Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical technology relics that the Frank Sharp Private museum has accumulated over the years .

Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.

Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:

- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........

..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !

©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of
Engineer Frank Sharp. NOTHING HERE IS FOR SALE !

Sunday, May 7, 2017



Max GRUNDIG: Born on 7 May 1908 in the Denis Street 3 in Nuremberg workers district Gostenhof from Parents of "Magaziners" or warehouse worker Max Emil and his wife Marie.

1979 achieved the Grundig AG with 38,460 employees worldwide their personal peak. HIS company has 31 plants, nine branches with 20 branches and three Werksvertretungen, eight sales companies and 200 worldwide export missions. Also, sales continue to rise. But the profit is shrinking. In 1981, the Grundig AG writes first losses. After divorcing his second wife Annelie Max Grundig marries 1980, the French woman Chantal Girard. In the same year the daughter Marie was born.
1982 at the presentation of "Eduard Rhein honor ring" and before the European Commission, presents Max Grundig be EURO concept, the united front of the European consumer electronics market to Japanese companies: "Acting together, jointly produce, market share". But he can not prevail. Too much stalking and distrusts you also mutually in the European broadcasting industry. And Japan is not the only competitor. An agreement between the companies Grundig and Thomson-Brandt, which is scheduled also built in 1982, can - among other things due to the resistance of the Bundeskartellamt and because the company Philips is involved in Grundig - not be implemented.
On 26 March 1984 Philips increased its share of Grundig AG by 7.1% to 31.6%. In April 1984, the Federal Cartel Office approved the merger of Grundig and Philips under the condition that Grundig sells its voice recorders range. New CEO of Grundig AG is the Dutchman Hermanus Koning on April 1 (1924 - 1998). From 1984 to 1998, the Dutch have entrepreneurial saying. Max Grundig receives for his departure from the company, among other things a guaranteed 20-year-income annual return of 50 million marks.
Not quite voluntarily leaving Max Grundig the company he has built up and which bears his name. But there can be only one boss. 1985 must Grundig also his top job at the Grundig-Bank ad, which is sold to a Swiss institute.
Grundig expands its hotel ownership, 1986, he acquired the luxury hotel "Bühlerhöhe", which he renovated at great expense. On 8 December 1989 Max Grundig dies. Under great public participation he will be buried in Baden-Baden.

 Max Grundig wurde am Donnerstag, dem 7. Mai 1908 in Gostenhof (Nürnberg), Denisstrasse 3 geboren. Er war das erste Kind vom 29jährigen Emil Grundig und seiner 27-jährigen Frau Marie Grundig, geb. Hebeisen. Max hatte noch 3 Schwestern. Sein Vater starb 1920 früh. Im April 1922 begann Max eine Lehre bei der Firma Jean Hilpert (Gas-/Wasserinstallation). 1924 begann er, sich für Radios zu interessieren. 1927 wurde der Installationsbetrieb von
C.Blödel aus Nürnberg übernommen und Max wurde Filial-chef. Die Firma konnte einem Grossauftrag eines Nürnberger Krankenhauses entgegennehmen. Neben den 60 Mark Lohn bekam er so noch 3% Provision auf alles, was verkauft wurde. 1930 wurde der Betrieb an jemanden aus Thüringen verkauft, was Max nicht besonders gut fand. Kurze Zeit darauf nahm er sein Erspartes zusammen, lieh sich weiteres Geld, kündigte seine alte Arbeit und eröffnete in der Sternstr. 4 einen eigenen Laden. Damit begann nun für den 27 jährigen Max die Karriere, die schliesslich in den Fürther Grundig-Werken enden sollte. In der Nordbayerischen Zeitung vom 20 und 22. November und 5. Dezember 1930 war folgende Anzeige zu lesen:
"Rundfunk-Geräte, Lautsprecher und Schallplatten, Lumophon, die Weltmarke, kaufen Sie am besten und zu billigsten Preisen bei der Fa. radioVertrieb Fürth, Stern-strasse 4. Besichtigen Sie unsere reichhaltige Ausstellung. Kostenlos und unverbindlich wird Ihnen jedes Funkgerät und Lautsprecher vorgeführt."
1934 zog der Laden in die Schwabacherstr. 1 um und öffnete dort am 21.Juni 1034 seine Pforten. Hier wurde Max in 4 Jahren Umsatz-Millionär.

