The BRIONVEGA COSMO TVC 26 MONITOR PANSOUND is a compact 26 inches color television with 2 way stereo sound and 4 speaker system comprising crossover filters.
It has 32 programs with PLL synthesized tuning and search and infrared remote control.
Headphone and audio recorder jacks are present.
Was first BRIONVEGA STEREO SET plus bilingual feature.
The transmission of stereophonic sound together with a conventional
television picture transmission greatly enhances the realism and
entertainment value of the program being transmitted. Various systems
and apparatus have been proposed for such transmissions including
various compatible subcarrier-type systems wherein left-plus-right (L+R)
information is conveyed on the regular frequency-modulated sound
channel of a composite television broadcast signal, and left-minus-right
(L-R) information is conveyed on a subcarrier.
Was first BRIONVEGA STEREO with a SCART SOCKET.
A SCART Connector (which stands for Syndicat des Constructeurs d'Appareils Radiorécepteurs et Téléviseurs) is a standard for connecting audio-visual equipment together. The official standard for SCART is CENELEC document number EN 50049-1. SCART is also known as Péritel (especially in France) and Euroconnector but the name SCART will be used exclusively herein. The standard defines a 21-pin connector (herein after a SCART connector) for carrying analog television signals. Various pieces of equipment may be connected by cables having a plug fitting the SCART connectors. Television apparatuses commonly include one or more SCART connectors.Although a SCART connector is bidirectional, the present invention is concerned with the use of a SCART connector as an input connector for receiving signals into a television apparatus. A SCART connector can receive input television signals either in an RGB format in which the red, green and blue signals are received on Pins 15, 11 and 7, respectively, or alternatively in an S-Video format in which the luminance (Y) and chroma (C) signals are received on Pins 20 and 15. As a result of the common usage of Pin 15 in accordance with the SCART standard, a SCART connector cannot receive input television signals in an RGB format and in an S-Video format at the same time.Consequently many commercially available television apparatuses include a separate SCART connectors each dedicated to receive input television signals in one of an RGB format and an S-Video format. This limits the functionality of the SCART connectors. In practical terms, the number of SCART connectors which can be provided on a television apparatus is limited by cost and space considerations. However, different users wish the input a wide range of different combinations of formats of television signals, depending on the equipment they personally own and use. However, the provision of SCART connectors dedicated to input television signals in one of an RGB format and an S-Video format limits the overall connectivity of the television apparatus. Furthermore, for many users the different RGB format and S-Video format are confusing. Some users may not understand or may mistake the format of a television signal being supplied on a given cable from a given piece of equipment. This can result in the supply of input television signals of an inappropriate format for the SCART connector concerned.This kind of connector is todays obsoleted !
Was first BRIONVEGA SET featuring the entire control and PLL under microcomputer
(SGS M3872 4K MCU) unit.
The apparatus of the invention relates to the television art. Specifically, a microprocessor control system for effecting channel selection and function level adjustments are provided.
a microprocessor controller for television receivers is provided. Channel selection and function level adjustments to the television receiver are effected by addressing a general purpose microprocessor with data bearing instructions from a set of controls at the television receiver or from remote control commands received at the television receiver.
Channel selection is accomplished by customer interface controls to the microprocessor which provide a particular channel number selection in the UHF or VHF frequency spectrum which is to be tuned. A memory containing channel tuning data for each channel in the UHF or VHF frequency spectrum is operably connected by a control bus to the microprocessor. The memory when addressed provides channel tuning data which the microprocessor converts into a multibit digital signal for establishing a tuning voltage. A digital to analog converter is operably connected to the microprocessor to provide a d.c. voltage for tuning a varactor tuner in response to the multibit digital word.
In still another aspect of the invention, the microprocessor will decode remote control commands. The output signal of a transducer for receiving remote control signals is applied to the microprocessor so these signals for channel change and set control are validated, decoded and the commands are executed by the microprocessor controller.
