LOEWE ARCADA 72-100 PIP is 29 Inches color television 100HZ frame rate TELEVISION In a known
arrangement, the frame rate of a television signal is doubled
by using a field store. In a first operating mode, each field of the
television signal is entered into the field store in this arrangement
and read out twice at twice the frequency. In a second mode, only every
second field is entered into the field store and read out four times at
twice the frequency. In an arrangement for converting an original picture signal representing
a sequence of frames, each of which is composed of two interlaced
fields, into a converted picture signal which has a double field
frequency with respect to the original picture signal, is for doubling
the field frequency, for the purpose of noise reduction, motion
compensation and line flicker reduction with 100HZ Digital Technology.,display system with increased field frequency ; digital scan
converter means including field-memory means supplied with an input
video signal of an interlaced television system having a selected
plurality of fields per second different from PHILIPS 100HZ
scan system. The chassis chipset is featuring both -
ITT and PHILIPS chipset in video ignal processing with the chassis LOEWE
Q2100. (Featuring an analog television component signal with a standard line frequency of
15.625 kHz is converted in the coder into an internal digital signal
with a bit rate of 32,765Khz and 625 Mbit/s.) A method for reducing flickering in a television receiver, in which the
television signal (Se) received field by field is divided into its
high-frequency and low-frequency components (Ah, Bh, At, Bt; HA, TA)
with respect to the spatial frequency by a spatially acting filter (1;
5; 15), these high-frequency and low-frequency components (Ah, Bh, At,
Bt; HA, TA) are subjected to a signal processing based on the use of
motion vectors (BV) and are subsequently combined again, and in which
the television signal (Se) processed in this manner is reproduced with
twice the vertical frequency in accordance with the line interlace
method.
The LOEWE Arcada 72-100 was the worldwide most complex digital 100Hz video signal circuit for CRT Television with microdigital chassis Q2100 developed by Matsushita/Panasonic (E2100).
Features the combination of 2 Techology toghether:
- DIGIVISION ITT DIGIT2000: FOR several years now the use of digital techniques in television has been growing. A considerable impetus came initially from the need for high -quality Tv standards conversion. The IBA's DICE (Digital Intercontinental Conversion Equipment) standards converter came into operational use in 1972. It's success demonstrated convincingly the advantages of processing video signals in digital form - digital signals are neither phase nor level dependent. The trend since then has been towards the all - digital studio: digital effects generators have been in use for some time, and digital telecines were announced earlier this year. An earlier example of the application of digital techniques to television was the BBC's sound-in-syncs system, in which the sound signal is converted to digital form so that it can be added to the video signal for network distribution. The sound-in-syncs system first came into use in 1969, and is was widely employed in pay tv systems alongside with video scrambling methods in the 80's. Digital techniques have already appeared on the domestic TV scene. The teletext signals are digital, and require digital processing. In modern remote control systems the commands from the remote control transmitter are in digital form, and require digital decoding and digital - to -analogue conversion in the receiver before the required control action can be put into effect. Allied to this, digital techniques are used for the more sophisticated channel tuning systems. The basic TV receiver itself continues to use analogue techniques however. Are we about to see major changes here?
ITT Semiconductors in W. Germany
have been working on the application of digital techniques to basic TV
receiver signal processing since 1977 with the supervision of the
Engineer Micic Ljubomir, and at the recent Berlin Radio Show presented a
set of digital chips for processing the video, audio and deflection
signals in a TV receiver. The set consists of a' couple of l.s.i. and
six v.l.s.i. chips - and by very large scale integration (v.l.s.i.)
we're talking about chips that contain some more 200,000 transistors.
What are the advantages?
For
the setmaker, there's reduction in the component count and simpler,
automated receiver alignment - alignment data is simply fed into a
programmable memory in the receiver, which then adjusts itself.
Subsequently, the use of feedback enables the set to maintain its
performance as it ages. From the user's viewpoint, the advantages are
improved performance and the fact that extra features such as picture
-within -a -picture (two pictures on the screen at the same time) and
still pictures become relatively simple to incorporate. The disadvantage
of course is the need for a lot of extra circuitry. Since the received
signals remain in analogue form, analogue -to -digital conversion is
required before signal processing is undertaken. As the c.r.t. requires
analogue drive signals, digital -to -analogue conversion is required
prior to the RGB output stages - the situation is somewhat different in
the timebase and audio departments, since the line drive is basically
digital anyway and class D amplifier techniques can be used in the field
and audio output stages. In between the A -D conversion and the various
output stages, handling the signals in digital form calls for much more
elaborate circuitry - hence those chips with 200,000 or so transistors.
The extra circuitry is all incorporated within a handful of chips of
course, but the big question is if and when the use of these chips will
become an economic proposition, taking into account reduced receiver
assembly/setting up costs, compared to the use of the present analogue
technology - after all, colour receiver component counts are already
very low. With the present digital technology, it's not feasible to
convert the signals to digital form at i.f. So conversion takes place
following video and sound demodulation. Fig.
1 shows in simple block diagram form the basic video and deflection
signal processing arrangement used in the system devised by ITT
Semiconductors. Before going into detail, two basic points have to be
considered - the rate at which the incoming analogue signals are sampled for conversion to digital form,
and the number of digits required for signal coding. Consider the
example shown in Fig. 2. At both (a) and (b) the signals are sampled at
times Ti, T2 etc. In (a) the signal is changing at a much faster rate
than the sampling rate. So very little of the signal information would
be present in the samples. In (b) the rate at which the signal is
changing is much slower, and since the sampling rate is the same the
samples will contain the signal information accurately. In practice, the
sampling rate has to be at least twice
the bandwidth of the signal being sampled. Once you've got your
samples, the next question is how many digits are required for adequate
resolution of the signal, i.e. how many steps are required on the
vertical (signal level) scale in Fig. 2 The use of a four -digit code,
i.e. 0000, 0001 etc., gives 16 possible signal levels. Doubling the
number of digits to eight gives 256 signal levels and so on. ITT's
experience shows that the luminance signal requires 8 bits (digits), the
colour -difference signals require 6 bits, the audio signal requires 12
bits (14 for hi-fi quality) while 13 bits are required for a linear
horizontal scan on a 26inch tube. These digital signals are handled as parallel data streams in the subsequent signal processing.
