Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical Obsolete technology relics that the Frank Sharp Private museum has accumulated over the years .
Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.

Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:
- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........
..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !
-----------------------
©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of Engineer Frank Sharp. NOTHING HERE IS FOR SALE !
All posts are presented here for informative, historical and educative purposes as applicable within Fair Use.


Wednesday, April 3, 2024

BLAUPUNKT MONTANA IP 32 STEREO VT COLOR (7 664 880) CHASSIS FM 100-20 CKVS CRT TUBE ITT (SEL) A67-701X

 

CRT TUBE ITT (SEL) A67-701X

CRT Socket

This is a S.P.I. (Super Precision In Line) CRT

In-line gun system for a color picture tube:
Super Precision In-Line ITT SEL.
In a color picture tube with an in-line gun system elliptic beam-spot distortion caused by the deflection field is compensated for by pairs of plates in at least one focus electrode. The plates project into the apertures for the electron beams and are located at a distance from the bottom of the focus electrode.







What is claimed is: 1. A color picture tube, comprising:
a screen;
a funnel;
a neck;
a deflection system mounted on said neck at the transition of said neck to said funnel and which contains an inline gun system comprising cathodes and grid and focus electrodes, said focus electrodes having separate apertures each with a continuous edge for guiding electron beams to said screen, at least one of said focus electrodes having plates attached thereto which are located on both sides of the electron beams and are disposed on the screen side of said at least one said focus electrodes; said plates having curved portions which project into said apertures and are arranged in a spaced relationship from the screen side of the aperture of the respective focus electrode; and
one of the grid electrodes contains a slit diaphragm.
2. A color picture tube as claimed in claim 1, wherein:
vertices of said curved portions of said plates for the outer electron beams are located beside the center lines of said apertures for these electron beams in the focus electrode.
3. A color picture tube as claimed in claim 1, wherein:
the distances (w) between opposite ones of said plates
are different for the different electron beams.
4. A color picture tube as claimed in claim 1, wherein:
the distances between said plates and the bottom of the respective focus electrode differ for the individual electron beams.

Description:
BACKGROUND OF THE INVENTION
The present invention relates to a color picture tube.
U.S. Pat. No. 4,086,513 discloses a color picture tube with an in-line gun system in which parallel plates are attached to a focus electrode on both sides of the beam plane. This parallel pair of plates is directed towards the screen and serves to compensate the elliptic distortion of the beam spots by the deflection field, such distorted beam spots reducing the sharpness of the image reproduced. The pair of plates is attached to the focus electrode nearest to the screen. Alternatively, plates can be attached to a focus electrode near the first-mentioned focus electrode on both sides of the beams directed towards the last focus electrode. These plates are mounted at an angular distance of 90 degrees from the first-mentioned parallel pair of plates.
SUMMARY OF THE INVENTION
It is one object of the invention to provide a color picture tube with an in-line gun system causing an improvement in the compensation of the distortion of beam spots.
BRIEF DESCRIPTION OF THE DRAWING
The embodiments of the invention will now be explained with reference to the accompanying drawings, in which:
FIG. 1 is a side view of a color picture tube;
FIG. 2 is a side view of an in-line gun system;
FIG. 3 is a top view of a focus electrode;
FIG. 4 is a section through the focus electrode of FIG. 3 along line IV--IV.
DETAILED DESCRIPTION
FIG. 1 shows a color picture 10 tube comprising a screen 11, a funnel 12, and a neck 13. In the funnel 13, an in-line gun system 14 (drawn in broken lines) is located producing three electron beams 1, 2, 3, which are swept across the screen 11 (1', 2', 3'). A magnetic deflection system 15 is located at the transition from the neck 13 to the funnel 12.