Features a PHILIPS 30AX CRT Tube.The 30AX system, which Philips introduced in 1979, is an important landmark in the development of colour picture systems. With previous systems the assembly technician had to workthrough a large number of complicated setting-up procedures whenever he fitted a television picture tube with aset of coils for deflecting the electron beams. These procedures were necessary to ensure that the beams for the three colours would converge at thescreen for every deflection. They are no longer necessary with the 30AX system: for a given screen format any deflection unit can be combined with any tube to form a single 'dynamically convergent' unit. A colour-television receiver can thus be assembled from its components almost as easily as a monochrome receiver. The colour picture tube of the PHILIPS 30AX system displays a noticeably sharper picture over the entire screen surface. This will be particularly noticeable when data transmissions such as Viewdata and Teletext are displayed. This has been achieved by a reduction in the size of the beam spot by about 30%. Absence of coma and the retention of the 36.5 mm neck diameter have both contributed to increased picture sharpness. Coma has been eliminated by means of corrective field shapers embedded in the deflection coils which are sectionally wound saddle types. The new deflection unit has no rear flanges. enabling uniform self-convergence to be obtained for all screen sizes. without special corrections, adjustments, or tolerance compensations. Horizontal raster distortion is reduced and no vertical correction is required. One of the inventions in 30AX is an internal magnetic correction system which obviates static convergence and colour purity errors. This enables the usual multiple unit to be dispensed with. together with the need for its adjustment ! New techniques have been employed to achieve close tolerance construction of the glass envelope. In addition, the 30AX picture tube incorporates two features whereby it can be accurately adjusted during the last stages of manufacture. One is the internal magnetic correction system. The other is an array of bosses on the cone that establish a precise reference for the axial purity positioning of the deflection unit on the tube axis and for raster orientation. During its manufacture, each deflection unit is individually adjusted for optimum convergence. The coil carrier also incorporates reference bosses that co-operate with those on the cone of the tube. ' Since every picture tube and every deflection unit is individually pre-aligned, any deflection unit automatically matches with any picture tube of the appropriate size. The deflection unit has only to be pushed onto the neck of the tube unit it seats. Once the reference bosses are engaged, the combination is accurately aligned and requires no adjustment for convergence, colour purity or raster orientation. With no multiple unit and a flangeless deflection unit, there is more space in the receiver cabinet. Higher deflection sensitivity means that less current is consumed, and consequently less heat is produced. This increases the reliability of the TV receiver again. 30AX means simple assembly. Any picture tube is compatible with any deflection unit of the appropriate size and is automatically self-aligning as well as being self-convergent.Now that the new Philips 30AX tube has put in an appearance, some details can be filled in. The new tube has been developed from the 20AX, which has been in production since 1974, but brings with it several important advances. First, no dynamic convergence, static convergence, purity or raster correction adjustments are necessary. Secondly the new yoke design gives improved deflection sensitivity, a straight NS raster, and reduced EW raster distortion. Due to the close mechanical tolerances and the inclusion of positioning bosses on the tube bowl, the tube and yoke can be aligned simply by being pushed together - any 30AX yoke will automatically match any 30AX tube of the appropriate size. Thirdly the newly designed electron gun gives a sharper spot, with greater focus uniformity over the screen area. An internal magnetic ring is used to give correct purity and static beam convergence, in place of the multipole unit used in previous in -line gun tube designs. This results in a strikingly compact assembly. The automatic yoke/tube alignment does away with the need for preset mechanical tilt and shift adjustments which, Philips point out, correct one error by introducing another. The new tube is being produced in the 26, 22 and 20in. screen sizes. The power consumption of a set fitted with the 30AX is typicaly 100W compared to 120W with the 20AX system, at 1.2mA beam current and with an e.h.t. of 25kV. This compares with 88W for a set fitted with a 90° narrow -neck tube and hybrid yoke, under the same conditions.
The well-known 20AX features of HI-Bri, Soft-Flash and Quick-vision are maintained in the new 30AX systern. In their work on the design of deflection coils in the last few years the developers have expanded the magnetic deflectionfields into 'multipoles', Thisapproach has improved the understanding of the relations between coil and field and between field and deflection to such an extent that designing deflection units is now more like playing a difficult but fascinating game of chess than carrying out the obscure computing procedure once necessary.
It has a Transistorized horizontal deflection circuits made up of a horizontal switching or output transistor, a diode, one or more capacitors and a deflection winding. The output transistor, operating as a switch, is driven by a horizontal rate square wave signal and conducts during a portion of the horizontal trace interval. A diode, connected in parallel with the transistor, conducts during the remainder of the trace interval. A retrace capacitor and the deflection yoke winding are coupled in parallel across the transistor-diode combination. Energy is transferred into and out of the deflection winding via the diode and output transistor during the trace interval and via the retrace capacitor during the retrace interval.
In some television receivers, the collector of the horizontal output transistor is coupled to the B+ power supply through the primary windings of the high voltage transformer.