Returning to Fig. 1, the A -D and D -A conversion required in the video
channel is carried out by a single chip which ITT call the video codec
(coder/decoder). A clock pulse generator i.c. is required to produce the
various pulse trains necessary for the digital signal processing, and a
control i.c. is used to act as a computer for the whole digital system and
also to provide interfacing to enable the external controls
(brightness, volume, colour etc.) to produce the desired effects. In
addition, the control i.c. incorporates the digital channel selection
system. The video codec i.c. uses parallel A-D/D-A conversion, i.e. a
string of voltage comparators connected in parallel. This system places a
high premium on the number of bits used to code the signal in digital
form, so ITT have devised a technique of biasing the converter to
achieve 8 -bit resolution using only 7 bits (the viewer's eye does some
averaging on alternate lines, as with Simple PAL, but this time
averaging luminance levels). The A -D comparators provide grey -encoded outputs, so the first stage in the video processor i.c. is a grey -to -binary transcoder. As Fig.
3 shows, the processes carried out in the video processor i.c. then
follow the normal practice, though everything's done in digital form.
The key to this processing is the use of digital filters. These are clocked at rates up to 18MHz, and provide delays, addition and multiplication. The glass chroma delay
line required for PAL decoding in a conventional analogue decoder
consists of blocks of RAM (random-access memory) occupying only three
square millimeters of chip area each. As an example of the ingenuity of
the ITT design, the digital delay line used for chroma signal
averaging/separation in the PAL system is used in the NTSC version of
the chip as a luminance/chrominance signal separating comb filter. Fig. 4
shows the basic processes carried out in the deflection processor i.c.
This employs the sorts of techniques we're becoming used to in the
latest generation of sync processor i.c.s. Digital video goes in, and
the main outputs consist of a horizontal drive pulse plus drives to the
field output and EW
modulator circuits. The latter are produced by a pulse -width modulator
arrangement, i.e. the sort of thing employed with class D output
stages. The necessary gating and blanking pulses are also provided. A
further chip provides audio signal processing. One might wonder why the
relatively simple audio department calls for this sort of treatment. The
W. German networks are already equipping themselves for dual -channel
sound however, and the audio processor i.c. contains the circuitry
required to sort out the two -carrier sound signals. These chips represent a major step in digitalizing the domestic TV receiver. It seems likely that some enterprising setmaker will in due course announce a "digital TV set".
The interesting point then will be whether the chip yields, and the
chip prices as production increases, will eventually make it worthwhile
for all setmakers to follow this path (in 1984).
Therefore
digital television signal processing system introduced in 1984 by the
Worldwide Semiconductor Group (Freiburg, West Germany) of International
Telephone and Telegraph Corporation is described in an ITT Corporation
publication titled "VLSI Digital TV System--DIGIT 2000."
In that system
color video signals, after being processed in digital (binary) form, are
converted to analog form by means of digital-to-analog converters
before being coupled to an image displaying kinescope. The analog color
video signals are coupled to the kinescope via analog buffer amplifiers
and video output kinescope driver amplifiers which provide video output
signals at a high level suitable for driving intensity control
electrodes of the kinescope.
- PHILIPS 100HZ TECHNOLOGY A conventional TV shows a picture by scanning 50 times per second (50 Hz). This frequency can be detected by the human eye in the form of a flickering picture. 100 Hz sets show a picture by scanning 100 times per second eliminating field flickering. Philips' digital scan doubles the rate of line flicker, making it undetectable. The result is a more stable picture.
The set has outstanding features as listed:
Multistandard:
TV signals are defined primarily the National Television Standards Committee (NTSC), the Phase Alternative Line (PAL) or the Sequential Couleur Avec Memoire (SECAM) systems, and used in different countries around the world. An analog TV signal utilizes mainly two or three RF carriers, combined in the same channel band. One carrier may commonly be amplitude modulated (AM) with video content, and the other may be frequency modulated (FM) and/or amplitude modulated (AM) with audio content. An analog TV receiver functions by performing a series of operations comprising adjusting the signal power, separating the video and audio carriers, and locking to each carrier in order to down-convert the signals to baseband. The baseband video signal may then be decoded and displayed by achieving horizontal and vertical synchronization and extracting the luminance and color information. After demodulating the received signal, the resulting baseband audio may be decoded, and left, right, surround channels and/or other information may be extracted.- The LOEWE ARCADA 72-100 PIP Features a digital multistandard PAL/SECAM/NTSC 3.58 & 4.43 CCIR B/G/H/I/L/D/K/M. The different coding processes, e.g. NTSC, PAL and SECAM, introduced into the known colour television standards, differ in the nature of the chrominance transmission and in particular the different systems make use of different colour subcarrier frequencies and different line frequencies.
The following explanations relate to the PAL and NTSC systems, but correspondingly apply to video signals of other standards and non-standardized signals.
The colour subcarrier frequency (fsc) of a PAL system and a NTSC system is fsc(NTSC) = 3.58 MHz or fsc(PAL) = 4.43 MHz.
In addition, in PAL and NTSC systems the relationships of the colour subcarrier frequency (fsc) to the line frequency (fh) are given by fsc(NTSC) = 227.50 * fh or 4•fsc(NTSC) = 910 • fh fsc(PAL) = 283.75 * fh or 4•fsc(PAL) = 1135 • fh so that the phase of the colour subcarrier in the case of NTSC is changed by 180°/line and in PAL by 270°/line.
The invention relates to a digital multistandard decoder for video signals and to a method for decoding video signals. Colour video signals, so-called composite video, blanking and sync signals (CVBS) (chroma-video-blanking-sync) signal is a signal comprising both the chrominance and the luminance component of the video signal. Therefore, the CVBS video signal may be PAL video signal, a SECAM video signal, or an NTSC video signal. are essentially composed of a brightness signal or luminance component (Y), two colour difference signals or chrominance components (U, V or I, Q), vertical and horizontal sync signals (VS, HS) and a blanking signal (BL).
In order to decode a video signal and restore a color image, a color TV set has to identify the color TV standard used at the emission. Conventional color TV sets are equipped with a system for automatically identifying the norm or standard of the color TV set used for the emission. The invention more particularly relates to an automatic method for identifying a color TV standard in a multistandard TV set.
Presently, the most commonly used color TV standards are PAL, NTSC and SECAM standards. For these three standards, each line of the composite video signal comprises a synchronization pulse, a burst of a few oscillations of the chrominance sub-carrier signal, then the signal itself corresponding to the image, comprising superimposed luminance and chrominance information, the latter information being carried by the luminance signal.
