, the first
phase being followed by a pause until the end of the cycle, and
periodic cycles succeeding each other until normal operation of the
power supply is established or re-established; a very low frequency
oscillator establishes these cycles when the power supply is not
operating under normal conditions (start-up or operating defect); this
oscillator is disabled should normal operation be ascertained; a high
frequency oscillator generates a burst of chopping signals palliating
the absence of regulation signals; these signals are transmitted solely
during the first phase of each cycle; they are inhibited during a second
phase.
According
to a very important characteristic of the invention, the gradual start
up operates not by limiting the duration of the square waves from the
charging of a capacitor with a fixed time constant, but by limiting the
current in the power transistor to a maximum value, this maximum value
increasing progressively during the start up phase, over-shooting of
this current value causing interruption in the conduction of the power
transistor.
Thus, even in the case of a quasi short circuit, the
value of the current in the transistor is limited, which was not the
case in the gradual start up circuits of the prior art.
More
precisely, the chopped power supply control circuit of the invention is
intended to receive regulation control signals and to produce square
waves for enabling a main switch of the power supply, the square waves
having a variable width depending on the signals received, and this
circuit comprises a current limiting circuit including a threshold
comparator receiving at one input a signal representative of the current
flowing through the switch and at another input a threshold signal, the
comparator generating a signal for stopping the switch from conducting
should over shooting of the threshold occur; furthermore, in order to
ensure gradual start-up of the chopped power supply at the beginning of
its operation and should this operation be disturbed, the control
circuit comprises a means for producing a variable threshold signal for
the comparator, this means being adapted for:
establishing a first fixed threshold value under normal operating conditions,
establishing a periodic threshold variation cycle outside normal operating conditions, this cycle consisting in:
causing
the threshold to pass suddenly from the first value to a second value,
at a time representing the beginning of the cycle, the second value
corresponding to a lower current in the switch,
bringing the threshold gradually back from the second value to the first in a first part of the threshold variation cycle,
holding the threshold at the first value until the end of the current cycle,
beginning again a second threshold variation cycle at the end of the current cycle,
stopping the production of threshold variation cycles when normal operating conditions have again been established.
Normal
operating conditions will in general be defined by the presence of
appropriate regulation signals and by the absence of an over-current in
the switch.
The periodic cycle is at very low frequency (for
example 1 hz), and the duration of a first part of the cycle is
preferably small with respect to the period of the cycle (for example a
tenth of this period, followed by a pause during the nine remaining
tenths); it is long with respect to the chopping period of the power
supply.
In order to provide even more complete safety, a second
threshold comparator is preferably provided receiving at one input a
signal respresentative of the measurement of the current in the switch
and at another input a third threshold value corresponding to a current
greater than that of the first threshold value, the comparator
delivering a signal for complete inhibition of the switching of the
power switch should over-shooting of this third value occur, the
inhibition only ceasing when the circuit, after having partially or
completely ceased to be supplied with power, is again normally supplied.
BRIEF DESCRIPTION OF THE DRAWINGS
Other
features and advantages of the invention will be clear from reading the
following detailed description made with reference to the accompanying
drawings in which:
FIG. 1 shows a general chopped power supply
diagram using two integrated circuits placed respectively on the primary
side and on the secondary side of a transformer,
FIG. 2 shows a diagram of the integrated control circuit of the power transistor placed on the primary side,
FIGS. 3 to 6 show timing diagrams of signals at different points on the circuit, and
FIG. 7 shows a detail of a circuit for elaborating a variable threshold.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referri
ng
to FIG. 1 which shows a chopped power supply architecture given by way
of example and well illustrating the utility of the invention, the
electric mains line has been designated by the reference 10 (mains at
110 to 220 volts, 50 or 60 hertz). This line is connected through a
filter 12 to the input of a rectifier bridge 40 whose output is
connected on the one hand to a primary electric ground, represented
everywhere by a downward pointing black triangle, and on the other hand
to one end of the primary winding EP of the power supply transformer TA.
A
filtering capacitor 16 is placed in parallel across the outputs of the
rectifier bridge 14. The other end of the primary winding is connected
to the collector of a switching transistor TP whose emitter is connected
to the primary ground through a small current measuring resistor 18.
The
transformer has several secondary windings which are preferably
isolated galvanically from the mains and connected for example to a
secondary electric ground isolated galvanically from the primary ground.
Here,
each of the secondary windings has one end connected to the secondary
ground. The other end feeds a respective low-pass filtering capacitor
through a respective rectifier diode.
We will be concerned in
what follows with a single secondary winding ES1, connected by a diode
20 to a capacitor 22. The DC output voltage of the chopped power supply
is the voltage Vs at the terminals of the capacitor 22; but of course,
other DC output voltages may be obtained at the terminals of the other
filtering capacitors connected to the secondary windings. These output
voltages form stabilized power supply voltages for user circuits not
shown. By way of example, a secondary winding ES2 supplies a stabilized
power supply voltage of a few volts for the integrated regulation
circuit CI2 already mentioned. It can therefore be seen in this
connection that this circuit is not supplied with power and cannot
therefore supply signals as long as the chopped power supply is not
operating.
The same goes a priori for the integrated circuit CI1
controlling the base of the power transistor TP, which circuit is
supplied with a stabilized voltage delivered by a secondary winding ES3,
a diode 24 and a capacitor 26 (it will be noted in passing that this
winding, although being a secondary winding, is connected to the primary
ground and not to the secondary ground, for the very simple reason that
the integrated circuit CI1 is necessarily coupled galvanically to the
primary).
However, since start up of the chopped power supply
must be provided, the power supply terminal 28 of the integrated circuit
CI1 is also connected directly to the mains through a high resistor 30
and a diode 32; this is possible since the integrated circuit CI1 is
connected to the primary ground; it is not possible for the integrated
circuit CI2 which must remain galvanically isolated from the mains. As
soon as the chopped power supply is operating normally, the stabilized
DC voltage from winding ES3 and diode 24 takes precedence over the
voltage coming from the mains and from diode 32; this diode 32 is
disabled and the direct supply by the mains only takes place after the
initial start up phase.
The role of the integrated circuits CI1 and CI2 will now be described.
The
regulation circuit CI2 receives from a divider bridge 34, placed at the
terminals of capacitor 22, i.e. at the output of the stabilized power
supply, information concerning the value of the voltage to be stabilized
Vs.
This information is compared with a reference value and
applied to a pulse width modulator which forms periodic square waves of
variable width depending on the value of the output voltage Vs: the
lower Vs the wider the square waves will be.
The square waves are
established at the chopping frequency of the chopped power supply. This
frequency is therefore established on the secondary side of the
circuit; it is generated either inside the circuit CI2, or outside in a
circuit not shown, in the form of a saw tooth voltage at the chosen
chopping frequency. This saw tooth voltage is used in a way known per se
for providing width modulation.
The variable width square waves,
at the chopping frequency, are applied to a primary winding 36 of a
small transformer TX whose secondary winding 38, isolated galvanically
from the primary, delivers positive and negative pulses at the rising
and falling fronts respectively of the variable width square waves.
It
is these pulses, whose position and frequency are determined by the
regulation circuits CI2, which form regulation signals applied to an
input 40 of the base control circuit CI1.
The transformer TX is
formed by a few turns wound on a ferrite rod, the turns of the primary
and the turns of the secondary being sufficiently spaced apart from each
other for complying with standards of galvanic isolation between
primary circuits and secondary circuits of the chopped power supply.
The
integrated base control circuit CI1 comprises different inputs among
which have already been mentioned a power supply input 28 and a
regulation signal input 40; a current measuring input 44 is connected to
the current measuring resistor 18; an inhibition input for monitoring
the magnetization condition of a transformer. Finally, inputs may be
provided for connecting elements (resistors, capacities) which should
form part of the integrated circuit itself but which for technological
reasons (space limitation) or for practical reasons (possibilities of
adjustment by the user) are mounted outside.
The
integrated circuit CI1 finally comprises an output 46 which is intended
to be connected by direct galvanic coupling to the base of the power
transistor Tp. This output delivers square waves for enabling and
disabling the transistor Tp.
FIG. 2 shows the general
architecture of the integrated circuit CI1, limited to the elements
which more especially concern the invention.
The output 46 of the
circuit is the output of a push-pull amplification stage designated as a
whole by the reference 48, this stage comprising preferably two
separate amplifiers one of which receives enabling square waves and the
other receives disabling signals formed by the inverted enabling signals
delayed by a few microseconds. Such amplifiers are now well known.
The
enabling signals are provided by a logic flip flop 50 having a set
input 52 and a reset input 54. The set input causes enabling of the
power transistor. The reset input causes disabling.
The set input
52 receives the pulses which pass through a logic AND gate 58, so that
conduction only occurs if several conditions are satisfied
simultaneously; one unsatisfied condition, will be sufficient to inhibit
enabling of the conduction.
The reset input 54 receives the
pulses which pass through a logic OR gate 60, so that stopping of the
conduction (after enabling) will occur as soon as a stop signal is
present at one of the inputs of this gate.
In
the diagram of FIG. 2, the AND gate 58 has three inputs. One of these
inputs receives periodic pulses from an output 62 of a high frequency
oscillator 64; the other inputs serve for inhibiting the transmission of
these pulses.
The oscillator defines the periodicity of the
chopping of the power supply (20 kilohertz for example). Under normal
operating conditions, the oscillator is synchronized by the regulation
signals; under start-up conditions it is self-oscillating at a free
frequency defined by the values of a resistor Ro and a capacitor Co
external to the integrated circuit CI1 and connected respectively to an
access terminal 66 and an access terminal 68. The free frequency fo is
generally slightly lower than the normal chopping frequency.
Oscillator
64 is a relaxation oscillator which produces at an output 70 a saw
tooth whose return to zero is caused by the appearance of a positive
pulse at terminal 40. This is why oscillator 64 is shown with one input
connected to an output 72 of a shaping and separation circuit 74 which
receives the regulation signals from terminal 40 and shapes them while
separating the positive pulses from the negative pulses. The shaping
circuit. 74 has two outputs: 72 for the positive pulses, 76 for the
negative pulses (the notation positive pulse and negative pulse will be
kept for distinguishing the pulses causing conduction and the pulses
stopping conduction even if the shaping circuit establishes pulses of
the same sign at both its outputs 72 and 76).
The oscillator 64
has two outputs: one output 70 delivering a saw tooth and one output 62
delivering a short pulse during the zero return of the saw tooth.
A
pulse width modulator 78 is connected on the one hand to the output 70
of the oscillator and on the other to a reference voltage adjustable by
means of a resistor R1 external to the integrated circuit and connected
to a terminal 80 giving access to the circuit. Modulator 78 supplies
periodic square waves synchronized with the signals of the oscillator,
these square waves defining a maximum conduction time Tmax beyond which
the power transistor must be disabled in any case for safety's sake.