Hier hat er auch die ersten Trafo-Wickelmaschinen gekauft und in Betrieb gesetzt. Zu dieser Zeit hatte Fürth noch Gleichstrom und Nürnberg bereits Wechselstrom im Netz und so ging immer wieder einiges kaputt, so dass Grundigs Leute neue Trafos wickeln konnten. Zur besseren Belieferung seiner Kundschaft kaufte er ein DKW Lieferfahrzeug. 1936 zogen Max, seine Mutter und seine Schwester Wilhelmine um in die Amalienstrasse 55. 1938 lernte er seine Frau Anneliese kennen und am 3. Dezember 38 wurden sie getraut.1938 produzierte die Firma bereits 30.000 kleine Trafos. Am 3. Dezember zog Max mit seiner Frau um in die Moststr. 17. Dort blieb er 14 Jahre lang wohnhaft. 1939 stand er zusammen mit einem Kollegen ganz oben in der Radioindustrie. Zwischen 1940 und 45 wurden hauptsächlich Trafos hergestellt.

1941 bis 43 konnte er seinen Soldatendienst in Nürnberg mit der Arbeit in seinem Betrieb kombinieren. 1943 zog die Firma um nach Vach. hier wurden täglich 200 defekte Trafos neu gewickelt. 1944 standen hier bereits 10 Wickelmaschinen und es wurden 50.000 Trafos in diesem Jahr hergestellt. Ausserdem kamen grosse Aufträge von AEG und Siemens hinzu. AEG wollte 10.000 Trafos pro Tag und so wurden 150 russische Frauen in Dienst gestellt. Diese wohnten auch beim Betrieb und Max regelte alles für sie. Am 17. April legten die Amerikaner die Produktion still. Max war jetzt 37 Jahre alt, ein Unternehmer mit 150 Beschäftigten und ein Vermögen von 17,5 Millionen. Das Material stapelte sich in der Fabrik, aber er durfte nichts bauen. Am 18. Mai 1945 wurde die Produktion wieder langsam angefahren, wobei die gesamte Produktion wieder in die Schwabacher Str. verlegt wurde. Die grossen Schulden, die AEG und Siemens bei Grundig hatten, wurden mit Material bezahlt. Im Juni 1945 zog man in die
Jakobinerstr. 24 in Fürth um. Zunächst reparierte man Radiogeräte. Bezahlt wurde mit Zigaretten und allem, was zum Tausch geeignet war. Komplette Geräte durften in den Besatzungszonen noch nicht gebaut werden, Grundig kam hier auf eine geniale Idee. Mit dem sog. "Heinzelmann" stellte er einen Bausatz her, der ein Verkaufshit wurde: 1946 verkaufte er bereits 391 Geräte zum Preis zwischen 176 und 198 Reichsmark. Am 19. März 1946 bekam Max das Grund-stück Kurgartenstr. zugewiesen und am 17. September 1947 wurde dort eine neue Fabrik eingeweiht. Die RVF Elektro-technische Fabrik wurde am 7. Juli zum Grundig Radiowerk GmbH. Die Lumophonwerke wurden am 16. Mai 1951 über-nommen. Am 27. September wurde das Fernsehen aus der Taufe gehoben. Am 22. Februar 1970 wurde die Familien-stiftung unter dem Namen 'Max Grundig Familien-Stiftung' angemeldet. 1952 wurde das erste Tonbandgerät gebaut: der Reporter 300, ein Einbaugerät. Es folgten die Reporter 500, 600 und 700 in verschiedenen Ausführungen. In den fünfziger Jahren wurden die Modelle 5,50,54,55,819,820,830,919,920 und die Stenoretten gefertigt. Die verschiedenen Modelle erhielten die Zusätze: TM, TS bzw. TR, welche folgende Bedeutung haben:

TM = Tonmöbel
Hier handelt es sich um Einbaugeräte, die vor allem in die damals weit verbreiteten Möbelschränke / Truhen eingebaut wurden. Diese Tonbandgeräten hatten auch keinen
Verstärker, dazu wurde das Radiogerät aus der Musiktruhe verwendet.

Folgende Modelle sind bekannt: TM5,7,8,9,19,20,27,30,45,50,54,55,58,60,64,64U,64USA,64WE,

TR = Tonradio
Hier handelt es sich um preiswerte Ausführungen, die als Beistellgerät zu einem radio fungierten. Es gab die Modelle TR3, TR5 und TR20.