The characteristics of the chrominance sub-carrier in the various PAL, NTSC and SECAM standards are defined in the published documents concerning these standards and will not be described in detail here. However, the main characteristics of these various standards will be briefly reminded because these indications are useful for a better understanding of the invention.
In the PAL standard, the frequency of the chrominance sub-carrier is equal for all the lines, but the phase of one of the modulation vectors varies + or -90° from one line to another. The frequency of the chrominance sub-carrier is standardized at 4.43 Mhz. In this system, the burst signal is also shifted by + or -90° from one line to the next.
In the NTSC standard, the chrominance sub-carrier is equal for all the lines.
In the SECAM standard, one uses two chrominance sub-carrier frequencies which alternate from one line to another, at 4.25 Mhz and 4.40 Mhz, respectively. These two chrominance sub-carriers are frequency modulated.
The multistandard color TV sets must have distinct internal systems designed to decode the luminance and chrominance signals for each standard used.
Therefore, these TV sets have to previously identify the received standard.
Systems for automatically identifying the standard used already exist. Generally, for such an automatic standard identification, the systems known use the bursts of the chrominance sub-carrier signal that are present at the beginning of each line. In fact, these bursts are standardized and calibrated samples of the chrominance sub-carrier transmitted on the video signal and comprise all the characteristic information concerning the transmitted color standard. The information contained in these bursts represents the frequency, the phase of one of the modulation vectors and the frequency or phase variation of one line with repect to the next one.
Full digital Processing both video and audio:The foregoing object and other objects of the invention have been achieved by the provision of a digital video audio processing apparatus comprising: apparatus for digital video and audio processing including information input and output processing devices for input, output, and processing of pictures and sounds.
Stereo sound 4 speakers
Tone controls
- Teletext 1000 Pages Teletext is a television-based communication technique in which a given horizontal video line is utilized for broadcasting textual and graphical information encoded in a digital binary representation. Such horizontal video line signal that contains teletext data is referred to herein as a Data-line. It is assumed herein, for explanation purposes, that teletext is sent by the broadcaster only during the vertical blanking interval (VBI), when no other picture information is sent. The organization of the binary information in the broadcast signal is determined by the standard employed by the broadcaster. By way of an example only, references are made herein to a teletext based on a standard referred to by the British Broadcasting Corporation (BBC) as CEEFAX.
Each Data-line carries data synchronizing and address information and the codes for a Row of 40 characters. The synchronizing information includes a clock run-in sequence followed by an 8-bit framing code sequence. Each Data-line contains a 3 bit code referred to as the Magazine number. A teletext Page includes 24 Rows of 40 characters, including a special top Row called the Page-Header. Each ROW is contained in a corresponding Data-line. A user selected Page is intended to be displayed in place of, or added to a corresponding television picture frame. A Magazine is defined to include Pages having Data-lines containing a corresponding Magazine number. The transmission of a selected Page begins with, and includes its Page Header and ends with and excludes the next Page Header of the selected Magazine number. All intermediate Data lines carrying the selected Magazine number relate to the selected Page.
LTI Luminance transient Improvement:Luminance transient improvement (LTI) is a conventional technique for sharpening a video image by steepening edge transitions, which thereby increases the original signal bandwidth. There are two general approaches to making an edge steeper. One technique increases pixel values on the high side of any edge and decreases pixel values on the other side of the edge, thereby making a gradual transition more abrupt. The other technique is to replace pixel values near the edge with pixel values from further away from the edge. In steepening an edge, the LTI algorithm creates additional high frequency components around the edges.
- CTI Color transient Improvement Picture Improvements circuitry in which colour signal, e.g. the line-sequential colour difference signals (R-Y,B-Y), is processed by an edge steepening circuit e.g. a colour transient improver and/or a two-line delay line in which the colour signals from two lines are added. The delay line may be part of a drop-out compensation circuit in which the colour signal of line n is replaced by the signal present for line n-2. A CCD-line may be used as the two-line delay line, and an amplitude limiter included. ADVANTAGE - Increased picture sharpness and improved signal-to-noise ratio.
Picture Noise reduction:To this end, a first aspect of the invention provides a method of image data noise filtering in dependence upon a local image spectrum, wherein the filtering is stronger for low frequencies than for higher frequencies. A second aspect of the invention provides a device for image data noise filtering in dependence upon a local image spectrum, wherein the filtering is stronger for low frequencies than for higher frequencies. A third aspect of the invention provides a display apparatus comprising a display device (D) and a image data noise filtering device, as noted above, in a video signal processing path connected to said display device (D).A primary aspect of the invention provides a method of image data noise filtering in dependence upon a local image spectrum, wherein the filtering is stronger for low frequencies than for higher frequencies.
- 100Hz Scanning technology To improve the picture quality in a television receiver which displays the received television signal in accordance with the line interlace method, frame stores are increasingly used. The remaining system-related flicker disturbances caused by the line interlace method require different signal processing for stationary and moving frame sequences in known flicker reduction processes, in which the receiver switches from flicker-free to motion-correct 100-Hz field repetition rate even with a relatively slight movement. To reduce system-related line flicker disturbances with line interlace reproduction, the signals contained in the frame store are in each case divided by vertical filtering in the television receiver into a vertical high-frequency and low-frequency signal as determined by the position frequency, these signals are differently processed in dependence on movement and the processed high-frequency and low-frequency signals are reproduced with twice the vertical frequency in line interlace. The flicker reduction method according to the invention can be used in all television receivers in which the television signal is reproduced at twice the vertical frequency in line interlace,
- DVM Dynamic Velocity Modulation When the phosphor screen of a video signal reproducing apparatus, such as, the screen of the cathode ray tube in a television receiver, is scanned by an electron beam or beams so as to form a picture or image on the screen, the beam current varies with the luminance or brightness level of the input video signal. Therefore, each electron beam forms on the phosphor screen a beam spot whose size is larger at high brightness levels than at low brightness levels of the image so that sharpness of the reproduced picture is deteriorated, particularly at the demarcation between bright and dark portions or areas of the picture. Further, when a beam scanning the screen in the line-scanning direction moves across the demaraction or edge between dark and bright areas of the picture, for example, black and white areas, respectively, the frequency response of the receiver does not permit the beam intensity to change instantly from the low level characteristic of the black area to the high level characteristic of the white area. Therefore, the sharpness of the reproduced image is degraded at portions of the image where sudden changes in brightness occur in response to transient changes in the luminance or brightness of the video signal being reproduced. The increase in the beam current and in the beam spot size for bright portions of the reproduced picture or image and the inadequate frequency response of the television receiver to sudden changes in the brightness or luminance level of the incomming video signal are additive in respect to the degradation of the horizontal sharpness of the reproduced image or picture.