FIG. 2 is a side view of the in-line gun system 14. It has a molded glass disk 20 with sealed in contact pins 21. The contact pins 21 are conductively connected (not shown) to the electrodes of the in-line gun system 14. The contact pins are followed by grid electrodes 23, 24, focus electrodes 25, 26 and a convergence cup 27. Inside the grid electrode 23, cathodes 22 are arranged which are shown only schematically in broken lines. The first grid electrode 23 is also called control grid, and the second grid electrode 24 is also called screen grid. The cathode together with the control grid and the screen grid is called triode lens. The focus electrodes 25, 26 form a focusing lens. The individual parts of the in-line electrode gun 14 are held together by two glass beads 28.
The focus electrode 25 consists of 4 cup-shaped electrodes 25.1 to 25.4, of which two each are joined together at their free edges and thus form a cup-shaped electrode. In all electrodes of the in-line gun system 14, there are three coplanar aperatures through which the electron beams 1, 2, 3 produced by the three cathodes 22 can pass. Three beams 1, 2, 3 are thus produced in the in-line gun system which strike the Luminescent Layer of the screen 11. In order to change the shape of the beam spot to obtain improved sharpness of the reproduced image, a suitable astigmatism is imparted to the in-line gun system. This effect is obtained by a slit diaphragm in the grid electrode 24 of the triode lens and by plates on both sides of the beam plane or on both sides of the beams in the focus electrode(s).
It is necessary to divide the astigmatism of the beam system between the triode lens and the focusing lens. The triode lens forms a smallest beam section which--in analogy to optics--is imaged on the screen with the following lenses. The astigmatic construction of this triode lens also leads to an astigmatism of the aperture angle of the bundle of rays emerging from the triode lens. A larger aperture angle facilitates defocusing of the image of the smallest beam section and the viewer of the color picture tube focuses on the plane with the larger aperture angle, i.e., the vertical and not the horizontal focal line of the astigmatic beam section of the triode lens is imaged on the screen. On the other hand, the aperture angle must not become too large, because then the bundle of rays moves to the bordering region of the imaging lenses. The large spherical aberration of these rather small electrostatic lenses does not permit a sharp image. Therefore, a sufficient astigmatic deformation of the bundle of rays is possible only if it is partly effected in the last focusing lens of the beam system where the aperture angle of the bundle of rays is no longer influenced.
FIG. 3 is a top view of the cup-shaped focus electrode 26. In the bottom of the focus electrode 26, there are three coplanar apertures 30 for the passage of the electron beams 1, 2, and 3, respectively. At the walls 32 of the focus electrode 26 two plates 31 are attached opposite each other, each of which has three curved portions 33. These curved portions 33 project into the apertures 30. The plates 31 can also consist of three individual curved portions 33. In the embodiment shown in FIG. 3, the curved shape of the portions 33 corresponds to an arc of a circle. The shape of the portions 33 can also be elliptic or parabolic or have a similarly curved shape. The distance w 1 between the opposite vertices of the portions 33 projecting into the central aperture is smaller than the distance w 2 between the opposite vertices of the portions 33 for the outer apertures 30. Furthermore, the vertices of the portions 33 for the outer apertures are not on the center line of the outer apertures 30. In order to make this clear, the distance of the central points of the apertures 30 from each other is designated by the letter S in FIG. 3. The distance of the vertices of the outer portions 33 from the central vertex in the plate 31 is designated by s 1 . It is clear that the value s 1 is smaller than the value S. This makes it possible to influence the angle the outer electron beams 1, 3 make with the central electron beam 2 to achieve static convergence.
FIG. 4 is a section of the focus electrode 26 along line IV--IV of FIG. 3. The apertures 30 in the bottom of the focus electrode 26 have burred holes whose height for the individual apertures can be different. The plates 31, which may be attached to the wall 32 of the focus electrode 26 by weld spots 34, are arranged in a defined spaced-apart relation with respect to the inner edge of the burred holes. The distance from the bottom of the focus electrode 26 to the lower edge of the portions 33 of the plates 31 projecting into the apertures 30 is designated by the letter d. The distance d 1 for the portion 33 projecting into the central aperture 30 is larger than the corresponding distances d 2 of the outer portions 33 from the bottom of the focus electrode 26. By varying the distance d, the astigmatism of the focus electrode can be influenced. It is thus possible to choose the distances d of the various portions 33 from the bottom of the focus electrode individually in order to optimize the adjustment of the astigmatism individually for each electron beam. The height of the portions 33 of the plates 31 is designated by the letter b. By varying this height b, the astigmatism of the focus electrode can also be changed. Here, too, it is possible to determine the height b individually for each portion 33 in order to optimize the adjustment of the astigmatism for each electron beam. In the embodiment shown in FIG. 4, the height b 2 of the outer portions 33 is larger than the height b1 of the inside portion 33.
The plates 31 described above do not only influence the astigmatism of the focusing lens, but also the other lens aberrations, i.e., the spherical aberration and the further higher-order aberrations. This influence is different for each of the embodiments described above. The higher-order aberrations can be seen mainly at the edge of the picture. They can be minimized by a suitable combination of the plates at the electrodes of the focusing length. It is possible, for example, to distribute the correction to the two focus electrodes or to impress too strong an astigmatism on one of the two focus electrodes, with partial compensation at the other focus electrode.
By the use of the plates 31 described above, it is possible to adjust the astigmatism very finely, thus producing an improved sharpness across the entire screen. By the fine adjustment of the static convergence, which is possible as well, the sharpness can also be improved. Furthermore, the dynamic convergence is improved, too.