TS = Tonstereo
Diese Geräte verfügten entweder über einen eigenen Verstärker oder nicht. Diese Geräte waren teuer. 
Es gab folgende Modelle:
TS19,19A,23,58,320,320Hifi,320U,321,340B,340Deluxe, 340Studio Hifi,600,925,945,1000.
Die TS19 und die TS 23 wurden in Schränke eingebaut und dienten als Beistellgerät zu Radios. Das TS58 hatte ein eingebautes Radio.

TK = Tonkoffer
Diese Modelle sind die meistbekannten. Es gibt hiervon ungefähr 190 verschiedene Modelle! Die Kennzeichnung steht zumeist unter den Geräten. Es gab Sonderausführungen ohne Teller für bestimmte Firmen. Ein Modell enthielt ein Stereoradio: TK 850 FM. Die Modelle erhielten auch Städtenamen, z.B. Würzburg, Nürnberg, Beyreuth, Augsburg und wurden speziell für eine Firma aus Hamburg gemacht. Ausserdem gibt es Kennzeichnungen wie a,b,g,h,k,t,tr,u, usa,we. Hier ist noch nicht ganz klar, was sie zu bedeuten haben. Ausserdem wurden Geräte für den englischen und amerikanischen Markt gefertigt. Diese haben die Bezeichnungen: Dual De Jur Professional TK820. Auf Diesem Tonbandgerät findet man das Firmenlogo von Lumophon. Die Bezeichnung 'De Jur' gab es auch bei einigen Stenorette-Geräten. Die letzten Grundig-Bandmaschinen war die TS 1000, welche zwischen 1976 und 77 produziert wurde und für grosse 26,5 cm Spulen geeignet war. Danach kamen noch die Modelle 925 (2-Spur) und 945 (4-Spur) und 22 cm-Spulengrösse. Ab ca. 1979/80 wurden dann nur noch Kassettendecks gebaut. Gebaut wurde auch 8-Spur-Recorder für den kanadischen und amerikanischen Markt. Der Konzern geriet wie alle anderen deutschen
HiFi- und Fernsehunternehmen auch, in der 80er Jahren in die Verlustzone, bekam jedoch mit dem Philips Konzern einen grossen Partner. Im Jahr 2003 hat Grundig nach dem Ausstieg von Philips Insolvenz angemeldet. Das Haupt-gebäude von Grundig in Fürth und das alte Wohnhaus von Grundig wurden zu Rundfunkmuseen umgebaut. Es ist sicher den Aufwand wert, dort einmal vorbeizuschauen, allerdings sieht man dort wenig Grundig-Tonbandgeräte, aber das soll sich bald ändern.
Das modell TK18 und TK18 luxe und die TK12 sind produciert in England. Die TK12 ist fur 22 cm spulen. Die modellen TK200 und die TK400 sind produciert in Belfast Irland.

r.i.p. GRAND MASTER  Max Grundig ! AND HAPPY BIRTHDAY   WITH YOUR 109 YEARS !!!!!!!!!!

 (Feeling sorry for having not known personally)


Wednesday, March 8, 2017



In these years it's clearly emerged at  Obsolete Technology Tellye !  that  we  traded a superior technology for an inferior one...................

Also todays is emerging the fact that it may better  NOT sending  to recycling your Old CRT Tv.

  A tidal wave of televisions is headed for the electronics hereafter. As the United States / Europe transitions to all-digital TV, the shutdown of analog broadcasting happened actually won't affect most televisions in the countries , 87 percent of U.S. / European television-watching households already get their TV through cable or satellite or aerial . Nevertheless, the deadline is perhaps the most significant nail in the coffin for one of the most successful consumer electronics products of the 20th century: the cathode-ray tube (CRT) display. The digital changeover is by no means a mandate for the elimination of old-school sets, but it will certainly bring a lot of people into electronics stores to shop for new digital TVs typically flat-panel LCD crap and plasma sets, and that means that a lot of tube televisions are moving toward obsolescence or moved to dump.

How many CRT televisions are out there? ...... It's hard to say. People don't always dispose of old televisions. Many still work, but have been pushed into attics or closets by fresh-off-the-shelf HDTVs shit. In an attempt to gain perspective, I took a look at some Environmental Protection Agency estimates on televisions—and, trust me, the numbers are staggering. The EPA has sales figures back to 1980, and since then, 704.9 million CRT televisions have been sold only in the U.S.  and a minor quantity in Europe An estimated 42.4 percent of those are still in use. In 2008, the EPA estimates that 23.9 million tube TVs will be disposed of by Americans (that's 711,029 tons of televisions). Numbers for end-of-life TVs have been over 20 million per year since 2005, and are expected to go up to almost 25 million by 2010. Compare this to 10 years ago, when the numbers were closer to 12 million sets disposed of per year.