It is well known that an improvement in apparent picture resolution
can be achieved by modulating the beam scan velocity in accordance with
the derivative of the video signal which controls the beam intensity.
This video signal is referred to as the luminance signal and the
derivative of the luminance signal is employed for such control. An
advantage of this method over a peaking approach to picture sharpness
enhancement is the avoidance of blooming of peaked white picture
elements.
It is known in the prior art to apply a differentiated
video signal to the input of a double ended limiter incorporating a pair
of threshold circuits. The limiter consists of two separate
differential amplifiers, where each amplifier is separately biased to
provide double ended limiting as well as to provide coring. The limiter
arrangement develops a doubly clipped signal output which does not
respond to excursions of the differentiated signal which lie below
selected threshold magnitudes. Thus the gain of the limiter is such as
to provide sharpness enhancement for slow transients while precluding
excessive supplemental beam deflection with fast transients. The coring
capability of the limiter arrangement significantly lessens the
likelihood of noise visibility.
- Full dialog center on screen display (OSD) arrangements employed in video processing systems include a switching (or "multiplexing") network for switching between graphic image representative signals and normal video signals so that a graphic image can be displayed on the screen of a picture reproduction device either in place of the image represented by the video signals or together with (inserted in) the image. The graphic image can take the form of alphanumeric symbols or-pictorial graphics, and can be used to indicate status information, such as channel numbers or time, or operating instructions. In an OSD arrangement for use in an analog video signal processing system, the multiplexing network typically operates to switch in levels corresponding to the desired intensity of respective portions of the graphic image at the time the graphic image portions are to be displayed. In such an arrangement the graphic image representative signals take the form of timing pulses which occur when the graphic image portions are to be displayed and are used to control the multiplexing network. Such an analog OSD arrangement can also be used in a digital video processing system, but requires that the video signals be first converted to analog form. While digital video signal processing systems typically include a digital-to-analog converter section in which the digital video signals are converted to analog form, it may be more cost effective for the OSD arrangement to be incorporated as an integral part of the digital video processing section.
A remote control system, particularly for television sets, includes a
remote control receiver and a remote control transmitter. The receiver
and transmitter are switched to the menu mode by means of a menu key. At
least two menu fields are associated with the remote control receiver
and are displayed on the screen of the television set. The menu fields
are individually selectable by means of the remote control transmitter.
The selection is preferably accomplished by manually aligning the remote
control transmitter with the displayed menu field to be selected.
- PIP picture-in-picture (PIP or pix-in-pix) feature; in a digital television system having a picture-in-picture (PIP or pix-in-pix) feature, two images from possibly unrelated sources are displayed simultaneously on the TV screen as a single composite image. The composite image includes a small picture (defined by an auxiliary video signal, for example, from a VCR) displayed as an inset within a large main picture (defined by a primary video signal, for example, from the TV antenna). The output signal of one tuner or of other TV signal sources in the base band are digitized and stored in a part of a memory. After automatic switching over to another TV-channel, this new signal is stored in another part of the memory and so on. The whole memory is then read out continuously and produces the displayed multipicture on the screen.
More specifically, the present invention pertains to a television receiver with a multipicture display.
In
a television receiver with multipicture display a single video signal
can be reproduced simultaneously in two or more subareas, or two or more
different video signals can each be reproduced in associated subareas.
Each of the subareas can display either a reduced-size picture or a part
of the picture supplied by a video-signal source. A digital
signal-processing circuit converts the signals from the video-signal
source to picture data consisting of luminance and color data for each
picture element. A random-access memory (RAM) holds the picture data of
the entire screen. A control unit controls the writing of the picture
data into an area of the RAM depending on the number of video signals to
be reproduced and the line-by-line readout, with only selected lines
being transferred from the video-signal source into the associated
memory area. A digital-to-analg converted which is furnished with the
picture data read from the RAM delivers the analog red, green, and blue
signals.
A television receiver of this kind is described in a
printed publication by Intermetall Semiconductors ITT, "VMC Video Memory
Controller", August 1985.
That television receiver circuit uses
random-access memories (RAMs). For the multipicture display, the screen
is divided into up to nine equal-sized subareas which each contain a
part of a picture of normal size or a complete picture of reduced size.
In that mode, successively produced "snapshots" of up to nine different
video signals can be displayed simultaneously. The switching of the
video signals takes place manually.
Offenlegungsschrift DE No. 24
13 839 A1 describes a circuit for a television receiver with a facility
for simultaneously reproducing two or more programs. In a part of the
picture of the directly received main program, the secondary program,
received with a single switchable tuner, is stored in a memory with a
reduced number of lines and is called up line by line when the electron
beam of the picture tube sweeps across the predetermined part of the
picture. The disadvantage of this method lies in horizontal grating-like
interference in the main picture which results from the fact that lines
of the main picture are missing at regular intervals when the tuner has
been switched to the secondary program, and which can only be
incompletely compensated.
Accordingly,
the problem to be solved by the invention is to provide a circuit of
the above kind with which the grating-like interference caused during
reproduction using the above-described single-tuner switching method is
eliminated.
The output signal of one tuner or of other TV signal
sources in the base band are digitize and stored in part of a memory.
After automatic switching over to another TV-channel, this new signal is
stored in another part of the memory and so on.
The whole memory
is then read out continuously and produces the multi-picture display on
the screen. Another advantage consists in the fact that, for the
construction of the whole screen picture, all picture data are withdrawn
from the RAM, so that the usual picture-improvement techniques can be
applied. By fast readout from the memory rows, the displayed picture is
freed from both line flicker and background flicker.
By changing
the sampling rates of the different video-signal sources, it is readily
possible to monitor the latter, nearly up to the still picture. In an
arrangement in accordance with the invention digital picture processing
and digital storage are used thereby permitting the circuit to process
analog or digital signals,from video signal sources.
Programs with 200 channels tuning capabilty
Picture tube: PHILIPS Black Line+S (invar) 4:3/29”", picture diagonal length: 72 cm, deflection angle 110°, heating voltage 6,3 Vrms (28 Vp-p)/290 mA, degauss- ing each time the power is switched on.