These square waves of modulator 78 are applied to one input of the OR
gate 60. The time Tmax is adjustable by means of the external resistor
R1.
The elements which have just been described ensure the
essential part of the operation under normal conditions of the
integrated circuit CI1. The following elements are more specifically
provided for controlling the abnormal operation or start-up of the power
supply.
A very low frequency oscillator 82 is connected to an
external capacitor C2 through an access terminal 86. This external
capacitor allows the very low oscillation frequency to be adjusted. The
frequency may be 1 hertz for example.
Oscillator 82 is a
relaxation oscillator delivering a saw tooth. This saw tooth is applied
on the one hand to a threshold comparator 88 which allows periodic
square waves to be established synchronized with the very low frequency
saw tooth of the oscillator. These square waves have a very short
duration compared with the period of the saw tooth; this duration is set
by the threshold of the comparator 88; it may for example be 10% of the
period; it must be long compared with the free oscillation period of
the high frequency oscillator 64 so that a burst of numerous pulses from
the high frequency oscillator may be emitted and used during this 10%
of this very low frequency period; this burst defines a start-up attempt
during the first part of a start-up cycle; it is followed by a pause
for the rest of the period, i.e. during the remaining 90%.
The
oscillator only serves at start-up; it is inhibited when regulation
signals appear at terminal 40 and indicate that the chopped power supply
is operating. This is why an inhibition control of this oscillator has
been shown connected to the output 72 of the shaping circuit 74 through a
flip flop 89. This flip flop changes state under the action of the
pulses appearing at output 72. It is brought back to its initial state
by the output 62 of oscillator 64 when there are no longer any pulses at
output 72.
The saw teeth of the very low frequency oscillator
are further fed to a variable threshold elaboration circuit 90 whose
purpose is to establish a threshold signal (current or voltage) having a
first value Vsl under normal operating conditions, and a cyclically
variable threshold between the first value and a second value under
start-up conditions. The mode of variation of this threshold will be
described further on, but it may already be noted that the variation is
driven by the very low frequency saw tooth.
The threshold signal
produced by circuit 90 is applied to one input of a comparator 92,
another input of which is connected to the terminal 44 already
mentioned, for receiving at this input a signal representative of the
amplitude of the current flowing through the power switch. The output of
comparator 92 is applied to an input of the OR gate 60. It operates
then for causing the power transistor Tp to be disabled, after being
enabled, disablement occurring as soon as overshooting of the threshold
(fixed or variable) defined by circuit 9 has been detected.
Another
threshold comparator 94 has one input connected to the current
measuring terminal 44 whereas another input receives a signal
representing a third threshold value Vs3. The third value Vs3
corresponds to a current in the switch higher than the first value Vsl
defined by circuit 90. The output of comparator 94 is connected through a
storage flip flop 96 to one input of the AND gate 58 so that, if the
current in the power switch exceeds the third threshold value Vs3,
transistor Tp is not disabled (such disablement is caused by comparator
92) but the transistor is inhibited from being enabled again. This
inhibition lasts until the flip flop 96 is brought back to its initial
state corresponding to normal operation.
In theory, such
re-setting will only take place when the integrated circuit CI1 has
ceased to be normally supplied with power and has again power applied
thereto.
For example, re-setting of flip flop 96 takes place
through a hysteresis threshold comparator 98 which compares a fraction
of the supply voltage Vcc of the circuit (taken from terminal 28) with a
reference value and which re-sets the flip flop the first time that Vcc
passes above this reference after a drop of Vcc below another reference
value lower than the first one (hysteresis). Finally, it should be
mentioned that the output of the flip flop 89 (which detects the
presence of regulation signals at terminal 40 so normal operation of the
power supply), is connected to one input of an OR gate 100 which
receives at another input the output of the comparator 88 so that the
output of comparator 88 ceases to inhibit the re-enabling of transistor
Tp (inhibition during 90% of the very low frequency cycles) as soon as
the operation of the power supply has become normal.
OPERATION OF THE BASE CONTROL CIRCUIT
This
operation will be described by illustrating it with voltage wave forms
within the chopped power supply and within the integrated circuit CI1.
(a) Start-up on switching on
At the beginning the integrated circuit is not at all supplied with power.
The
voltage at the power supply terminal 28 increases from 0 to a value Vaa
which is not the nominal value Vcc but which is a lower value supplied
by diode 32 and resistor 30 (compare FIG. 1) as long as the chopped
power supply does not deliver its nominal output voltage Vcc at terminal
28. Vaa is a sufficient voltage for ensuring practically normal
operation of all the elements of the circuit CI1. Vaa is also sufficient
for reinitializing the flip flop 96 which, from then on, no longer
inhibits the enabling of the power transistor Tp.
There are no
regulation signals at the input 40. Consequently, the high frequency
oscillator oscillates at its free frequency and the very low frequency
oscillator also oscillates (it is not inhibited by the flip flop 89
since this latter does not receive any regulation signals from the
output 72 of the shaping circuit 74).
The very low frequency
oscillator 82 and the comparator 88 define periodic cycles of start-up
attempts repeated at very low frequency.
Each
cycle comprises a first part defined by the square waves of short
duration at the output of the comparator 88, and a second part formed by
the end of the very low frequency period; the first part is an
effective attempt at start-up. The second part is a pause if the
effective attempt has failed. The pause lasts much longer than the
effective attempt so as to limit power consumption. During the first
part of the cycle, passage of the enabling signals from the high
frequency oscillator 64 is allowed through the AND gate 48. Then it is
prohibited. Each pulse from the output 62 of the oscillator 64 triggers
off the enabling of transistor Tp. There is then a burst of triggering
pulses which is emitted for about 10% of the verylow frequency period.
During
start up, the current intensities in the transistor tend to be high. It
is essentially the comparator 92 which causes interruption of the
conduction, after each enabling pulse supplied by oscillator 64, as soon
as the current exceeds the threshold imposed by the variable threshold
elaboration circuit 90. If the comparator 92 does not trigger off
interruption of the conduction, the modulator 78 will do it in any case
at the end of the duration Tmax.
The threshold elaboration
circuit which supplies the comparator 90 with a first fixed threshold
value Vs1 under normal operating conditions (i.e. when the very low
frequency oscillator 82 is disabled by the flip flop 89), delivers a
variable threshold as a function of the saw tooth of the very low
frequency oscillator in the following way:
at the initial time of
a start-up attempt cycle (start of the saw tooth or return to zero of
the preceding saw tooth), the threshold passes suddenly from the first
value Vs1 to a second value Vs2 corresponding to a smaller current than
for the first value, then this threshold increases progressively
(because driven by the very low frequency saw tooth) from the second
value to the first one. The duration of the increase coincides
preferably with the duration of a start-up attempt square wave (namely
about 10% of the very low frequency period).
Then the threshold
stabilizes at the first value Vs1 until the end of the period but, in
any case, if the circuit has not started up at that time, the comparator
88 closes gate 58 through the OR gate 100 and inhibits any subsequent
enabling of the power transistor for the rest of the very low frequency
period (90%). It is in this case the second part of the start up attempt
cycle which takes place: a pause during which the pulses of the
oscillator 64 are not transmitted through the AND gate 58.
Thus
the start up cycles act on two levels: on the one hand a burst of
enabling pulses is emitted (10% of the time) then stopped (90% of the
time) until the next cycle; on the other hand, during this burst, the
current limitation threshold passes progressively from its second
relatively low value to its normal higher value.
Consequently, if
we observe the peak amplitude of the current in transistor Tp during
the start-up bursts, it can be seen that it increases practically
linearly from the second value to the first value. Therefore gradual
start-up is obtained by a much more efficient action than that which
consists simply for example in causing the time Tmax to increase from a
low value to a nominal value. If start up is not successful, a new burst
of enabling pulses is transmitted during the first part of the next
cycle (it will be recalled that this cycle is repeated about once per
second and that the burst may last 100 milliseconds).
If start-up
is successful, regulation signals appear at terminal 40. These signals
are shaped by circuit 74. They cause the very low frequency oscillator
82 to stop through the flip flop 89 which prevents the zero return of
the saw tooth. Moreover, flip flop 89 sends through the OR gate 100 a
signal for cancelling out the inhibition effect imposed by the
comparator 88. Finally, as soon as start-up is successful, the
regulation signals synchronize the high frequency oscillator 64.
FIG. 3 illustrates the high frequency signals during the start-up period:
line a: saw tooth at the output 70 of the oscillator 64 (free oscillation at frequency fo, period To),
line
b: pulses for enabling the transistor Tp : these pulses coincide with
the zero return of the saw tooth signal (output 62 of oscillator 64),
line c: output square waves from modulator 78 defining the maximum cyclic conduction time of the transistor,
line
d: pulses delivered by the comparator 92 when the current in the switch
exceeds the threshold (gradually increasing during start-up) defined by
circuit 90.
Conduction of transistor Tp, after being triggered
by a pulse from line b, is stopped either by square waves of line c if
the current threshold is not exceeded, or by an output pulse from
comparator 92.
FIG. 4 shows the very low frequency signals during
the start up cycles. The diagrams are not to the same time scale as in
FIG. 3 since it will be recalled that an example of the frequency of the
high frequency oscillator 64 is 20 kilohertz whereas an example of the
very low frequency of oscillator 82 is 1 hertz. The high frequency
pulses have however been shown symbolically in FIG. 4, in a more limited
number than in reality for facilitating the representation.
line e: saw tooth output of the very low frequency oscillator (frequency f2, period T2),
line
f: output of the comparator 88 representing the first phase (start-up
attempt by causing transistor Tp to be enabled) and the second phase
(pause through inhibiting such enabling) during each very low frequency
start-up cycle,
line g: pulses from the freely oscillating high frequency oscillator,
line h: bursts of enabling pulses at the output of the AND gate 58,
line
i: diagram of the cyclic variation of the threshold elaborated by
circuit 90 during the start up cycles: fixed value Vs1 in theory, sudden
drop to Vs2 at the beginning of the very low frequency saw tooth, and
gradual rise of Vs2 to Vs1, driven by the linear growth of the saw
tooth, during the start-up burst.
(b) Operation of the power supply under normal established operating conditions
The very low frequency oscillator is not operating.
The high frequency oscillator is synchronized by the regulation signals.
The
zero return of the high frequency saw tooth, coinciding with the
positive pulse of the regulation signals, causes transistor Tp to be
enabled (no inhibition by the AND gate under normal operating
conditions). The negative pulses cause disablement, through the OR gate
64, unless such disablement has been caused:
either by an overshoot of the first current threshold value, detected by comparator 92,
or
by the modulator 78 if the time interval between the positive pulse and
the negative pulse which immediately follows it is greater than the
maximum duration Tmax which is permitted.