 
Electron-gun system NOKIA GRAETZ ITT CRT




In a cathode-ray tube with a thick grid No. 2 (24) in the electron-gun system, current transfer into grid No. 2 (24) may result in a lack of picture sharpness. To avoid this error, the aperture (4) in grid No. 2 (24) has a widening (6) of conical shape or stepped diameter.

1. Electron-gun system for cathode-ray tubes comprising at least one cathode and at least three electrodes, the second of which is a screen grid, which are arranged one behind the other and have apertures through each of which an electron beam can pass, characterized in that the aperture (4) in the screen grid (24) has an unwidened part and a conical widening (6) on its side facing the third electrode (25), whereby current transfer into the screen grid and the third electrode is greatly reduced. 2. An electron gun system for cathode ray tubes, comprising:
at least one cathode;
at least three electrodes, said electrodes and said cathode being arranged one behind the other and having apertures through each of which an electron beam can pass, the aperture of the second electrode having a widening on its side facing the third electrode, said widening being conical in shape and extending over part of the depth of the aperture, and that the other part of the depth satisfies the relationship a divided by d is less than or equal to 0.5, where d is the diameter of the unwidened part of the aperture and a is the depth of the unwidened part of the aperture.
3. An electron-gun system as claimed in claim 2, characterized in that on its side facing the third electrode (25), in the area of the opening (4), the second electrode (24) bears a plate (8) containing the conical widening (6). 4. An electron gun system for cathode ray tubes, comprising:
at least one cathode;.
5. An electron gun system for cathode ray tubes, comprising:
at least one cathode;
at least three electrodes, said electrodes and said cathode being arranged one behind the other and having apertures through each of which an electron beam can pass, the apertures of the second electrode having widenings on sides facing the third electrode, each of said widenings being formed by a step wherein the diameter (d1) of the widened part satisfies the relation d1=d0+2ctanα, where d0 is the diameter of the unwidened part of the aperture (4), c is the depth of the widened part, and α≥10°.
6. Electron-gun system for cathode-ray tubes comprising at least one cathode and at least three electrodes, the second of which is a screen grid, which are arranged one behind the other and have apertures defined by cylindrical surfaces through each of which an electron beam can pass, characterized in that the aperture (4) in the screen grid (24) has a conical widening defined by a conical surface contiguous with the cylindrical surface on its side facing the third electrode (25), whereby current transfer into the screen grid and the third electrode is greatly reduced.
Description:
The present invention relates to an electron-gun system for cathode-ray tubes and more particularly, an electron gun system having at least one cathode and at least three electrodes which are arranged one behind the other and have apertures through each of which an electron beam can pass.
Electron-gun systems for cathode-ray tubes comprising a cathode as well as grid and focusing electrodes are known from (DE-OS 32 12 248) corresponding to U.S. Pat. No. 4,682,073. To achieve a thin electron beam and, thus, a small electron spot on the screen of the cathode-ray tube, it is necessary to make grid No. 2 relatively thick. This means that the aperture in grid No. 2 must have a great depth, it being quite possible that the depth of the aperture is equal to the diameter of the aperture.