Vertical frequency: 100 Hz (120 Hz NTSC-M)
Horizontal freq.: ©31270 Hz (31500 Hz NTSC-M)
Connections:(front) Headphone jack with separate setting, front AV for Y/C and sound input(back EURO jack 1 for RGB, Y/C input signals, RC 5, CVBS and sound input/output, EURO jack 2 for RC 5, CVBS, Y/C and sound input/output, two cinch jacks for sound output (regulable), (jacks progra-mable via dialogue control system), AV through antenna jack, secondary loudspeaker jacks.
Features: Dialogue control system, stereo-dual-sound decoder, tuning and memory system digital, automatic station programming, digital chan- nel selector, 100 programme locations in memory 00 to 99, OSD indication, S PAL, electronic alignment with the remote control hyperband tuner multistandard 8 MHz:47 MHz - 860 MHZ *) SAT tuner: 954 MHz - 2054 MHZ PAL-B/G/D/KA/L ¢ SECAM-B/G/D/K/L NTSC-VIDEO * NTSC-M
Standard selection by means with the remote control, teletext decoder as standard feature (TOP/FLOF)
Audio system:Rated power at an audio modulation frequency of 1 kHz: 4x 15 W for an impedance of 8 Ohm, harmonic distortion less than 1 per cent, two loudspeakers/switch-off through jacks for ex- ternal loudspeakers, base broadening for stereo, spatial sound for mono.
Power requirement: 200 to 260 V~, 50 or 60 Hz
Power consumption: 100 W (SB mode <1 W) *) SAT SB mode < 60 W
Dimensions: 79,5 x 57,2 x 50,6 (W x Hx D)
Weight: 45 kg.
-------------------------------------
LOEWE AG
The
Loewe brand values have been shaped consistently over a long period of
time. It all began in Berlin in 1923, with the brothers Dr. Siegmund
and David Ludwig Loewe. Since then, one principle has always been
adhered to: setting new standards with innovation for the senses.
Loewe
established an impressive level of quality as early as 1931, with the
first public television transmission worldwide. Loewe has been
producing quality made in Germany at its location in Kronach since
1948. In the last 20 years, in addition to the Art 1 from 1985 becoming
a design classic, Loewe has received numerous national and
international awards.
In 2005, Loewe became the
leading premium flat screen television provider. It made its
breakthrough with the Loewe Individual: the first flat screen
television with individualised housing versions, set-up options and
inset colours. In 2008, with the Loewe Connect, Loewe heralded a new,
digital television age where non-system end devices could be connected
to a flat screen television set. One year later, Loewe combined
uncompromising ultraslim design with leading state-of-the-art
technology in the Reference range. In 2010, Loewe ultimately introduced
the Mediacenter, which provides perfect entertainment networking
throughout the home. Another step towards the future.
Loewe AG
(pronounced [ˈløːvə]) is the parent company of the German Loewe group.
The Loewe group develops, manufactures and sells a wide variety of
electronic, electrical and mechanical products and systems, and
specialises in the field of consumer and communication technology. The
company was founded in Berlin in 1923 by brothers Siegmund and David L.
Loewe. The company has its headquarters and sole production facilities
in Kronach, Franconia. Today, the range has expanded to include
televisions, Blu-ray players, DVD recorders, hard disk recorders,
multiroom systems, speakers and racks. The trend is shifting from
individual products to complete home entertainment systems. Loewe AG is
also represented internationally by sales partners and subsidiaries.
These include subsidiaries in the Benelux countries, France, Italy,
Austria and the UK. There are exclusive Loewe Galeries acting as
flagship stores in many cities around the world, including Madrid,
London, Paris, Amsterdam, Rome, Copenhagen, Vienna, Moscow and Hong
Kong.
LOEWE Company history
It all began in 1923 in
Berlin, when Dr Siegmund Loewe and his brother David Ludwig Loewe
established a radio manufacturing company called Radiofrequenz GmbH.
Their work with the young physicist Manfred von Ardenne in 1926 led to
the development of the triple tube, which was first used in the Loewe
OE333 radio receiver. This tube prompted Loewe’s multi-tube production
and is today lauded as the world’s first integrated circuit.
Television
development began at Loewe in 1929. The company worked together with
British television pioneer John Logie Baird. In 1931, Manfred von
Ardenne presented the world’s first fully electronic television to the
public on the Loewe stand at the 8th Berlin Radio Show.
When
Hitler came to power in Germany, Siegmund Loewe had to emigrate to the
USA in 1938, where he developed friendship with yet another forced
emigrant, Albert Einstein.
In 1949, Siegmund Loewe
regained possession of company property and took over as chairman of
the supervisory board. In the 1950s, Loewe began producing the
Optaphon, the first cassette tape recorder, and manufacturing
televisions in Kronach. 1961 saw the first European video recorder, the
Optacord 500, enter mass production.
In 1962, the
family company tradition ended with the death of Siegmund Loewe.
Subsidiaries of the Philips group took over the majority of shares.
Under this management, which continued until 1985, the company
increasingly specialised in the development and production of
televisions.
In 1963, the first portable television,
Loewe Optaport, was launched. It had a 25cm screen and built-in FM
radio. The first Loewe colour televisions were launched along with the
introduction of colour television in Germany. Loewe revolutionised
television production in 1979 with a fully integrated chassis
(everything on a single board). The first European stereo television
followed in 1981.
In 1985, management made Loewe a
privately owned company again after Philips sold its shares. In the same
year, Loewe created the Art 1, a new generation of TVs with a focus on
design.
The CS1 represented another international
first in 1995 as the world’s first fully recyclable television. At this
time, the course was also set for systematic further development as a
multimedia specialist.
1998 marked two more milestones
in the company history: the launch of the Xelos @ media, the first
television with internet access, and that of the Spheros, the first
Loewe flat-screen television. In the following year, Loewe AG became a
publicly listed company.
With the Individual, the
first flat-screen TV with individual housing options, set-up solutions
and inset colours, Loewe took a decisive step and became a premium
flat-screen TV manufacturer.
Loewe Connect, the
world's first smart TV with fully integrated network capability for
wireless access to picture, music and video files on a computer or
external hard drive followed in 2008.
LED technology
was adopted at Loewe in 2010 in the new Individual. In the following
year, Loewe introduced 3D picture display to its Individual range.
01.07.2019 With Loewe, it's over now, here is why..............
The plant in Kronach remains largely deserted from this Monday on: The Upper Franconian TV manufacturer Loewe ceases operations. Most of the more than 400 employees no longer show up for work.