FIG. 5 shows the high frequency signals under normal operating conditions.
line
j: alternate positive and negative pulses received at the input 40 of
the circuit (these are the regulation signals defining the times at
which the power transistor Tp is enabled and disabled),
line k:
shaped pulses at the output 72 of the separation and shaping circuit 74:
they correspond to the positive pulses only of the regulation signals,
line
l: saw tooth at the output 70 of oscillator 64; the saw tooth is
synchronized with the regulation signals n so that its zero return
coincides with the pulses of line k,
line m: pulses at the output 62 of oscillator 64; these pulses are emitted during zero returns of the saw tooth of line 1,
line n: output square waves of modulator 78, again defining the maximum duration of conduction of the power transistor,
line
o: pulses coming from the output 70 of the separation and shaping
circuit 74: these pulses correspond to the negative pulses of the
regulation signals,
line p: as a reminder, pulses have been shown
at the output of comparator 92 in the case where the current in the
power transistor overshoots the threshold corresponding to Vs1.
Transistor
Tp after being enabled by a pulse from line k is normally disabled by
the pulse from line o which immediately follows it, or, more
exceptionally by the pulses from line p if the threshold Vs1 has been
exceeded before the appearance of the pulse from line o, or else, by the
square waves of line n if the threshold has not been exceeded and if
the pulse from line o appears after the beginning of a square wave of
line n.
FIG. 6 shows the very low frequency signals at the time
of going over from start-up conditions to normal operating conditions
(same scale as in FIG. 4).
line q: regulation signals at the input 40; these signals are initially absent and appear at a certain moment,
line r: output of the flip flop 89 indicating the absence or the presence of regulation signals,
line
s: very low frequency saw tooth which rises to its high level and does
not drop again if the output of the flip flop 89 is at the high level
(indicating the presence of regulation signals),
line t: output
of the OR gate 100 showing initially a square wave of short duration,
coming from comparator 88 and allowing a start-up burst (cf. FIG. 4),
then blocking at the high level which prevents subsequent inhibition of
the AND gate 58 by the comparator 88.
(c) Safety mode in the case of a malfunction
The safety mode consists in fact in establishing start-up cycles as for switching on.
These
cycles are triggered off by starting up the very low frequency
oscillator 82 when the regulation signals disappear at input 40.
The
flip flop 89 goes back to an initial state when it no longer receives
pulses from the output 72 of the separation and shaping circuits 74.
Thus oscillator 82 will be able to oscillate again and the above
described cycles are established.
(d) Serious malfunction: very high over current.
Whatever
the operating conditions, normal or start-up, the over-currents in the
transistor Tp are detected by the comparator 92 and cause interruption
of the conduction.
But if there is for example a short circuit at
the output of the power supply, an over-current may occur such that the
current continues to increase before the conduction can be completely
interrupted. In this case, it is provided for the threshold comparator
94 to supply an enabling inhibition order when the current in transistor
Tp exceeds a third threshold value which is for example higher by 30%
than the first value. This inhibition order is stored by the flip flop
96 which switches under the action of the comparator and disables the
AND gate 58; the flip flop 96 can only come back to its initial state
when the integrated circuit, after having partially or totally ceased to
be supplied with power, is again normally supplied with power. For
example, the power supply must be switched off and switched on again to
again allow the passage of pulses for enabling the transistor Tp.
To
finish this description, there has been shown in FIG. 7 an example of
circuit 90 which elaborates a variable threshold for the comparator 92:
the very low frequency saw tooth delivered by the oscillator is applied
to a voltage/current converter 102 which produces a current increasing
in saw tooth fashion from zero to a maximum value.
This current
is applied to a series assembly of a voltage source 104 (value Vs2) and a
resistor 106. A voltage clipper, shown by a Zener diode 108 (value of
the conduction threshold: Vs1) is placed in parallel across the assembly
104, 106. The junction point between the output of the converter 102,
the resistor 106 and the voltage clipper 108 forms the output of circuit
90 and is connected to the input of comparator 92. Thus, at zero return
of the saw tooth, the output voltage of circuit 90 is Vs2. Then it
increases as the current in resistor 106 increases (linearly). When the
voltage at the terminals of resistor 106 reaches and exceeds the value
Vs1-Vs2, the voltage clipper conducts and diverts the current surplus so
that the output voltage remains limited to Vs1.
MIVAR 20L1T CHASSIS TV3492 Switch-mode power supply TV3297/2 with burst mode standby operation:
In
a switch mode power supply, a first switching transistor is coupled to a
primary winding of a transformer for generating pulses of a switching
current. A secondary winding of the transformer is coupled via a
switching diode to a capacitor of a control circuit for developing a
control signal in the capacitor. The control signal is applied to a
mains coupled chopper second transistor for generating and regulating
supply voltages in accordance with puls
e
width modulation of the control signal. During standby operation, the
first and second transistors operate in a burst mode that is repetitive
at a frequency of the AC mains supply voltage such as 50 Hz. In the
burst mode operation, during intervals in which pulses of the switching
current occur, the pulse width and peak amplitude of the switching
current pulses progressively increase in accordance with the waveform of
the mains supply voltage to provide a soft start operation in the
standby mode of operation within each burst group.
Description:
The invention relates to switch-mode power supplies.
In
a typical switch mode power supply (SMPS) of a television receiver the
AC mains supply voltage is coupled to a bridge rectifier. An unregulated
direct current (DC) input supply voltage is produced. A pulse width
modulator controls the duty cycle of a chopper transistor switch that
applies the unregulated supply voltage across a primary winding of a
flyback transformer. A flyback voltage at a frequency that is determined
by the modulator is developed at a secondary winding of the transformer
and is rectified to produce DC output supply voltages such as a voltage
B+ that energizes a horizontal deflection circuit of the television
receiver and a voltage that energizes a remote control unit.
During
normal operation, the DC output supply voltages are regulated by the
pulse width modulator in a negative feedback manner. During standby
operation, the SMPS is required to generate the DC output supply voltage
that energizes the
remote control unit. However, most other stages of the television
receiver are inoperative and do not draw supply currents. Consequently,
the average value of the duty cycle of the chopper transistor may have
to be substantially lower during standby than during normal operation.
Because
of, for example, storage time limitation in the chopper transistor, it
may not be possible to reduce the length of the conduction interval in a
given cycle below a minimum level. Thus, in order to maintain the
average value of the duty cycle low, it may be desirable to operate the
chopper transistor in an intermittent or burst mode, during standby.
During standby, a long dead time interval occurs between consecutively
occurring burst mode operation intervals. Only during the burst mode
operation interval switching operation occurs in the chopper transistor.
The result is that each of the conduction intervals is of a sufficient
length.
In accordance with an aspect of the invention,
burst mode operation intervals are initiated and occur at a rate that is
determined by a repetitive signal at the frequency of the AC mains
supply voltage. For example, when the mains supply voltage is at 50 Hz,
each burst mode operation interval, when switching cycles occur, may
last 5 milliseconds and the dead time interval when no switching cycles
occur, may last during the remainder portion or 15 milliseconds. Such
arrangement that is triggered by a signal at the frequency of the mains
supply voltage simplifies the design of the SMPS.
The
burst mode operation intervals that occur in standby operation are
synchronized to the 50 Hz signal. During each such interval, pulses of
current are produced in transformers and inductances of the SMPS. The
pulses of current occur in clusters that are repetitive at 50 Hz. The
pulses of current occur at a frequency that is equal to the switching
frequency of the chopper transistor within each burst mode operation
interval. Such qurrent pulses might produce an objectionable sound
during power-off or standby operation. The objectionable sound might be
produced due to possible parasitic mechanical vibrations as a result of
the pulse currents in, for example, the inductances and transformers of
the SMPS.
In
accordance with another aspect of the invention, the change in the AC
mains supply voltage during each period causes the length of the
conduction interval in consecutively occurring switching cycle during
the burst mode operation interval to increase progressively. Such
operation that occurs during each burst mode operation interval may be
referred to as soft start operation. The soft start operation causes,
for example, gradual charging of capacitors in the SMPS. Consequently,
the parasitic mechanical vibrations are substantially reduced. Also, the
frequency of the switching cycles within each burst mode operation
interval is maintained above the audible range for further reducing the
level of such audible noise during standby operation.
A
switch mode power supply, embodying an aspect of the invention, for
generating an output supply voltage during both a standby-mode of
operation and during a run-mode of operation includes a source of AC
mains input supply voltage. A control signal at a given frequency is
generated. A switching arrangement energized by the input supply voltage
and responsive to the first control signal produces a switching current
during both the standby-mode of operation and the run-mode operation.
The output supply voltage is generated from the switching current. An
arrangement coupled to the switching arrangement and responsive to a
standby-mode/run-mode control signal and to a signal at a frequency that
is determined by a frequency of the AC mains input supply voltage
controls the switching arrangement in a burst mode manner during the
standby-mode of operation. During a burst interval, a plurality of
switching cycles are performed and during an alternating dead time
interval no switching cycles are performed. The two intervals alternate
at a frequency that is determined by the frequency of the AC mains input
supply voltage.
MIVAR 20L1T CHASSIS TV3492- Video chrominance and Luminance with TDA3562A
TDA3562A (Philips)PAL/NTSC ONE-CHIP DECODER
DESCRIPTION:
The TDA3562A is a monolithic IC designed as
decode PAL and/or NTSC colour television standards
and it combines all functions required for the
identification and demodulation of PAL and NTSC
signals.
.CHROMINANCE SIGNAL PROCESSOR
.LUMINANCE SIGNAL PROCESSING WITH
CLAMPING
.HORIZONTAL AND VERTICAL BLANKING
.LINEAR TRANSMISSION OF INSERTED
RGB SIGNALS
.LINEAR CONTRAST AND BRIGHTNESS
CONTROL ACTING ON INSERTED AND MATRIXED
SIGNALS
.AUTOMATIC CUT-OFF CONTROL
.NTSC HUE CONTROL
FEATURES
· A black-current stabilizer which
controls the black-currents of the
three electron-guns to a level low
enough to omit the black-level
adjustment
· Contrast control of inserted RGB
signals
· No black-level disturbance when
non-synchronized external RGB
signals are available on the inputs
· NTSC capability with hue control.
APPLICA
TIONS
· Teletext/broadcast antiope
· Channel number display.
GENERAL DESCRIPTION
It follows that the
external switches and filters which
are required for the TDA3562A are
not required for the TDA3566A.
There is no difference between the
amplitudes of the colour output
signals in the PAL or NTSC mode.
· The clamp capacitor at pins 10, 20
and 21 in the black-level
stabilization loop can be reduced to
100 nF provided the stability of the
loop is maintained. Loop stability
depends on complete application.
The clamp capacitors receive a
pre-bias voltage to avoid coloured
background during switch-on.
· The crystal oscillator circuit has
been changed to prevent parasitic
oscillations on the third overtone of
the crystal. Consequently the
optimum tuning capacitance must
be reduced to 10 pF.
· The hue control has been improved
(linear).
