Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical Obsolete technology relics that the Frank Sharp Private museum has accumulated over the years .
Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.

Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:
- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........
..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !
-----------------------
©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of Engineer Frank Sharp. NOTHING HERE IS FOR SALE !
All posts are presented here for informative, historical and educative purposes as applicable within Fair Use.


Monday, December 3, 2012

PHILIPS COLOUR PICTURE TUBES AND ASSEMBLIES SELECTION GUIDE 1985 1989

The PHILIPS CRT Selection Guide following this introduction provides a complete  list of all the preferred tube
types and assemblies that are currently available, together with quick-reference data for each tube type
and deflection unit. 

However, the Device Specifications sections only provide data for basic families of tube types and tube assemblies. 

At the front of each Device Specification section is a list of types for which full data is provided.


 

Symbols denoting electrodes/elements and electrode/element connections
f  Heater
k  Cathode
g Grid: Grids are distinguished by means of an additional numeral:
the electrode nearest to the cathode having the lowest number.
a Anode
m External conductive coating
m’ Rimband
Q Fluorescent screen
ic. Tube pin which must not be connected externally
nc Tube pin which may be connected externally
 

Symbols denoting voltages
Unless otherwise stated, the reference point for electrode voltages is the cathode.
Vv Symbol for voltage, followed by a subscript denoting the relevant electrode/element
Ve Heater voltage
Vp-p Peak-to-peak value of a voltage
Vp Peak value of a voltage
VGR Grid 1 voltage for visual extinction of focused raster (grid drive service)
VKR Cathode voltage for visual extinction of focused raster (cathode drive service)

Symbols denoting currents
| Symbol for current followed by a subscript denoting the relevant electrode
Fo Heater current (RMS value)
Note: The symbols quoted represent the average value of the current, unless otherwise stated.


Symbols denoting capacitances

See IEC publication 100

Symbols denoting resistances and impedances
R Symbol for resistance followed by a subscript for the relevant electrode pair. When only one subscript is given the second electrode is the cathode.
Zz Symbol for impedance followed by a subscript for the relevant electrode pair. When only one
subscript is given the second electrode is the cathode.

Symbols denoting various quantities
L Luminance
f Frequency
H Magnetic field strength.

  
















GENERAL OPERATIONAL RECOMMENDATIONS

INTRODUCTION
Equipment design should be based on the characteristics as stated in the data sheets. Where deviations from these general recommendations are permissible or necessary, statements to that effect will be made. If applications are considered which are not referred to in the data sheets of the relevant tube type, extra care should be taken with circuit design to prevent the tube being overloaded due to unfavourable operating conditions.

SPREAD IN TUBE CHARACTERISTICS
The spread in tube characteristics is the difference between maximum and minimum values. Values not qualified as maximum or minimum are nominal ones. It is evident that average or nominal values, as well as spread figures, may differ according to the number of tubes of a certain type that are being checked. No guarantee is given for values of characteristics in settings substantially differing from those specified in the data sheets.

SPREAD AND VARIATION IN OPERATING CONDITIONS
The operating conditions of a tube are subject to spread and/or variation. Spread in an operating condition is a permanent deviation from an average condition due to, e.g.. component value deviations. The average condition is found from such a number individual cases taken at random that an increase of the number will have a negligible influence. Variation in an operating condition is non-permanent (occurs as a function of time). e.g .. due to supply voltage fluctuations. The average value is calculated over a period such that a prolongation of that period will have negligible influence.

LIMITING VALUES
Limiting values are in accordance with the applicable rating system as defined by IEC publication 134. Reference may be made to one of the following 3 rating systems. Absolute maximum rating system. Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions. These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment. The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating condit- ions with respect to
supply voltage variation, equipment components spread and variation, equipment control adjustment, load variations, signal variation, environmental .conditions, and spread or variations in characteristics of the device under considerations and of all other electronic devices in the equipment.