Loewe has been in a crisis for years and now, at least for the time being, the production of televisions in Kronach, Upper Franconia, has come to an end. On Monday, the bankrupt manufacturer with a long tradition ceases operations. The majority of the more than 400 employees are released from work and do not have to come to work. According to the provisional insolvency administrator Rüdiger Weiß, only a core team of ten to fifteen employees remains.
The remaining few employees will continue to look for a rescuing investor in the coming months. One of the most urgent tasks for the insolvency administrator and the Loewe works council is now to negotiate a social plan for the workforce. According to Weiß, he hopes to be able to conclude this by mid-July.
Although the employees are currently released from their duties and no longer receive a salary from Loewe, no one has been dismissed so far. This can only be done after an agreement has been reached on a social plan and a reconciliation of interests. According to Weiß, if no investor is found, the employment contracts could be kept until the end of October at the latest.
Dispute with IG Metall
According to the insolvency administrator's assessment, it will take that long even in the event of another rescue until there is clarity. "We expect the investor process to take another four months," said Weiß. "We will do everything we can to find someone, there have already been initial discussions with investors.
For Loewe, this is the second crisis in a few years to threaten its very existence. "Loewe has been running a loss-making business for years," said Weiß. "Everyone in the company agrees that the compensation structure is not appropriate. To cover personnel costs alone, annual sales of EUR 150 million would be required; for a black zero, we would need sales of EUR 180 million. In fact, it was 120 million in the end."
However, there are fierce disputes with the trade union. The Bavarian IG Metall district manager Johann Horn accuses the British investment company Riverrock of deliberately refusing Loewe new loans. There is some evidence that "the financial investor Riverrock is waiting until Loewe has finally bled out, only to earn money with the ruins of the company afterwards," Horn recently said. In addition, he pointed out that the investor wanted to implement such drastic wage cuts and worse working conditions.
Postbank plays an important role
According to IG Metall, Riverrock has kept Loewe afloat in the past with a double-digit million euro loan, but has now refused a new loan. The former management has also pledged the Loewe brand name to Riverrock.
The preliminary insolvency administrator rejects these accusations: "I cannot understand the criticism of IG Metall," said Weiß. In the presence of the union, all possible models for restructuring had been agreed. "We needed EUR 5.5 million to continue operations until the end of the year and a further EUR 3.4 million for a qualification and employment company for all employees.
According to Weiß, Riverrock was willing to finance this company - but made it dependent on Postbank's decision to take over Loewes' outstanding debts, to pay them on behalf of Loewes and to collect them from customers. So far, Postbank has refused to do so.
In December 2019, Skytec Group Ltd took over the brand.
-------------------------------------
LOEWE HISTORY IN GERMAN:
Loewe
war und ist immer ein besonderer Betrieb - und bis ins 21. Jahrhundert
aktiv und in privatem Besitz. Nicht nur «das erste IC», die Röhre 3NF
ist da zu erwähnen, sondern auch die Mitentwicklung des elektronischen
Fernsehens in Deutschland.
1923: Radiofrequenz-GmbH und Loewe-Audion GmbH, Berlin-Friedenau;
1926: Aktiengesellschaft D.S. Loewe, Berlin-Steglitz;
1930: Radio-Aktien-Gesellschaft Dr. S. Loewe;
1933 (nach): Löwe-Radio AG;
1942: Opta-Radio AG;
1949: Loewe-Opta AG;
1965: Loewe Opta GmbH, Kronach.
Radios: 1923 bis 1926, Loewe 1927 bis 1978. TV-Fabrikation danach.
Nach
Studium der Physik und Elektrotechnik promoviert Siegmund Loewe
(Berlin 6.11.1885-28.5.1962 USA) unter Max Wien mit magna cum laude zum
Dr. phil. Er tritt bei der Firma Telefunken ein und wechselt 1915 zur
Firma Huth, wo er die Leitung der Laboratorien und der Patentabteilung
übernimmt. 1918 mietet Loewe in Berlin SW61 eine 7-Zimmer-Wohnung und
erstellt mit einer kleinen Entwicklungsgruppe einen
Telefonie-Röhrensender, dessen Sendungen in dem nicht weit entfernten
Haus des Scherl-Verlages von Otto Kappelmayer zu empfangen sind. Um
seine Kenntnisse zu erweitern, begibt sich Loewe in die USA. Einen
ausführlichen Bericht von und über Loewe finden Sie in [1-99], woraus
Sie erkennen können, dass Loewe das treibende Element für den Rundfunk
in Deutschland war. Wie er gegen den Monopolanspruch von
Telefunken/Lorenz/Huth (Funkkartell «Rundfunk GmbH») kämpfte und weitere
Details finden Sie in [6-121].
Nach seiner Rückkehr
aus den USA wird das Versuchslabor von Loewe zum Kristallisationspunkt
der jungen Funktechnik. Im Dezember 1921 erhält Loewe Besuch von Lee de
Forest, und sie verbessern gemeinsam Röhren. 1921 entstehen auch zwei
grundlegende Patente für den Konus-Lautsprecher. Loewe eröffnet ein
zweites Laboratorium und gründet 1923 die Loewe-Audion-GmbH für die
Herstellung von Radioröhren sowie die Radiosender GmbH.
Im
Dezember 1921 lernt der Realschüler Manfred von Ardenne den
Radiopionier Loewe in einem Elektrikergeschäft kennen und ist darauf
häufiger Gast in den Laboratorien von Loewe. Ein Autor schreibt, dass
Loewe zum «Ziehvater» des jungen von Ardenne wird und er in der Familie
aufgenommen ist, doch von Ardenne beschreibt dies in seinem Buch «Eine
glückliche Jugend im Zeichen der Technik» (DDR) nicht.
Die wahrscheinlich
1923 gegründete Loewe Radio GmbH führt der jüngste Loewe-Bruder
Bernhard. Das D bei D.S. Loewe steht für den älteren Bruder, David
(Teilhaber).
Radiofrequenz GmbH und Loewe-Audion GmbH (1923-27):
Am
22.1.23 erwirbt Dr. Siegmund Loewe die seit 1918/19 bestehende
Mechanische Werkstatt Grüttner & Lütgert in Berlin-Friedenau und
gründet die Radiofrequenz GmbH. Die ersten Geräte sind für den Export
bestimmt. Davon sind mir die Typen EA51, EA52 und EA54 bekannt. EA steht
für «Empfangs-Apparat».