MIVAR 20L1T CHASSIS TV3492 THE PHILIPS TDA3562A Circuit arrangement for the control of a picture tube :
1. Circuit arrangement for the control of at least one beam current in a picture tube by a picture comprising
a control loop which in one sampling interval obtains a measuring
signal from the value of the beam current on the occurrence of a given
refe
rence level in the picture signal, stores a control signal derived
therefrom until the next sampling interval and thereby adjusts the beam
current to a value preset by a reference signal.
and a trigger
circuit which suppresses auxiliary pulses used to generate the beam
current after the picture tube has been started up and issues a
switching signal for the purpose of closing the control loop during the
sampling intervals and for releasing the control of the beam current by
the picture signal after the measuring signal has exceeded the threshold
value,
a change detection arrangement which delivers a change
signal when the stored signal has assumed a largely constant value, and
a logic network which does not release the control of the beam current
by the picture signal outside the sampling intervals until the change
signal has also been issued after the switching signal.
2. Circuit arrangement as set forth in claim 1, in
which the picture signal comprises several color signals for the control
of a corresponding number of beam currents for the display of a color
picture in the picture tube and the control loop stores a part measuring
signal or a part control signal derived therefrom for each color
signal, characterized in that the change detection arrangement includes a
change detector for each color signal which delivers a part change
signal when the relevant stored signal has assumed a largely constant
value, and the logic network does not release the control of the beam
currents by the color signals outside the sampling intervals until the
part change signals have been delivered by all change detectors.
3. Circuit arrangement as set forth in claim 1,
including a comparator arrangement which compares the measuring signal
with the reference signal and derives the control signal from this
comparison, characterized in that the change detection arrangement
detects a change in the control signal with respect to time and issues
the change signal when the control signal has assumed a largely constant
value.
4. Circuit arrangement as set forth in claims 1, 2, 3
including a control signal memory which contains at least one
capacitor, characterized in that the change detection arrangement
delivers the change signal when a charge-reversing current of the
capacitor occuring during the starting up of the picture tube falls
below a limit value.
5. Circuit arrangement as set forth in claim 2,
including a comparator arrangement which compares the measuring signal
with the reference signal and derives the control signal from this
comparison, characterized in that the change detection arrangement
detects a change in the control signal with respect to time and issues
the change signal when the control signal has assumed a largely constant
value.
Description:
BACKGROUND OF THE INVENTION
The invention
relates to a circuit arrangement for the control of at least one beam
current in a picture tube by a picture signal with a control loop which
in one sampling interval obtains a measuring signal from the value of
the beam current on the occurrence of a given reference level in the
picture signal, stores a control signal derived therefrom until the next
sampling interval and by this means adjusts the beam current to a value
preset by a reference signal, and with a trigger circuit which
suppresses auxiliary pulses used to generate the beam current after the
picture tube is turned on and issues a switching signal for the purpose
of closing the control loop during the sampling intervals and releasing
the control of the beam curr
ent by the picture signal after the
measuring signal has exceeded a threshold value.
Such a circuit
arrangement has been described in Valvo Technische Information 820705
with regard to the integrated color decoder circuit PHILIPS TDA3562A and is
used in this as a so-called cut-off point control. In the known circuit
arrangement, such a cut-off point control provides automatic
compensation of the so-called cut-off point of the picture tube, i.e. it
regulates the beam current in the picture tube in such a way that for a
given reference level in the picture signal the beam current has a
constant value despite tolerances and changes with time (aging, thermal
modifications) in the picture tube and the circuit arrangement, thereby
ensuring correct picture reproduction.
Such a blocking point
control is particularly advantageous for the operation of a picture tube
for the display of color pictures because in this case there are
several beam currents for different color components of the color
picture which have to be in a fixed ratio with one another. If this
ratio changes, for example, as the result of manufacturing tolerances or
ageing processes, distortions of the colors occur in the reproduction
of the color picture. The beam currents, therefore, have to be very
accurately balanced. The said cut-off point control prevents expensive
adjustment and maintenance time which is otherwise necessary.
Conventional
picutre tubes are constructed as cathode-ray tubes with hot cathodes
which require a certain time after being turned on for the hot cathodes
to heat up.
Not until a final operating temperature has been reached do
these hot cathodes emit the desired beam currents to the full extent,
while gradually rising beam currents occur in the time interval when the
hot cathodes are heating up. The instantaneous values of these beam
currents depend on the instantaneous temperatures of the hot cathodes
and on the accelerating voltages for the picture tube which build up
simultaneously with the heating process and are undefined until the end
of the heating time. After the picture tube is turned on, these values
initially produce a highly distorted picture until the beam currents
have attained their final value. These picture distortions after the
picture tube is turned on are even further intensified by the fact that
the cut-off point control is not yet adjusted to the beam currents which
flow after the heating time is over.
For the purpose of
suppressing distorted pictures during the heating time of the hot
cathodes, the known circuit arrangement has a turn-on delay element
operating as a trigger circuit which, in essence, contains a bistable
flip-flop. When the picture tube and the circuit arrangement controlling
the beam currents flowing in it are turned on, the flip-flop is
switched into a first state in which it interrupts the supply of the
picture signal to the picture tube. Thus, during the heating time the
beam currents are suppressed, and the picture tube does not yet display
any picture. In sampling intervals which are provided subsequent to
flybacks of the cathode beam into an initial position on the changeover
from the display of one picture to the display of a subsequent picture
and even within the changeover, that is outside the display of pictures,
the picture tube is controlled for a short time in such a way that beam
currents occur when the hot cathodes are sufficiently heated up and an
accelerating voltage is resent. If these currents exceed a certain
threshold value, the flip-flop circuit switches into a second state and
releases the picture signal for the control of the beam currents and the
cut-off point control.
It is found, however, that the picture
displayed in the picture tube immediately after the switching over of
the flip-flop is still not fault-free. Because, in fact, the beam
currents are supported during the heating time of the hot cathodes, the
cut-off point control cannot respond yet. This response of the cut-off
point control takes place only after the beam currents are switched on
,
i.e. after the flip-flop is switched into the second state and therefore
at a time in which the picture signal already controls the beam
currents. In this way the response of the blocking point control makes
its presence felt in the picture displayed.
With the known
circuit arrangement the brightness of the picture gradually increases,
during the response of the cut-off point control, from black to the
final value.
This slow increase in the picture brightness after
the tube is turned on is disturbing to the eyes of the viewer not only
in the case of the black-and-white picture tubes with one hot cathode,
but especially so in the case of colour picture tubes which usually have
three hot cathodes. With a color picture tube, color purity errors can
also occur in addition to the change in the picture brightness if, as a
result of different speeds of response of the cut-off point control for
the three beam currents, there are found to be intermittent variations
from the interrelation between the beam currents required for a correct
picture reproduction.
SUMMARY OF THE INVENTION
The
aim of the invention is to create a circuit arrangement which
suppresses the above-described disturbances of brightness and color of
the displayed picture
when the picture tube is being started.
The
invention achieves this aim in that a circuit arrangement of the type
mentioned in the preamble contains a change detection arrangement which
emits a change signal when the stored signal has assumed an essentially
constant value, and a logic network which does not release the control
of the beam current by the picture signal until the change signal has
also been emitted after the switching signal.
In the circuit
arrangement according to the invention, therefore, the display of the
picture is suppressed after the picture tube is turned on until the
cut-off point control has responded. If the picture signal then starts
to control the beam current, a perfect picture is displayed immediately.
In this way, all the disturbances of the picture which affect the
viewer's pleasure are suppressed. The circuit arrangement of the
invention is of simple design and can be combined on one semiconductor
wafer with the existing picture signal processing circuits and also, for
example, with the known circuit arrangement for cut-off point control.
Such an integrated circuit arrangement not only requires very little
space on the semiconductor wafer, but also needs no additional external
leads. Thus the circuit arrangement of the invention can be arranged,
for example, in an integrated circuit which has precisely the same
external connections as known integrated circuits. This means that an
integrated circuit containing the circuit arrangement of the invention
can be directly incorporated in existing equipment without the need for
additional measures.
In one embodiment of the said circuit
arrangement, in which the picture signal contains several color signals
for the control of a corresponding number of beam currents
for
representing a color picture in the picture tube and, for each color
signal, the control loop stores a part measuring signal or a part
control signal derived from it, the change detection arrangement
contains a change detector for each color signal which emits a part
change signal when the relevant stored signal has assumed an essentially
constant value, and the logic network does not release the control of
the beam currents by the color signals outside the sampling intervals
until the part change signals have been emitted from all change
detectors.
In principle, therefore, such a circuit arrangement
has three cut-off point controls for the three beam currents controlled
by the individual color signals. To reduce the cost of the circuitry,
the measuring stage is common to all the cut-off point controls, as in
the known circuit arrangement. All three beam currents are then measured
successively by this measuring stage. In this way, a part measuring
signal or a part control signal derived from it is obtained for each
beam current and is stored sesparately according to which of the beam
currents it belongs. Changes in the part measuring signal or part
control signal are detected for each beam current by one of the change
detectors each time. Each of these change detectors issues a part change
signal to the logic network. The latter does not release the control of
the beam currents by the picture signal outside the sampling intervals
until all the part change signals indicate that the part measuring
signal or the part control signal, as the case may be, remains constant.
This ensures that the cut-off point controls for the beam currents of
all color signals have responded when the picture appears in the picture
tube.
In a further embodiment of the circuit arrangement
accordin
g to the invention with a comparator arrangement which compares
the measuring signal with the reference signal and derives the control
signal from this comparison, the change detection arrangement detects a
change in the control signal with respect to time and issues the change
signal when the control signal has assumed an essentially constant
value. In the case of the representation of a color signal the
comparator arrangement derives several part control signals, whose
changes with time are detected by the change detectors, from a
corresponding comparison of the part measuring signals with the
reference signal. In this embodiment of the circuit arrangement of the
invention, preference is given to storage of only the control signal or
the part control signals for the purpose of controlling the beam
currents.
In another embodiment of the circuit arrangement of the
invention which includes a control signal memory which contains at
least one capacitor in which a charge or voltage corresponding to the
control signal is stored, the change detection arrangement issues the
change signal when a charge-reversing current of the capacitor occurring
during the turning on of the picture tube has fallen below a limit
value and has thus at least largely decayed. Such a detection of the
steady state of the cut-off point control is independent of the actual
magnitude of the control signal and therefore independent of, for
example, the level of the picture tube cut-off voltage, circuit
tolerances or ageing processes in the circuit arrangement or the picture
tube.
Detection of whether or not the charge-reversing current
exceeds the limit value is performed preferentially by a current
detector which is designed with a current mirror system which is
arranged in a supply line to a capacitor acting as a control signal
store. A current mirror arrangement of this kind supplies a current
which coincides very precisely with the charging current of the
capacitor. This current is then compared, preferably in a further device
contained in the change detection arrangement, with a current
representing a limit value or, after conversion into a voltage, with a
voltage representing the limit value. The change signal is obtained from
the result of this comparison.