Design-maximum rating system.
Design-maximum ratings are limiting values of operating and environ- mental conditions applicable to a bogey electronic device* of a specified type as defined by its pub- lished data, and should not be exceeded under the worst probable conditions. These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the charac- teristics of the electronic device under consideration. The equipment manufacturer should design so that, initially and thoughout life, no design-maximum value for the intended service is exceeqed with a bogey device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, variation in char- acteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

Design-centre rating system.
Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data, and should not be exceeded under average conditions. These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation, equipment component spread and variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations or spread in the characteristics of all electronic devices. The equipment manufacturer should design so that, initially, no design-centre value for the intended service is exceeded with a bogey electronic device* in equipment operating at the stated normal supply voltage.

If the tube data specify limiting values according to more than one rating system the circuit has to be
designed so that none of these limiting values is exceeded under the relevant conditions.
In addition to the limiting values given in the individual data sheets the directives in the following
paragraphs should be observed.

HEATER SUPPLY
For maximum cathode life and optimum performance it is recommended that the heater supply be designed at the nominal heater voltage at zero beam current. Any deviation from this heater voltage has a detrimental effect on tube performance and life, and should therefore be kept to a minimum. Jn any case the deviations of the heater voltage must not exceed+ 5% and -10% from the nominal value at zero beam current. Such deviations may be caused by:

• mains voltage fluctuations;
• spread in the characteristics of components such as transformers, resistors, capacitors, etc.;
• spread in circuit adjustments;
• operational variations.

• A bogey tube is a tube whose characteristics have the published nominal values for the type. A bogey tube for any particular application can be obtained by considering only those characteristics which are directly related to the application.

CATHODE TO HEATER VOLTAGE
The voltage between cathode and heater should be as low as possible and never exceed the limiting values given in the data sheets of the individual tubes. The limiting values relate to that side of the heater where the voltage between cathode and heater is greatest. The voltage between cathode and heater may be d.c., a.c., or a combination of both. Unless otherwise stated, the maximum values quoted indicate the maximum permissible d.c. voltage. If a combination of d.c. and a.c. voltages is applied, the peak value may be twice the rated Vkf; however, unless otherwise stated, this peak value shall never exceed 315 V. Unless otherwise stated, the Vkf max. holds for both polarities of the voltage; however, a positive cathode is usually the most favourable in view of insulation during life. A d.c. connection should always be present betweeh heater and cathode. Unless otherwise specified the maximum resistance should not exceed 1 M.Q; the maximum impedance at mains frequency shou Id be less than 100 k.OHM.

INTERMEDIATE ELECTRODES (between cathode and anode)
In no circumstances should the tube be operated without a d.c. connection between each electrode and the cathode. The total effective impedance between each electrode and the cathode shou Id never exceed the published maximum value. However, no electrode should be connected directly to a high energy source. When such a connection is required, it should be made via a series resistor of not less
than 1 k.OHM.

CUT-OFF VOLTAGE
Curves showing the limits of the cut-off voltage as a function of grid 2 voltage are generally included in the data. The brightness control should be so dimensioned that it can handle any tube within the limits shown, at the appropriate grid 2 voltage. The published limits are determined at an ambient illumination level of 10 lux. Because the brightness of a spot is in general greater than that of a raster of the same current, the cut-off voltage determined with the aid of a focused spot will be more negative by about 5 Vas compared with that of a focused
raster.

LUMINESCENT SCREEN
To prevent permanent screen damage, care should be taken: - not to operate the tube with a stationary picture at high beam currents for extended periods; - not to operate the tube with a stationary or slowly moving spot except at extremely low beam currents; - if no e.h.t. bleeder is used, to choose the time constants of the cathode, grid 1, grid 2, and deflection circuits, such that sufficient beam current is maintained to discharge the e.h.t. capacitance before deflection has ceased after equipment has been switched off.

EXTERNAL CONDUCTIVE COATING
The external conductive coating must be connected to the chassis. The capacitance of this coating to the final accelerating electrode may be used to provide smoothing for the e.h.t. supply. The coating is not a perfect conductor and in order to reduce electromagnetic radiation caused by the line time base and the picture content it may be necessary to make multiple connections to the coating.
See also 'Flashover'.