It's an interesting fact that the cathode ray tube, which was amongst the very earliest thermionic devices, seems likely to be amongst the very last in everyday use. Receiving valves are largely things of the past, while timebase valves now belong in the service department. The development of the CRT continues apace however, and one cannot see any likelihood of its demise. Solid-state displays have been talked about, and demonstrated, but anything likely to compete on cost and performance grounds with the modern colour tube seems forever to be "at least ten years away". The early experiments with cathode-ray tubes were carried out in the last century. By the turn of the century, crude CRTs could be made. An early CRT, the Wehnelt hot cathode tube of 1905, is on display at the IBA's Television Gallery. By 1910, Alexander Campbell -Swinton had come to appreciate the possibilities of the CRT as a pick-up and display device for television, and put forward suggestions for such a TV system. It was a while however before the type of tube we know today appeared. The tubes of the 1910-30 era were gas focused devices (relying on residual gas to focus the beam), the vacuum pumps of the period producing only a poor vacuum. By the time of the start of the BBC's TV service in 1936 however the modern type of tube had arrived. It was a triode device with external focusing and a deflection angle of around 50°. The usual sizes were 9 and 12in., and the e.h.t. was about 5kV. Post-war developments during the 1950s saw some important innovations. The deflection angle went to 70°, then 90°, then 110°; multi -electrode gun assemblies with electrostatic focusing were introduced; the e.h.t rose to 20kV; improved phosphors became available; and the advent of the aluminised screen considerably improved the brightness and contrast (by reflecting all the phosphor light emission forwards) while overcoming the problem of ion bombardment. Meanwhile, colour had come. The principle of the shadowmask tube had been suggested in the 1930s, but development (by RCA) had to wait until proposals for an acceptable, practical colour broadcasting system were put forward. A regular colour service was started in the USA in 1954, and the receivers were fitted with 21in. shadowmask tubes. Early developments included the use of improved phosphors, but essentially the same tube confronted us with the advent of colour transmissions in Europe in 1967. As you all know, it had three guns mounted in a triangular formation, a dot-phosphor screen, a massive convergence system in two sections (radial and lateral), plus purity magnets and a large metal shield on which the degaussing coils hung. It also needed both NS and EW raster correction circuitry. The first versions in Europe had a deflection angle of 90° : when the 110° version came along in the early 1970s the convergence and raster correction circuitry required were even more complex, but the degaussing shield had disappeared inside the tube. At much the same time however the first major breakthrough in large screen tube design occurred (we put it that way because the innovating Sony Trinitron was at the time mainly a small screen tube) - the RCA PIL tube with its in -line guns, phosphor -striped screen, and slotted shadowmask. The design of the yoke to provide self -convergence in conjunction with the in -line gun arrangement meant that no dynamic convergence system was required, while some simple manufacturer preset magnets provided static convergence and purity correction. Sets using this tube first appeared in Europe in 1975, and meanwhile the PHILIPS 20AX system had come along. Over the last few years the pace of development has quickened to a striking extent. We've had quick warm-up cathodes, the hi-bri technology which increases the shadow mask's transparency, the contoured line screen, the super -arch mask, pigmented phosphors, soft flash to reduce flashover damage, redesigned focus arrangements, and increased use of an earlier development, the black -stripe screen. The latest generation of tubes require no NS raster correction circuitry, which is all part of a parallel development in yoke technology, while the need for EW correction is also in the process of being designed out. With the new Philips 30AX tube, the static convergence and purity system disappear inside the tube in the form of a small internal magnetic ring. It's all a long way from Wehnelt's hot -cathode tube of 1905. The latest colour tubes are compact and have all the various correction arrangements required built in. They are amazing feats of precision engineering, and a solid-state alternative seems as far away as ever. Is there any farther to go along this path? Well, single -gun colour tubes using the beam indexing principle are now understood to be a practical proposition for small screen tubes, so we can't be too sure.
Brionvega is (was) an Italian electronics company, established in Milan in 1945.