Im Jahr darauf stellt der
Betrieb die Ziffer 9 vor die laufende Nummer. Der Sprung von EA958 auf
EA980 deutet auf andere Artikel hin (z.B. Trichterlautsprecher und
kombinierte Geräte etc.). Nachher ist keine Nummernsystematik mehr zu
erkennen, ausser den Buchstabenkombinationen wie OE (Orts-Empfänger),
FE (Fern-Empfänger), KV (KW-Vorsetzer), RO
(Rückkopplungs-Ortsempfänger) etc.
1927 gibt Loewe den Namen
Radiofrequenz auf und verwendet seinen eigenen Namen. Die drei Geräte
OE333, 2H3N und NVG gibt es unter beiden Namen, da sie Loewe 1927/28
ohne neue Modelle weiter produziert. Mehr als eine Million dieser
Geräte lassen sich zum Stückpreis von 39.50 RM verkaufen, und die
Tagesproduktion erreicht zeitweise 2000 Einheiten.
Im
Oktober 1923 gründet Loewe eine weitere Gesellschaft zur Herstellung
von Rundfunkröhren mit dem Namen Loewe-Audion GmbH, ebenfalls an der
Niedstrasse 5 in Berlin-Friedenau gelegen. Zuerst entstehen dort
Wolfram-, dann Thoriumröhren als «Sparröhren». Im September 1924 meldet
Loewe die grundlegenden Patente zur Dreifachröhre mit integrierten
Bauteilen an, die 1926 als 3NF mit dem «Loewe Ortsempfänger OE333» einen
legendären Ruf erreicht.
Loewe, Löwe, Opta, Loewe-Opta
Die
Schrift «Loewe-Story» aus dem Hause Loewe-Opta zeigt die Abbildung
eines «Detektor-Empfängers» mit zwei Steckspulen, der angeblich zur
Eröffnung des Rundfunks bereitstand. Es ist aber ein umfunktionierter
Sperrkreis für den Empfänger 2H3N, Baujahr 1927, was auch aus dem
Firmenschild mit «Berlin-Steglitz» hervorgeht.
1926
entsteht die Aktiengesellschaft D.S. Loewe, Berlin-Steglitz. Als
zweites Gerät unter der neuen Marke Loewe bzw. Loewe Radio gilt der auf
der Funkausstellung im September 1926 gezeigte Fernempfänger 2H3N zu
RM 150. Auch Lautsprecherboxen mit Loewe-Konus-Lautsprecher und
Stoffbezug im «Südsee-look» sind nun erhältlich. Wegen der steigenden
Anzahl Rundfunksender treten Trennschärfeprobleme auf, so dass die
Dreifachröhre für den Einbezug einer Rückkopplung einen siebten
Anschluss erhält. Diese «3NF7» baut Loewe ab 1928 in alle OE333, 2H3N
und in das dritte Gerät, den RO433 ein. Die elektrische
Schallplatten-Abtastdose LR150 erregt Aufsehen; Gewicht 260 g! Die Dose
verlangt einen Abspielwinkel von 55 Grad. Die 3NF gibt es nun auch mit
Oxydkathode als 3NFB mit einem Verbrauch von 0,13 statt 0,34 A
Heizstrom - zudem beträgt die Verstärkung etwa das Doppelte. Weitere
Details zu Firmengründungen von Loewe siehe [638967]. Es sind dies z.B.
die Eudarit-Pressgut GmbH für Bakelitgehäuse etc. und die
Ortophon-Apparatebau GmbH für den Lautsprecherbau.
1929
bringen die Loewe-Firmen den «Vollnetzanschluss-Empfänger R533»
heraus, der mit einer nochmals verbesserten Dreifachröhre, der 3NFW mit
indirekter Heizung, ausgestattet ist. 1929 entsteht Loewe's
Berliner-Radio-Handels-Aktiengesellschaft. Die Baird Television Company
Ltd., London, bietet Loewe die Auswertung und Entwicklung ihrer
Schutzrechte und Entwicklungsarbeiten auf dem Fernsehgebiet in
Deutschland an. Da dieses Angebot die finanziellen Möglichkeiten von
Loewe übersteigt, regt Dr. Loewe eine Beteiligung von Zeiss Ikon,
Dresden, und Robert Bosch, Stuttgart, an. Es kommt Mitte 1929 zur
Gründung der Fernseh-AG in Berlin, die 1939 im Firmenverband Robert
Bosch aufgeht.
1930 fasst Loewe verschiedene seiner
Firmen unter dem Namen Radio-Aktien-Gesellschaft Dr. S. Loewe zusammen
und mit dem EB100W (1931 EB100G) beginnt die Reihe der Empfänger mit
integriertem Lautsprecher.
Im Auftrag der Loewe-Firmen
bringt von Ardenne aus seinem eigenen Labor 1930 erste brauchbare
Vorschläge zur Helligkeitssteuerung, um auf einem Bildschirm ein gut
modulierbares Bildraster zu schreiben. Meine gasgefüllte Braun'sche
Röhre aus dem Labor von Ardenne zeugt für die Forschung um 1926.
Auch
auf der Senderseite entwickelt Loewe elektronische Medien auf der
Grundlage des «Flying-spot-Abtasters», um Filme elektronisch übertragen
zu können. Am 25.4.31 veranstalten Dr. S. Loewe und M. von Ardenne in
den Lichterfelder-Laboratorien eine Vorführung vor der Fachpresse. Bald
darauf kann Loewe die Qualität der mechanischen Systeme erreichen und
übertreffen. Siehe [1-127f]. 1932 geht von Ardenne eigene Wege. 1933,
ein Jahr vor den Mitbewerbern, erkennt Dr. Loewe die Notwendigkeit von
Allstrom-Apparaten und bringt den 1-Kreis-Empfänger «Edda» auf den
Markt. (Ganz so richtig ist das nicht: zumindest Emud kommt 1931 mit
«Allstrom», EE). Zu der Zeit halten sich Wohnungen mit Gleich- bzw.
Wechselstrom etwa die Waage und eine Familie, die umzieht, kann den
transformatorlosen Apparat weiterverwenden. Der Apparat führt die
Allstrom-Dreifachröhre WD33. Das Allstromkonzept führt Loewe auch für
Mehrkreis- und Superhet-Empfänger mit den Röhren WG34, WG35 und WG36
fort.