With such a design of grid No. 2, it may happen that during the period from the turning on of the cathode-ray tube to the creation of stable space-charge conditions around the cathode, the electron beam expands, touching the wall of the aperture in grid No. 2. The electrons touching the wall of the aperture in grid No. 2 cause the emission of secondary electrons which reach grid No. 3, also called "focusing electrode". Such leakage currents are first unmeasurably small, but with increasing service life, measurable currents in the pA range occur at grid Nos. 2 and 3 for short times because due to deposition of evaporated cathode materials into the aperture of grid No. 2, the secondary-electron yield of initially about 1 multiplies. These leakage currents cause a change in the voltage across grid No. 2 - it becomes more positive - and in the voltage across the focusing electrode, which becomes more negative. Due to these changes in potential, the electron beam is not optimally focused for short periods of time, which leads to a lack of picture sharpness. In unfavorable cases, even self-blocking may be caused by total current transfer into grid Nos. 2 and 3.
It is the object of the present invention to provide an electron-gun system for cathode-ray tubes having a thick grid No. 2 in which no lack of picture sharpness is caused by current transfer into grid Nos. 2 and 3.
This object is attained by making the aperture in grid No. 2 so that it becomes wider at its side facing grid No. 3. Further advantageous features of the invention are achieved by making the aperture widening conical in shape, and in particular, that the conical widening extends over part of the depth of the aperture, and that the other part of the depth satisfies the relation a divided by d is less than or equal to 0.5, where d is the diameter of the aperture and a is the depth of the unwidened part of the aperture. Other features of the invention include the widening of the aperture has an angle of at least 10°, and preferably 15°. In another embodiment, the side of grid No. 2 facing grid No. 3 bears a plate containing the conical widening. The widening may also be in the form of a step, wherein the diameter of the widened part between the step and the side of the grid facing grid No. 3 satisfies the relationship d1=d0+2c tanα, where d0 is the diameter of the unwidened part of the aperture, c is the depth of the widened part, and α is greater than or equal to 10°.
Embodiments of the invention will now be explained with reference to the accompanying drawings, in which:
FIG. 1 is a side view of a cathode-ray tube;
FIG. 2 is a side view of an electron-gun system;
FIG. 3 is a cross-sectional view of a first embodiment of a grid No. 2;
FIG. 4 shows the detail Z of FIG. 3;
FIG. 5 is a cross-sectional view of a second embodiment of a grid No. 2;
FIG. 6 is a cross-sectional view of a third embodiment of a grid No 2;
FIGS. 7a and 7b show the details X and Y of FIG. 6;
FIG. 8 is a cross-sectional view of a further embodiment, and
FIG. 9 shows the detail X of FIG. 8.
FIG. 1 shows a cathode-ray tube 10 comprising a screen 11, a funnel section 12, and a neck 13. There are singlegun and multigun tubes. In multigun tubes, the electron guns are either separate from each other or combined into one mechanical assembly The present invention relates to all these forms of electron-gun systems even though it will be explained as applied to a multibeam electron-gun system of integrated construction.
The neck 13 of the cathode-ray tube 10 houses an electrongun system 14 (indicated by broken lines) which generates three electron beams 1, 2, 3 These beams are scanned (1', 2', 3') across the screen 11 by a magnetic deflection system 15 located in the junction region of the funnel section 12 with the neck 13.