Thank heavens or hell , you're probably thinking or not at all, for recycling programs that take those old TVs and keep their toxic materials out of landfills. Not so fast. According to the EPA's estimates for 2006 to 2007 (the latest years for which information is available) only 18 percent of TVs (by weight) were recycled. The rest went to landfills. And 18 percent is considered an improvement, since the recycling rate from 1999 through 2005 was only 15 percent. The EPA concludes that this 3 percent improvement is probably due to mandatory collection and recycling programs for electronics.In the grand scheme of American garbage, TVs are only a drop in the bucket. All e-waste (including TVs, printers, monitors—even cellphones) makes up only 2 percent of the municipal solid-waste stream. But CRTs are a significant drop. Up to 8 percent of the weight of a television tube is lead. This lead is largely trapped in the glass of the set—ironically, CRT glass contains lead to block the emission of harmful X-rays.

So long as the lead is locked within the glass of a CRT, it presents no real threat, but if 711,029 tons of CRT TVs were disposed of in 2008, and only 18 percent were recycled, then 583,044 tons of CRT TVs found their way into landfills. If 8 percent of that weight is lead, that means 46,643 tons of lead is deposited inside fragile glass ampoules in landfills each year.

And CRT TVs are really only half of the story. In 2008, 19.5 million CRT computer monitors were also disposed of. LCD crap computer screens became the norm before flat-panel TVs, so the peak of CRT dumping in the PC world occurred in 2005 when 28.5 million monitors were tossed.

As a result of the replacement of cathode ray tube
screens (CRTs) by flat screens, the world is
confronted with stranded end-of-life CRTs. CRTs contain 1 to 1.5 kg of lead per screen; mainly found in the funnel and neck glass for radiation protection purposes. The lead content makes this CRT glass
unsuitable in most glass applications. Thus, there is an urgent need for alternative recycling options that are able to use up the CRT leaded glass while safely retaining the lead out of contact with humans and
the environment. 

The major constituent of a cathode ray tube screen (CRT) is glass. Most of this glass is made of a barium- strontium mix, similar to the one used for container glass . However, about 35% of the CRT glass, specifically the funnel and neck glass contains lead oxide (PbO) . The PbO content is 11% to 28% the mass of the leaded CRT glass.
Figure 1 sketches a CRT and the different types of glasses that it comprises.
As a result of a technological replacement, the recycling of CRT glass into new CRTs is no longer possible . Large amounts of end-of-life CRT must therefore be recycled into other products or disposed of. The recycling or disposal of the CRT leaded glass is of particular concern as the high PbO content makes the glass unsuitable for most current
glass applications .
Lead is a toxic heavy metal, which causes adverse
effects to human health when inhaled or ingested. The Provisional Tolerable Weekly Intake

(PTWI) for lead determined by the Joint Food and Agriculture/World Health Organization Expert Committee on Food Additives (JECFA) has been dropping since a first led toxicity assessment in 1972. In accordance with new scientific evidence relating lead to irreversible health damages in humans, currently, the JECFA declares that it is not possible to establish a PTWI for lead that would be
considered health protective. Given the quantities of the toxic metal lead in CRT
leaded glass and the shrinking lead exposure limits, an updated review of the recycling routes in which CRT leaded glass is used in other products, with a particular focus on the fate of lead during use, is necessary.

The use of CRT leaded glass as concrete aggregate would represent the largest demand for such glass among the options considered, followed by lead metal extraction and the use as aggregate in clay brick manufacturing. However, lead is not indispensable for neither concrete nor clay bricks.
In the case of concrete, CRT leaded glass would replace 10% of the volume of fine aggregates, which in turn represent 30% of the volume in concrete. In the case of clay bricks, CRT leaded glass would replace only 3% of the mass of sand, which represents 55% of the mass in clay bricks. Thus, the large demand for CRT glass in these two products is mainly due to the large masses of product worldwide. According to definition of recycling by the European Waste Framework Directive, and taking into account that lead does not accomplish a function in concrete or clay, the potential low mass fraction replacements (however leading to a large mass replacement due to the large
quantities of the construction materials produced worldwide) represent a “dilution” of CRT leaded glass into vast amounts of other materials rather than a recycling of it. Nevertheless, provided that the leaching of lead from these products is kept under regulated limits, these options may be considered as interim storage of CRT leaded glass instead. The lead would be entrapped in the concrete and clay matrixes until the end of life of construction structures, from which the final,
environmentally sound, disposal of lead must be guaranteed.