METAL RIMBAND
An appreciable capacitance exists between the metal rimband and the internal conductive coating of the tube; its value is quoted in the individual data sheets.To avoid electric shock, a d.c. connection should be provided between the metal band and the external conductive coating. In receivers where the chassis ,can be connected directly to the mains there is a risk of electric shock if access is made to the metal band. To reduce the shock to the safe limit, it is suggested that a 2 Mil resistor capable of handling the peak voltages be inserted between the metal band and the point of contact with the external con- ductive coating. This safety arrangement will provide the necessary insulation from the mains but in the event of flashover high voltages will be induced on the metal band. It is therefore recommended that the 2 Mil resistor be bypassed by a 4, 7 n F capacitor capable of withstanding the peak voltage determined by the voltage divider formed by this capacitor and the capacitance of the metal rimband
to the internal conductive coating, and the anode voltage. The 4, 7 n F capacitor also serves to improve e.h.t. smoothing by addingthe rimband capacitance to the capacitance of the outer conductive coating.

FLASHOVER

High electric field strengths are present between the gun electrodes of picture tubes. Voltages between gun electrodes may reach values of 20 kV over approx. 1 mm. Although the utmost precautions are taken in the design and manufacture of the tubes, there is always a chance that flashover will occur. The resulting transient currents and voltages may be of sufficient magnitude to cause damage to the tube itself and to various components on the chassis. Arcing terminates when the e.h.t. capacitor is discharged. Therefore it is of vital importance to provide protective circuits with spark gaps and series resistors, which should be connected according to Fig. 1. No other connections between the outer conductive coating and the chassis are permissible. As our picture tubes are manufactured in Soft-Flash technology, the peak discharge currents are limited to approx. 60 A, offering higher set reliability, optimum circuit protection and component savings (see also Technical Note 039). However this limited value of
60 A is still too high for the circuitry which is directly connected to the tube socket. Therefore Soft-Flash picture tubes should also be provided with spark gaps.

IMPLOSION PROTECTION
All picture tubes employ integral implosion protection and must be replaced with a tube of the same type number or recommended replacement to assure continued safety.

HANDLING
Although all picture tubes are provided with integral implosion protection, which meets the intrinsic protection requirements stipulated in the relevant part of IEC 65, care should be taken not to scratch or knock any part of the tube. The tube assembly should never be handled by the neck, deflection unit or other neck components. A picture tube assembly can be lifted from the edge-down position by using the two upper mounting lugs. An alternative lifting method is firmly to press the hands against the vertical sides of the rimband. When placing a tube assembly face downwards ensure that the screen rests on a soft pad of suitable material, kept free from abrasive substances. When lifting from the face-down position the hand should be placed under the areas of the faceplate close to the mounting lugs at diagonally opposite corners of the faceplate.

When lifting from the face-up position the hands should be placed under the areas of the cone close
to the mounting lugs at diagonally opposite corners of the cone.

In all handling procedures prior to insertion in the receiver cabinet there is a risk of personal injury as a result of severe accidental damage to the tube. It is therefore recommended that protective clothing shou Id be worn, particularly eye shielding. When suspending the tube assembly from the mounting lugs ensure that a minimum of 2 are used; UNDER NO Cl RCUMSTANCES HANG THE TUBE ASSEMBLY FROM ONE LUG. If provided the slots in the rimband of colour picture tubes are used in the mounting of the degaussing coils. it is not recommended to suspend the tube assembly from one or more of these slots as permanent deformation to the rimband can occur. Remember when replacing or servicing the tube assembly that a residual electrical charge may be carried by the anode contact and also the external coating if not earthed. Before removing the tube assembly from the equipment, earth the external coating and short the anode contact to the coating.

PACKING
The packing provides protection against tube damage under normal conditions of shipment or handling. Observe any instructions given on the packing and handle accordingly. The tube should under no circumstances be subjected to accelerations greater than 350 m/s2.

MOUNTING
Unless otherwise specified on the data sheets for individual tubes there are no restrictions on the position of mounting. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. It is very desirable that tubes should not be exposed to strong electrostatic and magnetic fields.

DIMENSIONS
In designing the equipment the tolerances given on the dimensional drawings should be considered. Under no circumstances should the equipment be designed around dimensions taken from individual tubes.




















No comments:

Post a Comment

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.

Note: Only a member of this blog may post a comment.