FIG. 2 shows the electron-gun system 14 in a side view. Seen in the beam direction, the system 14 comprises a grid No 1, designated 23, a grid No. 2, 24, first and second focusing electrodes 25 and 26, and a convergence cup 27. Grid No. 1, 23, contains cathodes 22, which are indicated by dashed lines This grid is also called the "control grid", and grid No. 2, 24, the "screen grid". The cathode, the control grid, and the screen grid are referred to as a "triode lens"The focusing electrodes 25, 26 constitute a focusing lens. The individual parts of the system are held together by two glass rods 28 The electrical connections of the system 14 are not shown for the sake of clarity.
All electrodes of the system 14 contain three apertures which are arranged in a horizontal line and through which can pass the electron beams generated by the three cathodes 22, which later land on the phosphor screen 11.
FIG. 3 shows grid No. 2, 24, in a sectional view. Indicated above this grid is the first focusing electrode 25. In this embodiment, grid No. 2 has the shape of a cup whose bottom 5 contains the aperture 4 for the electron beam. The other apertures for the other electron beams are not visible in this sectional view. The aperture 4 has a great depth, i.e., its diameter d is approximately equal to the thickness of the bottom 5 of the grid. On the side of the grid facing the first focusing electrode 25, the aperture 4 has a widening 6 which is conical in shape.
FIG. 4 shows the detail Z of FIG. 3. The conical widening 6 need not extend over the entire depth of the aperture 4. In the example shown, the aperture 4 has a depth a over which its sidewalls are parallel to the central axis of the aperture 4. This portion is followed by the conical widening 6. The conical widening has an angle α of at least 10°, preferably 15°. For the relation of the depth a of the aperture 4 to the diameter d, the condition a/b≤0.5 should be satisfied.
FIG. 5 shows a second embodiment of grid No. 2. In this embodiment, grid No. 2 is made from thin metal sheet. Here, too, the conical widening 6 includes an angle α of at least 1O°, and the relation a/d≤0.5 is satisfied.
FIG. 6 shows a third embodiment of grid No. 2. It has the shape of a cup, and the bottom 7 of the cup contains the rectangular aperture 4. A plate 8 resting on the bottom 7 contains an aperture aligned with the aperture 4 and having a conical widening 6. This structure of grid No. 2 permits an astigmatic beamforming element in the grid to be combined in a simple manner with the plate 8 containing the conical widening 6.
FIGS. 7a and 7b show the details X and Y, respectively, of FIG. 6. The details X and Y represent two sections through the grid 24 which are displaced relative to each other by 9O°. The plate 8 contains a rotationally symmetric aperture consisting of a cylindrical portion of depth a and the conical widening 6. The widening again has an angle α of at least 1O°. It does not extend over the entire depth of the aperture but passes into the portion whose depth is designated a and whose sidewalls are parallel to the central axis of the aperture 4. Here, too, the condition a/d≤=0.5 should be satisfied. The depth of the aperture 4 in the bottom 7 is designated by b, the width by e, and the length by f, and this portion of the aperture acts as an astigmatic beam hole.
FIG. 8 shows a further embodiment of grid No. 2. Here, the widening 6 is formed by a step, and its depth is designated c. In this embodiment, too, the grid can have the shape of a cup whose bottom 7 contains the aperture 4. The bottom 7 then bears the plate S, whose aperture is aligned with the aperture 4 and has the diameter d1 (FIG. 9). This diameter is greater than the diameter dO of the aperture in the bottom 7, so that the step is obtained Here, the condition d1=d0+2ctanα should be satisfied, where α≥10°. FIG. 9 shows the detail X of FIG. 8. In this embodiment, too, the bottom 7 may contain a rectangular aperture which acts as an astigmatic beam hole. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Deflection unit for a cathode-ray tube:

In cathode-ray tubes which require a precise specific electromagnetic deflection field configuration as for example, in self-converging color television picture tubes, an accurate distribution of the coil windings has to be maintained on the inside of the deflection unit. In practice, this requirement has been met with the aid of toroidal coil windings, but with respect to the more sensitive saddle-type coils this problem has not yet been solved satisfactorily, especially when large numbers of winding turns are to be accommodated. With respect to saddle-type coils the invention proposes to solve this problem by placing the windings into grooves.


International Standard Electric Corporation (New York, NY)
Inventors:Nelle, Friedrich (Straubing, DE)

1. A deflection unit for a cathode-ray tube, which is arranged toroidally around the neck of the tube and opens up in a trumpet-like manner towards the screen, and produces an electromagnetic field for deflecting one or more electron beams, and in which, at least in one direction of displacement, the deflecting field is produced by a set of saddle-type coils, the windings of which are wound on to a coil form on the face sides and on the inner surface of the deflection unit, wherein the improvement comprises;

each of the two halves of the saddle-type coil is arranged on one half of a coil form comprising two parts, with grooves determining the exact coil winding distribution being provided for in the surface of the coil form facing the tube wall;

the groove cross-sections are so designed that said grooves are almost completely filled with wires; and

at least some of said grooves deviate in their direction from the planes of the tube axis.


2. Deflection unit of claim 1, wherein one coil form for the coils of a first direction of displacement, and a further coil form for the coils of a second direction of displacement, are arranged in such a way into one another that the trumpet-like portions of the coil forms will come to lie almost completely on one another.

3. Deflection unit of claims 1 or 2 wherein the coil form is produced by being injection-molded on to the toroidal core.

4. Deflection unit of claims 1 or 2, wherein the wires on the face sides are guided in external grooves, and that at the slots formed as a continuation of the grooves on the face sides, the one side of the slots towards which the wires are turned out of the groove and into the external groove protrudes either from one of the face sides or from both.

5. Deflection unit of claim 4, wherein the web between the slots is arranged slantingly with respect to a plane extending vertically in relation to the tube axis.

Description:

BACKGROUND OF THE INVENTION

The present invention relates to a deflection unit (yoke) for a cathode-ray tube, which is arranged toroidally around the neck of the tube and opens up in a trumpet-like manner towards the screen, and produces an electro-magnetic field for deflecting one or more electron beams, and in which, at least in one direction of displacement, the deflecting field is produced by a set of saddle-type coils, the windings of which are wound on to a coil form on the face sides and on the inner surface of the deflection unit.

With respect to deflection units, it is a general requirement to achieve the necessary field pattern by way of the physical configuration of the deflection coils.

The required accuracy of the field pattern to be formed is particularly high in the case of deflection units which, owing to the shape of the picture tube, open up in a trumpet-like manner, especially in the case of color television picture tubes having high deflection angles.

Such high requirements can be met approximately by employing, for example, toroidal coils.

In the case of saddle-type coils having the advantage of a higher sensitivity over the toroidal coils, this has far less been able to achieve up to now owing to the more difficult geometry and for reasons of the difficulties in manufacture resulting therefrom, especially when a high impedance and, consequently, a large number of turns is required for circuit-technical reasons.

From the German Published Patent Application (DT-OS) Nos. 26 01 205 and 26 30 297, a deflection unit with saddle-type coils has become known, the windings of which are guided on the face sides of the yoke in grooves, with a possibility of providing further points of support on the inside surface of the yoke.

A similar point-wise fixing of the winding turns is also found in an example of embodiment relating to a deflection unit with saddle-type coils as disclosed in the German Printed Patent Application (DT-AS) No. 26 15 126. The guiding of the winding turns on the inside of the yoke by way of axial grooves in the core material is disclosed in the German Petty Patent (DT-GM) No. 74 41 864.

SUMMARY OF THE INVENTION

It is the object of the invention to provide a deflection unit of the type mentioned hereinbefore, which permits the formation of a desired field pattern and which, at the same time, enables an exact fixing of the coil windings also in the case of a large number of turns, without having to modify the contours of the core.

According to the present invention, each of two halves of a saddle-type coil is arranged on one half of a coil form consisting of two parts, with grooves determining the coil winding distribution being provided for in the surface of the coil form facing the tube wall.

As an advantage over the conventional arrangements, practice has shown that by applying the solution according to the invention, e.g. to shadow-mask type color television picture tubes having several electron beams, besides the adjustment of the deflection unit on the neck of the tube, there are not required any further means for achieving the desired convergence, and that this convergence behavior is also reproducible under mass-production requirements. According to another advantage of the invention, it is not so important for the individual wire to assume an exact position in the respective groove, as long as it is safeguarded that the wires are evenly distributed for filling the grooves.

It is also considered to be very advantageous to be able to choose from a large number of easily deformable materials, such as the injection-moldable thermoplast or the thermally deformable plastic foil, for manufacturing the coil form. This coil form does not need to consist of the same material as the toroidal core which is difficult to process and to form.