CRTs cost more to recycle than the commodities inside them can be sold for, meaning that old TVs have a net negative recycling value. And new guidelines for the amount of lead exposure that is safe for humans have cut down on the total number of possible uses for leaded glass (ECS's workers have their blood tested for lead content quarterly).

Maybe you took your old TV to a community e-waste collections center after you upgraded to a flat-screen. If the collection center was responsible, maybe it sent that television to recycling factory . If it wasn't, maybe that TV eventually ended up in a  Closed ring.

 Demanufacturing the televisions is hard manual labor that works as a reverse assembly line, as the components from these old TVs are separated by hand and moved down a conveyor belt. First, they use a crowbar to remove the back case. They cut, strip, and sort the power cords. They remove internal screws with drills. What's left of the TV is then hammered, to separate the front screen from the cathode-ray vacuum tube. They strip the wires for copper. Wood will eventually be composted or turned into sawdust. Plastic is put through a shredder so that it can be melted. A handheld grinder spews sparks as it separates the screen from whatever is left of the tube. Then, more smashing this time, the glass.

They run the glass through an ultraviolet-light chamber on a conveyor belt to determine whether it contains lead. This lead content about four pounds per television, and difficult to separate from the glass itself  has caused an ongoing economic and environmental problem for the nation's electronics recyclers.

 The results of this critical review point out that the more compelling recycling options are the usage of CRT leaded glass as smelting flux and as source for lead metal extraction; provided that lead leaching from slag is kept under regulated limits and that the demand for secondary lead is granted.
Products in which lead does not accomplish a function should not be considered as recycling options but as interim storage; such as concrete, clay bricks and foam glass.
Options such as nuclear waste vitrification require additional analysis regarding the indispensability of lead and the ultimate benefits related to radiation shielding. Disposal options represent an environmentally sound treatment for CRT leaded glass. However, in cases in which the glass in mixed with other hazardous wastes, these options diminish the future availability of lead. In general, it is still necessary to carry out assessments of the industrial upscaling and  economic feasibility of the options in which lead accomplishes a function. Additionally, to assure a stable throughput of CRT leaded glass for the specific products, a country or regional based
assessment of the current stock and expected end of life flows of CRT screens is necessary.

 If there is a silver lining here, it's that leaded glass can be recycled if you're willing to pay for it. Many recyclers in the US send their processed CRT glass to a Spanish company called Camacho, which uses it as part of the filler in ceramic tile. An Indian company called Videocon is the last remaining company in the world still producing new CRTs using recycled glass. The glass-to-glass recycling facility of Videocon has been a major receiver of CRT glasses from the US. The company used to consume nearly 108,000 tons of CRT glasses per annum, which in turn were used towards manufacturing new CRT televisions. The company had announced abrupt closure of furnaces in October 2015
 in order to perform heavy maintenance activities at both the furnaces and cullet equipment. Videocon is the only company in the world to make new CRTs by recycling old ones. The Bharuch facility had been a key outlet for US CRTs over the past several years.
And leaded glass can be used as a flux at mining facilities or in lead-acid batteries.

  What should scare us, though, is that newer electronics are more difficult to recycle than CRTs, not easier. In the quest to make thinner devices, batteries which catch fire if put through a recycler's shredder are glued down and are hard for recyclers to remove; they're also used in an increasing number of electronics.

 Some want the televisions traced back upstream to the recycling centers where consumers originally dropped them off. But this solution will bankrupt more companies and could eventually push the cost back onto the original generator of the waste: us.

D. Diederich and J. Daniel, “Aufbereitung von Bildschirmglas: Einsatz von Frontglas aus
aufbereeiteten Bildröhrengläsern in der Behälterglasfertigung.” Recycling technischer
Gläser GmbH, n.d. (a).

F. Andreola, L. Barbieri, A. Corradi, A. M. Ferrari, I. Lancellotti, and P. Neri, “Recycling of EOL CRT
glass into ceramic glaze formulations and its environmental impact by LCA approach,” The
International Journal of Life Cycle Assessment, vol. 12, no. 6, pp. 448–454, Sep. 2007.