On the other hand, digital
memories may also be used as control signal memories, especially when
the picture signal is supplied as a digital signal and the blocking
point control is constructed as a digital control loop. In such a case,
the comparator arrangement, the change detection arrangement and the
trigger circuit are also designed as digital circuits. Then, the change
detection arrangement advantageously forms the difference of the signals
stored in the control signal memory in two successive sampling
intervals and
compares this with the limit value formed by a digital
value. If the difference falls short of the limit value, the change
signal is issued.
BRIEF DESCRIPTION OF THE DRAWINGS
An embodiment of the invention is described in greater detail below with the aid of the drawings in which:
FIG. 1 shows a block circuit diagram of the embodiment,
FIG. 2 shows a somewhat more detailed block circuit diagram of the embodiment,
FIG. 3 shows time-dependency diagrams of some signals occurring in the circuit diagram shown in FIG. 2, and
FIG. 4 shows a somewhat moredetailed block circuit diagram of a part of the circuit diagram shown in FIG. 2.
DETAILED DESCRIPTION OF THE INVENTION
FIG.
1 shows a block circuit diagram of a circuit arrangement to which a
picture signal is fed via a first input 1 of a combinatorial stage 2.
From the output 3 of the combinatorial stage 2 the picture signal is fed
to the picture signal input of a controllable amplifier 5 which at an
output 6 issues a current controlled by the picture signal. This current
is fed via a measuring stage 7 to a hot cathode 8 in a picture tube 9
and forms therein a beam current of a cathode ray by means of which a
picture defined by the picture signal is displayed on a fluorescent
screen of the picture tube 9.
The measuring stage 7 measures the
current fed to the hot cathode 8, i.e. the the beam current in the
picture tube 9, and at a measuring signal output 10, issues a measuring
signal corresponding to the magnitude of this current. This is fed to a
measuring signal input 11 of a comparator arrangement 12 to which a
reference signal is supplied at a reference signal input 13. In a
preferably periodically recurring sampling interval during the
occurrence of a given reference level in the picture signal, the
comparator arrangement 12 forms a control signal from the value of the
measuring signal fed to the measuring signal input 11 at this time, on
the one hand, and the reference signal, on the other, by means of
substraction and delivers this at a control signal output 14. From there
the control signal is fed to an input 15 of a control signal memory 16
and is stored in the latter. The control signal is fed via an output 17
of the control signal memory 16 to a second input 18 of combinatorial
stage 2 in which it is combined with the picture signal, e.g. added to
it.
The combinatorial stage 2, the controllable amplifier 5, the
measuring stage 7, the comparator arrangement 12 and the control signal
memory 16 form a control loop with which the beam current is guided
towards the reference signal in the sampling interval during the
occurrence of the reference level in the picture signal. For the
reference level, use is made in particular of a black level or a level
with small, fixed distance from the black lev
el, i.e. a value in the
picture signal which produces a black or almost back picture area in the
displayed picture in the picture tube. In this case the control loop,
as described, forms a cut-off point control for the picture tube. If the
reference level is away from the black level, the control loop is also
designated as quasi-cut-off-point control.
The circuit
arrangement as shown in FIG. 1 also has a trigger circuit 19 to which
the measuring signal from the measuring signal output 10 of measuring
stage 7 is fed at a measuring signal input 20. When the circuit
arrangement and therefore the picture tube are turned on, the trigger
circuit 19 is set in a first state in which by means of a first
connection 21 it blocks the comparator arrangement 12 in such a way that
the latter delivers no control signal or a control signal with the
value zero at its control signal output 14. This prevents the control
signal memory 16 from storing undefined values for the control signal at
the moment of turning on or immediately thereafter.
The circuit
arrangement shown in FIG. 1 also has a logic network 22 which is
connected via a second connection 23, by means of which a switching
signal is supplied, with the trigger circuit 10 and via a third
connection 24 with the controllable amplifier 5. Like the trigger
circuit 19, the logic network 22 also finds itself controlled, when the
circuit arrangement is being turned on, by the switching signal in a
first stage in which by way of the third connection 24 it blocks the
controllable amplifier 5 with a blocking signal in such a way that no
beam currents controlled by the picture signal can yet flow in the
picture tube 9. Thus the picture tube 9 is blanked; no picture is
displayed yet.
When picture tube 9 is turned on, the hot cathode 8
is still cold so that no beam current can flow anyhow. The hot cathode 8
is then heated up and, after a certain time, begins gradually to emit
electrons as the result of which a cathode ray and therefore a beam
current can form. However, during the heating up of the hot cathode 8,
and because the cut-off point control has not yet responded, this would
be undefined and is therefore suppressed by the controllable amplifier
5. Only in time intervals which are provided immediately subsequent to
flybacks of the cathode rays into an initial position at the changeover
from the display of one image to that of a subsequent image, but even
before the start of the display of the subsequent image, the
controllable amplifier 5 delivers a voltage in the form of an auxiliary
pulse for a short time at its output 6, and when the hot cathode 8 in
the picture tube 9 is heated up sufficiently, this voltage produces a
beam current. The time interval for the delivery of this voltage is
selected in such a way that a cathode ray produced by its does not
produce a visible image in the picture tube 9, and coincides for example
with the sampling interval.
The measuring stage 7 measures the
short-time cathode current produced in the manner described and, at its
measuring signal output 10, delivers a corresponding measuring signal
which is passed via measuring signal output 20 to the trigger circuit
19. If the measuring signal exceeds a definite preset threshold value,
the trigger circuit 19 is switched into a second state in which it
releases the comparator arrangement 12 via the first connection 12 and,
by mea
ns of the second connection 23, uses the switching signal to also
bring the logic network 22 into a second state. The comparator
arrangement 12 now evaluates the measuring signal supplied to it via the
measuring signal input 11, i.e. it forms the control signal as the
difference between the measuring signal and the reference signal
supplied via the reference signal input 13. The control signal is
transferred via the control signal output 14 and the input 15 into the
control signal memory 16. It is subsequently fed via the output 17 of
the control signal memory 16 to the second input 18 of the combinatorial
stage 2 and is there combined with the picture signal at the first
input 1, e.g. is superimposed on it by addition. This superimposed
picture signal is fed to the picture signal input 4 of the controllable
amplifier 5 via the output 3 of the combinatorial stage 2.
In the
second state of the logic network 22 the controllable amplifier 5 is
switched via the third connection 24 by the blocking signal in such a
way that the picture signal controls the beam currents only during the
sampling intervals and that, for the rest, no image appears yet in the
picture tube. The cut-off point control now gebins to respond, i.e. the
value of the control signal is changed by the control loop comprising
the combinatorial stage 2, the controllable amplifier 5, the measuring
stage 7, the comparator arrangement 12 and the control signal memory 16
until such time as the beam current in the picture tube 9 at the
blocking point or at a fixed level with respect to it is adjusted to a
value preset by the reference signal. For this purpose the sampling
interval, in which the picture signal controls the beam current via the
controllable amplifier 5 is selected in such a way that within it the
picture signal just assumes a value corresponding to the cut-off point
or to a fixed level with respect to it.
During the response of
the cut-off point control the control signal fed to the control signal
memory 16 changes continuously. Between the control signal output 14 of
the comparator arrangement 12 and the input 15 of the control signal
memory 16 is inserted a chang
ed detection arrangement 25 which detects
the variations of the control signal. When the cut-off point control has
responded, i.e. the control signal has assumed a constant value, the
change detection arrangement 25 delivers a change signal at an output 26
which indicates that the steady stage of the cut-off point control is
achieved and the said signal is fed to a change signal input 27 of the
logic network 22. The logic network then switches into a third state in
which via the third connection 24 it enables the controllable amplifier 5
in such a way that the beam currents are now controlled without
restriction by the picture signal. Thus a correctly represented picture
appears in the picture tube 9.
A shadow-like representation of
individual constituents of the circuit arrangement in FIG. 1 is used to
indicate a modification by which this circuit arrangement is equipped
for the representation of color pictures in the picture tube 9. For
example, three color signals are fed in this case as the picture signal
via the input 1 to the combinatorial stage 2. Accordingly, the input 1
is shown in triplicate, and the combinatorial stage 2 has a logic
element, e.g. an adder, for example of these color signals. The
controllable amplifier 5 now has three amplifier stages, one for each of
the color signals, and the picture tube now contains three hot cathodes
8 instead of one so that three independent cathode rays are available
for the three color signals.
However, to simplify the circuit
arrangement and to save on components, only one measuring stage 7 is
provided which measures all three beam currents successively. Also, the
comparator arrangement 12 forms part control signals from the
successively arriving part measuring signals for the individual beam
currents with the reference signal, and these part control signals are
allocated to the individual color signals and passed on to three storage
units which are contained in the control signal memory 16. From there,
the part control signals are sent via the second input 18 of the
combinatorial stage 2 to the assigned logic elements.
The circuit
arrangement thus forms three independently acting control loops for the
cut-off point control of the individual color signals, in which case
only the measuring stage 7 and to some extent at least the comparator
arrangement 12 are common to these control loops.
The change
detection arrangement 25 now has three change detectors each of which
detects the changes with time of the part control signals relating to a
color signal. Then via the output 26 each of these change detectors
delivers a part change signal to the change signal input 27 of the logic
network 22. These part change signals occur independently of one
another when the relevent control loop has responded. The logic network
22 evaluates all three part change signals and does not switch into its
third stage until all part change signals indicate a steady state of the
control loops. Only then, in fact, is it ensured that all the color
signals from the beam currents controlled by them are correctly
reproduced in the picture tube, and thus no distortions of the displayed
image, especially no color purity errors, occur. The color picture
displayed then immediately has the correct brightness and color on its
appearance when the picture tube is turned on.
FIG. 2 shows a
somewhat more detailed block circuit diagram of an embodiment of a
circuit arrangement equipped for the processing of a picture signal
containing three colour signals. Three color signals for the
representation of the colors red, green and blue are fed to this circuit
arrangement via three input terminals 101, 102, 103. A red color signal
is fed via the first input terminal 101 to a first adder 201, a green
colour signal is fed via the second input terminal to a second adder
202, and a blue colour signal is fed via the third input terminal 103 to
a third adder 203. From outputs 301, 302 and 303 of the adders 201,
202, 203 the color signals are fed to amplifier stages 501, 502 and 503
respectively. Each of the amplifier stages contains a switchable
amplifier 511, 512 and 513, an output amplifier 521, 522 and 523 as well
as a measuring transistor 531, 532 and 533 respectively. The emitters
of these measuring transistors 531, 532, 533 are each connected to a hot
cathode 801, 802, 803 of the picture tube 9 and deli
ver the cathode
currents, whereas the collectors of measuring transistors 521, 532, 533
are connected to one another and to a first terminal 701 of a measuring
resistor 702 the second terminal of which 703 is connected to earth. The
current gain of the measuring transistors 531, 532 and 533 is so great
that their collector currents coincide almost with the cathode currents.