According to one advantageous further embodiment of the invention, it is proposed to design the groove cross-section also for a different occupation by wires, in such a way that the inserted wire or that the inserted wires will almost completely fill out the grooves, thus further increasing the accuracy of the winding distribution.

Moreover, it is proposed to arrange grooves also in planes other than those in which the tube axis is lying, or else to design the grooves to have a bent or curved form. In this way, it is possible to take more influence upon the pattern of the deflecting field than was possible with the hitherto conventional solutions.

As another advantageous further embodiment of the invention, it is also possible to arrange several coil sets, for example, for several directions of displacement, into one another as will still be described more precisely hereinafter with reference to an example of embodiment.

BRIEF DESCRIPTION OF THE FIGURES

Further details of the invention will now be explained in greater detail with reference to FIGS. 1 to 4 of the accompanying drawings, in which:

FIG. 1 is a part-sectioned view taken through a schematical example of embodiment of the invention;

FIGS. 2 and 3 show views of the face sides of a coil form according to the invention with part-sectioned views and winding examples; and

FIG. 4 is the schematical part-sectioned view taken through an example of embodiment comprising two sets of coils arranged into one another.

DETAILED DESCRIPTION OF THE INVENTION:


FIG. 1 shows an example of embodiment relating to a deflection unit arranged on the neck of the tube (7) and which, apart from the saddle-type coils (2), as an example of a further direction of displacement, still shows toroidal coils (8) which are wound around the toroidal core (1). According to the invention, grooves (5) are arranged in the inner surface (3) of the yoke in the coil form (4). There are various ways of designing these grooves (5). Thus, among others, these grooves may be cornered and provided with flat walls following the shape of the coil form, and equally well it is possible to provide round or hollow grooves. These grooves (5), for example, may be obtained by folding a formable foil. They may be wider than deep, or, conversely, deeper than wide, and the webs forming between them may be narrower than the grooves themselves. Likewise, also parts of the coil form may be removed between the grooves. The turns of the windings (6) during the winding operation are led in a way customary to the person skilled in the art, by coming from a groove (5) through the slots (9) into the external groove (10) in which they are led until entering the next groove (5). Preferably, the grooves (5) are almost completely filled with the winding turns (6).

Moreover, and in accordance with an advantageous further embodiment of the invention, FIG. 1 shows slots (9.1) to be provided for in the external groove (10), with the one side thereof protruding from the face side (13). In order to achieve this, the webs between the slots in this example of embodiment are arranged slantingly with respect to a plane extending vertically in relation to the tube axis. In this way the guiding of the wire is substantially improved during the operation of winding the coils, thus enabling a quicker and more reliable winding operation.

FIGS. 2 and 3 show a coil form according to FIG. 1 with a view on to the two face sides. Wire winding example are shown and become more clearly evident from the part-sectioned views on the coil form as regards the direction of the wire turns. As is shown in FIG. 2, the grooves (5) are provided in this case to have straight side walls, with the planes thereof extending parallel in relation to the tube axis in order thus to be able to make the tools, e.g. for a manufacture in accordance with the injection molding process, as well as the device for winding the coils (2), as simple as possible. By distributing the grooves (5) on the inner surface (3) of the coil form (4), as well as by them deviating from the radial direction, it is possible to take influence upon the configuration of the deflecting field, in order to achieve, for example, a field distribution as disclosed in the German Published Patent Application (DT-OS) No. 24 11 084 for color television picture tubes. But also grooves (5) in other planes are possible. The grooves (5) may also have a bent or curved design, as already mentioned hereinbefore.

FIG. 4 shows a second example of embodiment of the invention. According to a further embodiment of the invention, two coil forms (4.1, 4.2) are arranged into one another in this case, in order thus to produce deflecting fields for displacing electrons in two directions. Relative thereto, for example, it is also within the scope of the invention to produce the coil form (4.1) by being injection-molded on to the core (1).

 

No comments:

Post a Comment

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.

Note: Only a member of this blog may post a comment.