F. Andreola, L. Barbieri, A. Corradi, and I. Lancellotti, “CRT glass state of the art. A case study: recycling in ceramic glazes.,” Journal of the European Ceramic Society, vol. 27, no. 2–3, pp. 1623–1629, Jan. 2007.

Industry Council for Electronic Equipment Recycling, “Materials Recovery from Waste Cathode Ray Tubes (CRTs),” UK, 70, 2004.

Evaluation of certain food additives and contaminants: seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives,” World Health Organization, Geneva, Switzerland, 960, 2011.

W. Yuan, J. Li, Q. Zhang, F. Saito, and B. Yang, “Lead recovery from cathode ray tube funnel glass
with mechanical activation,” Journal of the Air & Waste Management Association, vol. 63, no. 1, pp. 2–10, Jan. 2013.

Q. Xu, M. Yu, A. Kendall, W. He, G. Li, and J. M. Schoenung, “Environmental and economic evaluation of cathode ray tube (CRT) funnel glass waste management options in the United States,” Resources, Conservation and Recycling, vol. 78,
pp. 92–104, Sep. 2013.

J. Huisman, “QWERTY and Eco-Efficiency Analysis on Treatment of CRT-containing Appliances at Metallo–Chimique NV,” Huisman Recycling Research, 2004.

European Parliament and The Council, Directive 2008/98/EC on waste (Waste Framework Directive). 2008.

M. Chen, F.-S. Zhang, and J. Zhu, “Lead recovery  and the feasibility of foam glass production from funnel glass of dismantled cathode ray tube through pyrovacuum process,” Journal of Hazardous Materials, vol. 161, no. 2–3, pp. 1109–
1113, Jan. 2009.

 P. G. Yot and F. O. Méar, “Lead extraction from waste funnel cathode-ray tubes glasses by reaction
with silicon carbide and titanium nitride,” Journal of Hazardous Materials, vol. 172, no. 1, pp. 117–123, Dec. 2009.
 X. Lu, K. Shih, C. Liu, and F. Wang, “Extraction of metallic lead from cathode Ray Tube (CRT)
funnel glass by thermal reduction with metallic iron,” Environmental Science & Technology, vol. 47, no. 17, pp. 9972–9978, Sep. 2013.

 T.-C. Ling and C.-S. Poon, “Development of a method for recycling of CRT funnel glass,” Environmental Technology, vol. 33, no. 22, pp. 2531–2537, Nov. 2012.

 Y. Wang and J. Zhu, “Preparation of lead oxide nanoparticles from cathode-ray tube funnel glass by  self-propagating
method,” Journal of  Hazardous Materials, vol. 215–216, pp. 90–97, May 2012.

 M. Dondi, G. Guarini, M. Raimondo, and C. Zanelli, “Recycling PC-TV waste glass in clay bricks and roof tiles,” Waste Management, no. 29, pp. 1945–1951, 2009.

 C. F. Cadavid, X. E. Castells, D. Ott, P. A. Hoyos, G. Niffenegger, and F. Gomez, “Alternativas de valorización de vidrios CRT procedentes de monitores y televisores,” EMPA/CPE/CNPML/EAFIT, Colombia, Fase 1&2 1&2, 2011.

 D. Romero, J. James, R. Mora, and C. D. Hays, “Study on the mechanical and environmental properties of concrete containing cathode ray tube glass aggregate,” Waste Management, vol. 33, no. 7, pp. 1659–1666, Jul. 2013.

 T.-C. Ling and C.-S. Poon, “Use of recycled CRT funnel glass as fine aggregate in dry-mixed concrete paving blocks,” Journal of Cleaner  Production, vol. 68, pp. 209–215, Apr. 2014.

 F. O. Méar, P. G. Yot, M. Cambon, R. Caplain, and M. Ribes, “Characterisation of porous glasses prepared from Cathode Ray Tube (CRT),” Powder Technology, vol. 162, no. 1, pp. 59–63, Feb. 2006.

 S. Mostaghel, Q. Yang, and C. Samuelsson, “Recycling of cathode ray tube in metallurgical processes: Influence on environmental properties of the slag,” Global J. Environ. Sci. Technol, vol. 1, p. 19, 2011.
 T. Engelhard, “Vitrification of nuclear waste, the winning proposal of the CRT challenge of the Consumer Technology Associaton,” Digital Dialogue, 2013.

[Accessed: 03-Jun-2014].

Sure Fun Times, A working TV  Discovered with a CRT Oscilloscope !