By measuring the voltage drop produced by the cathode currents at the
measuring resistor 802 it is then possible to measure the cathode
currents and therefore the beam currents in the picture tube 9 with
great accuracy.
The falling voltage at the measuring resistor 702
is fed as a measuring signal to an input 121 of a buffer amplifier 120
with a gain factor of one, at the output 122 of which the unchanged
measuring signal is therefore available at low impedance. From there it
is fed to a first terminal 131 of a reference voltage source 130 which
is connected with its second terminal 132 to inverting inputs 111, 112
and 113 of three differential amplifiers 123, 124, 125 respectively. The
differential amplifiers 123, 124, 125 also each have a non-inverting
input 114, 115, and 116 respectively. These are connected to each other
at a junction 117, to earth via a leakage current storage capacitor 126
and to the output 122 of the buffer amplifier 120 via decoupling
resistor 118 and a leakage current sampling switch 119. In addition, the
input 121 of the buffer amplifier 120 can be connected to earth via a
short-circuiting switch 127.
From outputs 141, 142, and 143
respectively of the differential amplifiers 123, 124 and 125, part
control signals relating to the individual color signals are fed in the
form of electrical voltages (or, in some cases, charge-reversing
currents) via control signal sampling switches 154, 155 and 156, in the
one instance, to first terminals 151, 152 and 153 respectively of
control signal storage capacitors 161, 162, 163 which form the storage
units of the control signal memory 16 and store inside them charges
corresponding to these voltages (or formed by the charge-reversing
currents). In the other instance, the part control signals are fed to
second inputs 181, 182 and 183 of the first, second or third adders 201,
202, 203 respectively and are added therein to the color signals from
the first, second or third input terminals 101, 102 or 103 respectively.
The operation of the comparator arrangement 12 which consists
mainly of the buffer amplifier 120, the reference voltage source 130 and
differential amplifiers 123, 124, 125 will be explained below with the
aid of the pulse diagrams in FIG. 3. FIG. 3a shows a horizontal blanking
signal for a television signal which, as the picture signal, controls
the beam currents in the picture tube 9. In this diagram, H represents
horizontal blanking pulses which follow one another in the picture
signal at the time interval of one line duration and by means of which
the beam currents are switched off during line flyback between the
display of the individual picture lines in the picture tube. FIG. 3b
shows a vertical blanking pulse V by means of which the beam currents
are switched off during the change ober from the display of one picture
to the display of the next picture. FIG. 3c shows a measuring signal
control pulse VH which is formed from a vertical blanking pulse
lengthened by three line duration.
The short-circuiting switch
127 is now controlled in such a way that it is non-conducting only
throughout the duration of the measuring signal control pulse VH and
during the remaining time short-circuits the input 121 of the buffer
amplifier 120 to earth. This means that a measuring signal only reaches
the comparator arrangement 12 during frame change so that the parts of
the picture signal which control the beam currents producing the picture
in the picture tube exert no influence on comparator arrangement 12 and
therefore on the blocking point control.
Throughout the duration
of the measuring signal control pu
lse VH, the measuring signal from
output 122, reduced by a reference voltage issued by the reference
voltage source 130 between its first 131 and its second terminal 132, is
present at the inverting inputs 111, 112, 113 of differential
amplifiers 123, 124, 125. If the differential amplifiers 123, 124, 125
were not present, this difference would be fed directly as part control
signals to the control signal storage capacitors 161, 162, 162. The
differential amplifiers 123, 124, 125 amplify the difference and thus
form the control amplifiers of the control loops.
The comparator
arrangement 12 further contains a device for compensation of the
influence of any leakage currents occurring in the picture tube 9. For
this purpose, a voltage to which the leakage current storage capacitor
126 is charged is fed to the non-inverting inputs 114, 115, 116 of the
three differential amplifiers 123, 124 and 125. The charging is
performed by the measuring signal from output 122 of the buffer
amplifier 120 via the decoupling resistor 118 and the leakage current
sampling switch 119 which is closed only within the period of the
vertical blanking pulse V, and in certain cases only during part of the
latter. Within this time the beam currents are, in fact, totally
switched off by the picture signal so that in certain cases only a
leakage current flows through the measuring
resistor 702. Consequently,
throughout the duration of the vertical blanking pulse V the measuring
signal corresponds to this leakage current. Because the leakage current
also flows during the remaining time, even outside the duration of the
vertical blanking pulse the measuring signal contains a component
originating from the leakage current which therefore is also contained
in the voltage fed to the inverting inputs 111, 112, 113 of differential
amplifiers 123, 124, 125 and is subtracted out in the differential
amplifiers 123, 124, 125.
The part control signal is fed from
output 141 of differential amplifier 123 by the first control signal
sampling switch 154 to the first terminal 151 of the first control
signal storage capacitor 161 during the period of a storage pulse L1 and
is stored in the said capacitor. Similarly, the part control signal
from output 143 of differential amplifier 125 is fed to the third
control signal storage capacitor 163 during the period of a storage
pulse L2 and the part control signal from output 142 of differential
amplifier 124 is fed to the second control signal storage capacitor 162
during a storage pulse L3. The storage pulses L1, L2 and L3 are
illustrated in FIGS. 3d, e and f. They lie in sequence in one of the
three line periods by which the measuring signal control pulse VH is
longer than the vertical blan
king pulse V. These three line periods form
the sampling interval for the measuring signal or the part measuring
signals, as the case may be. During the remaining periods the outputs,
141, 152, 143 of the differential amplifiers 123, 124, 125 are isolated
from the control signal storage capacitors 161, 162, 163 so that no
interference can be transmitted from there and any distortion of the
stored part control signals caused thereby is eliminated. For the
duration of storage pulses L1, L2 and L3 the color signals at the input
terminals 101, 102, 103 are at their reference level i.e. in the present
embodiment at a level, corresponding to the blocking point or at a
fixed level with respect to it so that the control loops can adjust to
this level.
The switchable amplifiers 511, 512, and 513 each
receive at each input 241, 242, 243 a blanking signal BL1, BL2, BL3
respectively, the curves of which are shown in FIGS. 3g, h, i. These
blanking signals interrupt the supply of the color signals during line
flybacks and frame change, i.e. during the period of the measuring
signal control pulse VH, and thus the beam currents in these time
intervals are switched off. Naturally, the red color signal is let
through during the first line period after the end of the vertical
blanking pulse V, the blue color signal during the second line period
after the end of the vertical blanking pulse V and the green color
signal during the third line period after the end of the vertical
blanking pulse V by the switchable amplifiers 511, 512, 513 respectively
so that they can control the beam currents. Blanking signals BL1, BL2
and BL3 also provide for interruptions in the frame change blanking
pulse, which corresponds to the measuring signal control pulse, in the
corresponding time intervals. In these time intervals the beam currents
are measured and part control signals are determined from the part
measuring signals and stored in the control signal storage capacitors
161, 162, 163.
The circuit arrangement shown in FIG. 2 further
contains a trigger circuit 19 to which a supply voltage is fed via a
supply terminal 190. Via a reset input 191 a voltage is also
supplied to
the trigger circuit 19 from a third terminal 133 of the reference
voltage source 130. When the circuit arrangement is turned on, this
voltage is designed so as to be delayed with respect to the supply
voltage so that when the circuit arrangement is brought into operation
the interplay of the two voltages produces a switch-on reset signal such
that a low-value voltage pulse occurs at the reset input 191 during
turn on, which means that the trigger circuit 19 is set in its first
state. The reset input 191 can also be connected to another circuit of
any configuration which generates a switch-on reset signal when the
picture tube is turned on.
The trigger circuit 19 is further
connected via a second connection 23 to a logic network 22 which, when
the circuit arrangement is turned on, is also set into a first state via
the second connection 23. In this first state the logic network 22
delivers a blocking signal at a blocking output 240 which is fed to the
three switchable amplifiers 511, 512, 513. By this means the supply of
the color signals to the output amplifiers 521, 522, 523 is interrupted
completely so that no beam currents can be generated by these. No
picture is therefore displayed.
An insertion signal EL which
extends over the three line pe
riods by which the measuring signal
control pulse VH is longer than the vertical blanking pulse V, i.e. over
the sampling interval, is also fed via a line 233 to the trigger
circuit 19 and the logic network 22. As long as the trigger circuit 19
is in its first state, this insertion pulse EL is issued via a control
output 192 from the trigger circuit 19 and fed to the pulse generator
244. During the period of the insertion pulse EL this generator produces
a voltage pulse of a definite magnitude and passes this to output
amplfiiers 521, 522, 523 as an auxiliary pulse via switching diodes 245,
246, 247. By this means the beam currents are switched on for a short
time so as to receive a measuring signal despite the disconnected color
signals as soon as at least one of the hot cathodes 801, 802, 803
delivers a beam current.
In its first state the trigger circuit
19 also delivers a signal via a control line 211, and this signal is
used to switch the outputs 141, 142, 143 of the differential amplifiers
123, 124, 125 to earth potential or practically to earth potential. This
suppresses effects of voltages at the inputs 111 to 116 of the
differential amplifiers 123, 124, 125, especially effects of the
reference voltage source 130 which may in some cases initiate incorrect
charging of the control signal storage capacitors 161, 162, 163.
The
measuring signal produced by means of the pulse generator 244 at the
input 121 of the buffer amplifier 120 is also fed to the trigger circuit
19 via a me
asuring signal input 20. If it exceeds a preset threshold
value, the trigger circuit 19 switched into its second state. The logic
network 22 is then also switched into its second state via the second
connection 23. The differential amplifiers 123, 124, 125, too, are
triggered by the signal along the control line 211 into issuing a
control signal defined by the difference in the voltages at its inputs
111 to 116. The pulse generator 244 is blocked by the control output
192. The blocking signal issued from the blocking output 240 of the
logic network 22 now turns on the switchable amplifiers 511, 512, 513 in
the time intervals defined by the storage pulses L1, L2, L3 in such a
way that in these time intervals the color signals can produce beam
currents to form a measuring signal by which the control loops respond.
However, the display of the picture is still suppressed. The control
signal storage capacitors 161, 162, 163 are charged up in this process.
In the leads to the first terminals 151, 152, 153 there are change
detectors 251, 252, 253 which detect the changes of the charging
currents of the control signal storage capacitors 161, 162, 163 and at
their outputs 261, 262, 263 in each case deliver a part change signal
when the charging current of the control signal storage capacitor in
question has decayed and thus the relevant control loop has responded.
The part change signals are fed to three terminals 271, 272, 273 of the
change signal input 27 of the logic network 22.