Vega, BP Radio, Brionvega, Brion & Pajetta; Milano, Lissone (MI) (I)
Abbreviation: vega
Products: Model types
Summary: Society B.P.M. (1945) Vega - BP Radio (Fabbrica Apparecchi e Accessori Radio, Perito Ind. Brion & Ing. Pajetta)
Via Pacini 59, Milano (1948)
Via Ampère 61, Milano (ca. 1950)
Brionvega Formenti Sèleco Spa
Via Dante Alighieri 43, 20035 Lissone / MI
Good design is no longer simply for an "elite" but is demanded by a far wider audience interested in continuous development.With so many designs and products available, how is it possible to distinguish a truly outstanding design from one that is simply trendy. World famous designers: Hannes Wettstein, Mario Bellini, Richard Sapper, Marco Zanuso, Castiglioni brothers and Ettore Sottsass, have tried to come up with the answer to what constitutes the perfect design. In finding inspiration, when designing for Brionvega, these people look beyond every day fashion and look for examples which are outstanding in their beauty. They also pay attention to people's attitude and how they relate to everyday objects.
Historically speaking, Brionvega is one of the most famous radio and Television manufacturers, thanks to its products, born from the collaboration with well-known design firms. Over the years, from its establishment, Brionvega has made some industrial design corner-stones, such as the radio "cube" TS502 from 1963, the Algol and Doney portable TV, and the radio-phonograph RR126.
The company was founded in 1945 by Giuseppe Brion and engineer Pajetta. Initially called B.P.M. Company and manufacturing electronic components, the business became known as Brionvega in 1960. In the early 1960s, two unusually designed portable television sets, designed by Marco Zanuso and Richard Sapper, were launched by Brionvega by the names "Doney" (1962) and "Algol" (1964).
Brionvega became famous for a number of exceptional designs (algol, doney, ts502, rr126). A few of their designs found their way into the Museum of Modern Art (MoMA), New York.
2007 DONEY CVT set ( V.Cometti) numbered edition, ALGOL CVT set (V.Cometti) numbered edition,
ALPHA LCD CVT set (V.Cometti)
2002 TVC DOGE 32" (M.Bellini)
1992 GLASS CUBE CVT set (M.Bellini) crystal cubic-shaped television
1992 25" and 28" QUADRO CTV set (M.Bellini) forerunners of the flat screens
1990 15" BEST CTV set (M.Bellini) with triangular rear case
1989 11" ALGOL CTV set (M.Zanuso) newly designed
1988 SINTESI CTV set (R.Lucci-P.Orlandini) with the characteristic orientable loudspeakers
1983 26" CORO PANSOUND CTV set (R.Lucci-P.Orlandini)
1980 23" MEMPHIS CTV set (E.Sottsass) limited series
1980 20" LED CTV set (M.Bellini)
1979 26" ALTA FEDELTA' CTV set (M.Bellini) high audio performance technology
1978 15" MONITOR TV Set (M.Bellini) whose packaging will serve as model for the manufacturing of future PC monitors
1978 15" MONITOR TV Set (M.Bellini) whose packaging will serve as model for the manufacturing of future PC monitors
1969 17" VOLANS TV Set (M.Bellini)
1969 BLACK ST 201 TV Set (M.Zanuso-R.Sapper) first small size TV set designed to be a decorative piece
1968 ASTER TV Set (M.Bellini) sculptural, audio devices in the base
1967 12" DONEY TV Set (M.Zanuso-R.Sapper) evolution of the 14" version
1964 19" SIRIUS TV Set (M.Zanuso)
1964 11" ALGOL TV Set (M.Zanuso-R.Sapper) on display at the MoMA in New York.
1962 14" DONEY TV Set (M.Zanuso-R.Sapper)first transistor portable TV set in Europe, awarded with the Compasso d'Oro.
1961 23" ORION TV Set (M.Albini-F.Helg)
1959 23" CRISTALLO TV Set (R.Bonetto)
1954 Television is becoming widespread.
1945 Giuseppe Brion and engineer Pajetta found the B.P.M. company (initially electronic components), which in the 1960's will become Brionvega, specialized in TV sets.
The BRIONVEGA stylish design is well recognized around the world for it's particularity.
The television here in collection The BRIONVEGA COSMO TVC 26 MONITOR PANSOUND is a clear example of that style.
References:
^ "Ex Sèleco a un imprenditore udinese", Articolo del Messaggero Veneto del 18 febbraio 2010"Brionvega History". Brionvega.tv. Retrieved 18 February 2012.
"2008 Brionvega reissues". brionvega.tv.
"Cuboglass TV History". brionvega.it.
No comments:
Post a Comment
The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.
Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!
The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.
Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.
Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.
Your choice.........Live or DIE.
That indeed is where your liberty lies.
Note: Only a member of this blog may post a comment.