When part change
signals are present from all change detectors 251, 252, 253, when
therefore all control loops have responded, the logic network 22
switches from its second to its third state. The blocking signal from
the blocking output 240 is now completely disconnected such that the
switchable amplifiers 511, 512, 513 are now switched only by the
blanking signals BL1, BL2, BL3. The colour signals are then switched
through to the output amplifiers 521, 522, 523 and the picture is
displayed in the picture tube.
FIG. 4 shows an embodiment for a
trigger circuit 19 and a logic network 22 of the circuit arrangements as
shown in FIGS. 1 or 2. The trigger circuit 19 contains a flip-flop
circuit formed from two NAND-gates 194, 195 to which the switch-on reset
signal, by which the trigger circuit 19 is returned to its first stage,
is fed via the reset input 191. All the elements of the circuit
arrangement in FIG. 4 are shown in positive logic. Thus, a short-time
low voltage at the reset input 191 immediately after the circuit
arrangement is started up is used to set the flip-flop circuit 194, 195
in such a way that a high voltage occurs at the output of the second
NAND gate 194 and a low voltage at the output of the second NAND gate
195. The low voltage at the output of the second NAND gate 195 blocks
differential amplifiers 123, 124, 125 via the control line 211 in the
manner described.
The insertion pulse EL is fed via the line 233
to the trigger circuit 19, is combined via an AND gate 196 with the
signal from the output of the first NAND gate 194 and is delivered at
the control output 192 for the purpose of controlling the pulse
generator 244.
The signals from the outputs of the NAND-gates
194, 195 are fed via a first line 231 and a second line 232 of the
second connection 23 as a switching signal to the logic network 22. The
first line 231 is connected to reset inputs R of three part change
signal memories 221, 222, 223 in the form of bistable flip-flop circuits
which when the circuit arrangement is started up are reset via the
first line 231 in such a way that they carry a low voltage at their
outputs Q. The second line 232 of the second connection 23 leads via
three AND gates 224, 225, 226 to setting inputs S of the three part
change signal memories 221, 222, 223. By means of the AND gates 224,
225, 226 the signal on the second line 232 of the second connection 23
is combined each time with one of the part change signals supplied via
the terminals 271, 272, 273. The signals from the outputs Q of the part
change signal memories 221, 222, 223 are combined by means of a
collecting gate 227 in the form of an NAND gate and are held ready at
its output 228.
The measuring signal is fed to the trigger
circuit 19 via the measuring signal input 20 and passed to a first input
197 of a threshold detector 198 to which at a second input a threshold
value, in the form of a threshold voltage for example, produced by a
threshold generator 199 is also supplied. When the voltage at the first
input 197 of the threshold detector 198 is smaller than the voltage
delivered by the threshold generator 199, the threshold detector 198
delivers a high voltage at its output 200. When, on the other hand, the
voltage at the first input 197 is greater than the voltage of the
threshold generator 199, the voltage at the output 200 jumps to a low
value. This voltage is supplied as the setting signal of the flip-flop
circuit 194, 195, reverses the latter and thereby switches the trigger
circuit 19 into its second state when the voltage at the first input 197
exceeds the voltage of the threshold generator 199.
Between the
output 200 and the flip-flop circuit 194, 195 in the circuit arrangem
ent
shown in FIG. 4 there is inserted an inquiry gate 181 in the form of an
OR gate to which an inquiry pulse is fed via an inquiry input 193 of
the trigger circuit 19. This ensures that the flip-flop circuit 194, 195
is switched over only at a time fixed by the inquiry pulse--in the
present case a negative voltage pulse--and not at any other times due to
disturbances. As such an inquiry pulse it is possible to use, for
example, a pulse which occurs in the second line period after the end of
the vertical blanking pulse V, i.e. one which largely corresponds to
the storage pulse L2.
After the switching over of the flip-flop
circuit 194, 195 corresponding to the setting of the trigger circuit 19
into the second state, appropriately modified signals are supplied via
the control line 211 and the output 192 for the purpose of controlling
the pulse generator 244 and the differential amplifiers 123, 124, 125.
Modified voltages also appear on the lines 231, 232 of the second
connection 23, and these voltages release the part change signal
memories 221, 222, 223 such that they can each be set when the part
change signals reach the terminals 271, 272, 273.
In certain
cases, a further flip-flop circuit 234 is inserted in the lines 231, 232
to delay the signals passing along these lines; this is reset via the
first line 231 when the circuit arrangement is started up and thus it
also resets the part change signal m
emories 221, 222, 223. However,
after the trigger circuit 19 is switched into the second state the
further flip-flop circuit 234 is not set via the second line 232 of the
second connection 23 until a release pulse arrives via a release input
235 and another AND gate 236, for example a period of approximately the
interval of two vertical blanking pulses V after the switching of the
trigger circuit 19 into the second state. In this way it is possible to
bridge a period of time in which no defined signal values are present at
the terminals 271, 272, 273.
The signal at the output 228 of the
collecting gate 227 changes its state when the last of the three part
change signals has also arrived and has set the last of the three part
change signal memories. The signal is then combined via a gate
arrangement 229 of two NAND gates and one AND gate with the insertion
pulse EL of line 223 and with the signal on the second line 232 of the
second connection 23 or from the output Q of the further flip-flop
circuit 234 to the blocking signal delivered at the blocking output 24
which is fed to the switchable amplifiers 511, 512, 513.
FIGS.
31, m, n show the combinations of the blocking signal with the blanking
signals BL1, BL2, and BL3 at the blanking inputs 241, 242, 243 of the
switchable amplifiers 511, 512, 513 in the form of logic AND operations.
The dot-dash lines show resulting insertion signals A1, A2, A3 formed
by these operations after the starting up of the circuit arrangement and
before the occurrence of a beam current, i.e. in the first state of the
logic network 22. Here the resulting insertion signals A1, A2, A3 are
constant at low level. The dash curves show the resulting insertion
signals A1, A2, A3 after the appearance of a beam current and before the
steady state of the cut-off point control is reached, i.e. in the
second state of the logic network 22, while the continuous curves
represent the resulting insertion signals A1, A2, A3 in the steady state
of the cut-off point control, i.e. in the third state of logic network
22. The dash curves have similar shapes to storage pulses L1, L2, L3,
whereas the continuous curves correspond in shape to the inverses of the
blanking signals BL1, BL2, BL3. In this case a high level of the
resulting insertion signals A1, A2 or A3 means that the switchable
amplifier 511, 512 or 513 feeds the colour signal to the relevant output
amplifier 521, 522 or 523 respectively, whereas a low level in the
resulting insertion signal A1, A2 or A3 means that the relevant
switchable amplifier 511, 512 or 513 is blocked for the color signal.
The
circuit arrangement described is designed in such a way that the
trigger circuit 19 remains in its second state and logic network 22
remains in its third state even if charging currents reappear at the
difference signal storage cpacitors 161, 162, 163 due to disturbances
during the operation of the circuit arrangement. The cutoff point
control then makes readjustments without the displayed picture being
disturbed.
In the circuit arrangement shown in F
IG. 2, the green
color signal can also be let through during the second line period after
the end of the vertical blanking pulse V and the blue color signal
during the third line period after the end of the vertical blanking
pulse V by the switchable amplifiers 511, 512, 513 for the purpose of
controlling the beam currents. The storage pulses L2 and L3 at the
control signal sampling switches 155 and 156 and the second and third
blanking signals BL2 and BL3 at the blanking inputs 242 and 243 are then
to be interchanged. The resulting insertion signals A2 and A3 as shown
in FIGS. 3m and n are also interchanged then accordingly.
In FIG.
2 a dashed line is used to indicate which components of the circuit
arrangement can be combined advantageously to form an integrated
circuit. The first terminals 151, 152, 153 of the difference signal
storage capacitors 161, 162, 163, one terminal 128 of leakage current
storage capacitor 126, three terminals 524, 525, 526 in the leads to the
output amplifiers 521, 522, 523 as well as a line connection 704
between the first terminal 701 of the measuring resistor 702 and the
input 121 of the buffer amplifier 120 will then form the connecting
contacts of this integrated circuit
-----------------------------------------------------
MIVAR 20L1T CHASSIS TV3492 - Deflection power processing with THOMSON TEA2029C
DESCRIPTION
The TEA2029C is a complete (horizontal and vertical)
deflection processor with secondary to primary
SMPS control for color TV sets.
DEFLECTION .CERAMIC 500kHz RESONATOR FREQUENCY
REFERENCE .NO LINE AND FRAME OSCILLATOR ADJUSTMENT
.DUAL
PLL FOR LINE DEFLECTION .HIGH PERFORMANCE SYNCHRONIZATION .SUPER
SANDCASTLE OUTPUT .VIDEO IDENTIFICATION CIRCUIT .AUTOMATIC 50/60Hz
STANDARD IDENTIFICATION
.EXCELLENT INTERLACING CONTROL .SPECIALPATENTED FRAME SYNCHRO DEVICE
FOR VCR OPERATION .FRAME SAW-TOOTH GENERATOR .FRAME PHASE MODULATOR FOR THYRISTOR
SMPS CONTROL .ERROR AMPLIFIER AND PHASE MODULATOR
.SYNCHRONIZATION WITH HORIZONTAL
DEFLECTION .SECURITY CIRCUIT AND START UP PROCESSOR
.OUTPUT PULSES ARE SENT TO THE PRIMARY
SMPS IC (TEA2261) THROUGH A
LOW COST TRANSFORMER
GENERAL DESCRIPTION
This integrated circuit uses I2L bipolar technology
and combines analog signal processing with digital
processing.
Timing signals are obtainedfrom a voltage-controlled
oscillator (VCO) operatingat 500KHzby means
of a cheap ceramic resonator. This avoids the
frequency adjustment normally required with line
and frame oscillators.
A chain of dividers and appropriate logic circuitry
produce very accurately defined sampling pulses
and the necessary timing signals.
The principal functions implemented are :
- Horizontal scanning processor.
- Frame scanning processor. Two applications are
possible :
- D Class : Power stage using an external
thyristor.
- B Class : Powerstageusing an externalpower
amplifier with fly-back generator
such as the TDA8170.
- Secondary switch mode power regulation.
The SMPS output synchronize a primary I.C.
(TEA2260/61)at the mains part.
This concept allows ACTIVE STANDBY facilities.
- Dual phase-locked loop horizontal scanning.
- High performance frameand line synchronization
with interlacing control.
- Video identification circuit.
- Super sandcastle.
- AGC key pulse output.
- Automatic 50-60Hz standard iden
tification.
- VCR input for PLL time constant and frame synchro
switching.
- Frame saw-tooth generator and phase modulator.
- Switchingmode regulated power supplycomprising
error amplifier and phase modulator.
- Security circuit and start-up processor.
- 500kHzVCO
The circuit is supplied in a 28 pin DIP case.
VCC = 12V.
Synchronization Separator
Line synchronization separator is clamped to
black level of input video signal with synchronization
pulse botto
m level measurement.
The synchronization pulses are divided centrally
between the black level and the synchronization
pulse bottom level, to improve performance on
video signals in noise conditions.
Frame Synchronization
Frame synchronization is fully integrated (no external
capacitor required).
The frame timing identification logic permits automatic
adaptation to 50 - 60Hz standards or non-interlaced
video.
An automatic synchronization window width system
provides :
- fast frame capture (6.7ms wide window),
- good noise immunity (0.4ms narrow window).
The internal generator starts the discharge of the
saw-tooth generator capacitor so that it is not disturbed
by line fly back effects.
Thanks to the logic control, the beginning of the
charge phase does not depend on any disturbing
effect of the line fly-back.
A 32ms timing is automatically applied on standardized
transmissions, for perfect interlacing.
In VCR mode, the discharge time is controlled by
an internal monostable independent of the line
frequency and gives a direct frame synchronization.
Horizontal Scanning
The horizontalscanningfrequencyis obtainedfrom
the 500kHz VCO.
The circuit uses two phase-loc
ked loops (PLL) :
the first one controls the frequency, the second one
controls the relative phase of the synchronization
and line fly-back signals.
The frequency PLL has two switched time constants
to provide :
- capture with a short time constant,
- good noise immunity after capture with a long
time constant.
The output pulse has a constant duration of 26ms,
independent of VCC and any delay in switching off
the scanning transistor.
Video Identification
The horizontal synchronization signal is sampled
by a 2ms pulse within the synchronization pulse.
The signal is integrated by an external capacitor.
The identification function provides three different
levels :
- 0V : no video identification
- 6V : 60Hz video identification
- 12V : 50Hz video identification
This information may be used
for timing research
in the case of frequency or voltage synthetizer type
receivers, and for audio muting.
Super Sandcastle with 3 levels : burst, line flyback,
frame blanking
In the event of vertical scanning failure, the frame
blanking level goes high to protect the tube.
Frame blanking time (start with reset of Frame
divider) is 24 lines.
VCR Input
This provides for continuous use of the short time
constant of the first phase-locked loop (frequency).
In VCR mode, the frame synchronization window
widens out to a search window and there is no
delay of frame fly-back (direct synchronization).
Frame Scanning
FRAME SAW-TOOTH GENERATOR. The current
to charge the capacitoris automatically switched to
60Hz operation to maintain constant amplitude.
FRAME PHASE MODULATOR (WITH TWO DIFFERENTIAL
INPUTS). The output signal is a pulse
at the line frequency, pulse width modulatedby the
voltage at the differential pre-amplifier input.
This signal is used to control a thyristor which
provides the scanning current to the yoke. The
saw-tooth output is a low impedance,however, and
can therefore be used in class B operation with a
power amplifier circuit.
Switch Mode Power Supply (SMPS) Secondary
to Primary Regulation
This power supply uses a differential error amplifier
with an internal reference voltage of 1.26V and a
phase modulator operating at the line frequency.
The powertransistor is turnedoff bythe falling edge
of the horizontal saw-
tooth.
The ”soft start” device imposes a very small conduction
angle on starting up, this angle progressively
increases to its nominal regulation value.
The maximum conductionangle may be monitored
by forcing a voltage on pin 15. This pin may also
be used for current limitation.
The outputpulse is sent to the primaryS.M.P.
S. I.C.
(TEA2164 TEA2261) via a low cost synchro transformer.
Security Circuit and Start Up Processor
When the security input (pin 28) is at a voltage
exceeding 1.26V the three outputs are simultaneously
cut off until this voltagedrops below the 1.26V
threshold again. In this case the switch mode
power supply is restarted by the ”soft start” system.
If this cycle is repeated three times, the three
outputs are cut off definitively. To reset the safety
logic circuits, VCC must be zero volt.
This circuit eliminates the risk to switch off the TV
receiver in the event of a flash affecting the tube.
On starting up, the horizontal and vertical scanning
functions come into operation at VCC = 6V. The
power supply then comes into operation progressively.
On shutting down, the three functions are interrupted
simultaneously after the first line fly-back.
-----------------------------------------------------------
-
Audio IC THOMSON TDA8190.
DESCRIPTION
The TDA8190is a completeTV soundchannel with
DC tone and volume
controls plus separate VCR
input and output connections. Mounted in a Powerdip
16 + 2 + 2 package, the device delivers an
output power of 4W into 16W (d = 10%, Vs = 24V)
or 1.5W into 8W (d = 10%, Vs = 12V). Included in
the TDA8190 are : IF amplifier limiter, active lowpass
filter, AF pre-amplifier and power amplifier,
turn-off muting, mute circuit and thermal protection.
High output, high sensitivity, excellentAM rejection
and low distortion make the device suitable for use
in TVs of almost every type. Further, no screening
is necessary because the device is free of radiation
problems.
MIVAR 20L1T CHASSIS TV3492 SDA2516 EAROM (MIVAR RM2)
Features- Word-organized reprogrammable nonvolatile memory
in n-channel floating-gate technology (E2PROM)
- 128 ´ 8-bit organization
- Supply voltage 5 V
- Serial 2-line bus for data input and output (I2C Bus)
- Reprogramming mode, 10 ms erase/write cycle
- Reprogramming by means of on-chip control (without
external control)
- Check for end of programming process
- Data retention > 10 years
- More than 104 reprogramming cycles per address
- Compatible with SDA 2516. Exception:
Conditions for total erase and current consumption.
I2C Bus Interface
The I2C Bus is a bidirectional 2-line bus for the transfer of data between various integrated circuits.
It consists of a serial data line SDA and a serial clock line SCL. The data line requires an external
pull-up resistor to VCC (open drain output stage).
The possible operational states of the I2C Bus are shown in figure 1. In the quiescent state, both
lines SDA and SCL are high, i.e. the output stage of the data line is disabled. As long a SCL remains
"1", information changes on the data bus indicate the start or the end of data transfer between two
components.
The transition on SDA from "1" to "0" is a start condition, the transition from "0" to "1" a stop
condition. During a data transfer the information on the data bus will only change while the clock line
SCL is "0". The information on SDA is valid as long as SCL is "1".
In conjunction with an I2C Bus system, the memory component can operate as a receiver and as a
transmitter (slave receiver or slave transmitter). Between a start and stop condition, information is
always
transmitted in byte-organized form. Between the trailing edge of the
eighth clock pulse and a ninth acknowledge clock pulse, the memory
component sets the SDA line to low as a confirmation
of reception, if the chip select conditions have been met. During the output of data, the data output
of the memory is high in impedance during the ninth clock pulse (acknowledge master).
The signal timing required for the operation of the I2C Bus is summarized in figure 2.
Control Functions of the I2C Bus
The memory component is controlled by the controller (master) via the I2C Bus in two operating
modes: read-out cycle, and reprogramming cycle, including erase and write to a memory address.
In both operating modes, the controller, as transmitter, has to provide 3 bytes and an additional
acknowledge clock pulse to the bus after the start condition. During a memory read, at least nine
additional clock pulses are required to accept the data from the memory and the acknowledge
master, before the stop condition may follow. In the case of programming, the active programming
process is only started by the stop condition after data input (see figure 3).
The chip select word contains the 3 chip select bits CS0, CS1 and CS2, thus allowing 8 memory
chips to be connected in parallel. Chip select is achieved when the three control bits logically
correspond to the selected conditions at the select inputs.
Check for End of Programming or Abortion of Programming Process
If the chip is addressed during active reprogramming by entering CS/E, the programming process
is terminated. If, however, it is addressed by entering CS/A, the entry will be ignored. Only after
programming has been terminated will the chip respond to CS/A. This allows the user to check
whether the end of the programming process has been reached (see figure 3).
Memory Read
After the input of the first two control words CS/E and WA, the resetting of the start condition and the
input of a third control word CS/A, the memory is set ready to read. During acknowledge clock
nine, the memory information is transferred in parallel mode to the shift register. Subsequent to the
trailing edge of the acknowledge clock, the data output is low impedance and the first data bit can
be sampled, (see figure 4).
With every shift clock, an additional bit reaches the output. After reading a byte, the internal address
counter is automatically incremented when the master receiver switches the data line to “low” during
the ninth clock (acknowledge master). Any number of memory locations can thus be read one after
the other. At address 128, an overflow to address 0 is not initiated. With the stop condition, the data
output returns to high-impedance mode. The internal sequence control of the memory component
is reset from the read to the quiescent with the stop condition.
Memory Reprogramming
The reprogramming cycle of a memory word comprises an erase and a subsequent write process.
During erase, all eight bits of the selected word are set into "1" state. During write, "0" states are
generated according to the information in the internal data register, i.e. according to the third input
control word.
After the 27th and the last clock of the control word input, the active programming process is started
by the stop condition.
The active reprogramming process is executed under onchip control.
The time required for reprogramming depends on component deviation and data patterns.
Therefore, with rated supply voltage, the erase/write process extends over max. 20 ms, or more
typically, 10 ms. In the case of data word input without write request (write request is defined as data
bit in data register set to “0”), the write process is suppressed and the programming time is
shortened. During a subsequent programming of an already erased memory address, the erase
process is suppressed again, so that the reprogramming time is also shortened.
TDA8170 TV VERTICAL DEFLECTION OUTPUT CIRCUIT:DESCRIPTION
The TDA8170 is a monolithic integrated circuit in
HEPTAWATTTM package. It is a high efficiency
power booster for direct d
riving of verticalwindings
of TV yokes. It is intended for use in Colour and B
&Wtelevision receivers as well as in monitorsand
displays.
The functions incorporated are :
.POWERAMPLIFIER
.FLYBACKGENERATOR
.REFERENCE VOLTAGE
.THERMAL PROTECTION
The power dissipated in the circuit must be removed
by adding an external heatsink.
Thanks to the HEPTAWATTTM package attaching
the heatsink is very simple, a screwa compression
spring (clip) being sufficient. Betweenthe heatsink
andthe packageit isbetter to insert a layerof silicon
grease, to optimizethe thermal contact ; no electrical
isolation is needed between the two surfaces
.
ABSOLUTE MAXIMUMRATINGS
Symbol Parameter Value Unit
VS Supply Voltage (pin 2) 35 V
V5, V6 Flyback Peak Voltage 60 V
V3 Voltage at Pin 3 + Vs
V1, V7 Amplifier Input Voltage + Vs, – 0.5 V
Io Output Peak Current (non repetitive, t = 2 msec) 2.5 A
Io Output Peak Current at f = 50 or 60 Hz, t 3 10 msec 3 A
Io Output Peak Current at f = 50 or 60 Hz, t > 10 msec 2 A
I3 Pin 3 DC Current at V5 < V2 100 mA
I3 Pin 3 Peak to Peak Flyback Current at f= 50 or 60 Hz, tfly 31.5msec 3 A
Ptot Total Power Dissipation at Tcase = 90 °C 20 W
Tstg, Tj Storage and Junction Temperature – 40, +150 °C