Auf dem in England bestellten Sattelschlepper mit
einer Fernseh-Sendereinrichtung steht anlässlich der Premiere vom Juli
1934 in London gross der Namenszug Radio A.G. D.S. Loewe. Das Regime
in Deutschland lässt die Firma jedoch bald in Löwe-Radio AG umtaufen
und 1942 in Opta-Radio AG. Loewe wandert 1936 in die USA aus und
gründet dort die Loewe Radio Inc. Er hat 1938 aus dem Vorstand in
Deutschland auszuscheiden.
1941-44 fertigen die
Opta-Betriebe ausschliesslich Rüstungsgüter; Opta-Radios sind dann
Fremdtypen [638966-19]. Man gliedert Grassman in den Opta-Betrieb ein.
Es entstehen Auslagerungsbetriebe, z.B. in Oberlungwitz in Sachsen. In
Berlin-Weissensee entsteht während des Krieges ein Betrieb für
Röhrenbau [DRM94].
Noch im März 1945 verlagert das
Unternehmen eine wichtige Kriegsfertigung nach Küps bei Kronach. Dies
ist die Keimzelle der neuen Firma, denn 1948 kann S. Loewe seine
Wiedergutmachungsansprüche durchsetzen und erhält das Sagen beim
demontierten Hauptwerk in Berlin und der Auslagerungsstätte in Küps bei
Kronach. In Küps fabriziert Loewe ab 1946. Gemäss «Loewe-Story» gibt es
vor November 1947 den «Kronach», wahrscheinlich 547W, in einer Auflage
von zwei Geräten pro Tag. Ein getrenntes Werk in Düsseldorf-Heerdt
offeriert als Firma Opta-Spezial GmbH von 1950 bis 1954
Opta-Spezial-Radios [6-124]. Konsul Bruno Pieper wirkt als
Generaldirektor.
Jedenfalls: Auf der Leipziger Messe
von 1947 sind wieder Loewe-Entwicklungen zu sehen. Die Firma erzeugt
1950 mit dem «Optaphon» das erste deutsche Kassetten-Tonbandgerät. 1961
ist Loewe mit dem «Optacord 500», einer für den privaten Gebrauch
konzipierten Video-Anlage, führend beim Bildschirmtext und baut vor
allem modernste TV-Empfänger - ein Steckenpferd von Dr. S. Loewe. Er
stirbt 1962.
Bis 1978 fertigt die Firma Radios in
Berlin, löst diesen Betrieb aber auf. Der Mitarbeiterbestand bei Loewe
beträgt Ende der 80er Jahre ca. 1500. Die Loewe Opta GmbH, Kronach,
gehört in den 90er Jahren zu 51,9 % der Management GBR (Gesellschaft
leitender Mitarbeiter der GmbH) und zu 48,1 % zu Matsushita
(Panasonic), wobei eine gute gegenseitige Befruchtung für das
Hauptprodukt, TV, zum Tragen kommt.
Loewe in Ostdeutschland:
Opta
Leipzig, ab 1950 VEB Stern-Radio Leipzig genannt, geht 1952 im VEB
Fernmeldewerk Leipzig auf. Die Radioproduktion endet 1950/51.
Nach
dem Krieg versuchen Loewe-Mitarbeiter des Zweigwerkes in Oberlungwitz
in Sachsen, Maschinen und Vorrichtungen nach West-Berlin zu
transportieren, doch die Sowjets verlangen, dass diese Güter in die
Röhrenfabrik Berlin-Weissensee gelangen.
Dieser Loewe-Betrieb arbeitet mit der Röhrenfabrik in Berlin.
Loewe
hat auch in anderen Ländern Produktionsstätten, so z.B. in
Grossbritannien. Vor allem aber auch Handelsniederlassungen, wie Loewe
Radio S.A., 3 quai de Willebroeck, Bruxelles (adress in 1932).
Literature
- 75 Jahre Loewe (1923-1998). Und die Zukunft geht weiter, author's edition 1998
- Kilian J.L. Steiner: Ortsempfänger, Volksfernseher und Optaphon. Die Entwicklung der deutschen Radio- und Fernsehindustrie und das Unternehmen Loewe 1923-1962. Klartext Verlag, Essen 2005, ISBN 978-3-89861-492-4
- Frank Keuper, Jürgen Kindervater, Heiko Dertinger, Andreas Heim (Hrsg.): Das Diktat der Markenführung. 11 Thesen zur nachhaltigen Markenführung und -implementierung. Mit einem umfassenden Fallbeispiel der Loewe AG, Gabler Fachverlage, Wiesbaden 2009, ISBN 978-3-8349-0852-0
References
- "Loewe klang 5 active speaker - Winner - Entertainment - German Design Award". www.german-design-award.com (in German). Retrieved 2017-09-13.
- https://www.loewe.tv/de/legal/impressum
- "German technology manufacturer Loewe declares bankruptcy"
- Loewe AG: self-administration insolvency, a corporate press-release
- "Investor consortium to rescue high-end TV maker Loewe". Deutsche Welle. Retrieved 17 January 2014.
- "Münchener Investor übernimmt Loewe". Handelsblatt. Retrieved 6 January 2015.
Einzelnachweise:
loewe.tv: Impressum
Loewe bild 7 - Gold - Entertainment - German Design Award. Abgerufen am 9. Oktober 2017.
http://www.nordbayerischer-kurier.de/nachrichten/loewe-gliedert-markenrechte-aus_627658
NDR: Manfred von Ardenne - Herr des Fernsehens. Abgerufen am 9. Oktober 2017.
NDR: Manfred von Ardenne - Herr des Fernsehens. Abgerufen am 9. Oktober 2017.
Loewe. Abgerufen am 13. September 2017 (englisch).
Radioapparate. In: Berliner Adreßbuch, 1924, Teil 2, S. 475.
Kilian J. L. Steiner: Die „Arisierung“ der Radioaktiengesellschaft D. S. Loewe in Berlin-Steglitz. In: Christof Biggeleben u. a.: „Arisierung“ in Berlin. Metropol Verlag, Berlin 2007, ISBN 978-3-938690-55-0, S. 226.
radiomuseum-bocket: Der OE333 Ortsempfänger. Abgerufen am 8. November 2016.
radiomuseum.org: Ortsempfänger OE333. Abgerufen am 28. Januar 2016.
radiomuseum.org: Röhre 3NF. Abgerufen am 28. Januar 2016.
Die Loewe-Röhre 3NFB – Analyse einer Mehrfachröhre. (PDF; 170 kB)
Kilian J. L. Steiner: Die „Arisierung“ der Radioaktiengesellschaft D. S. Loewe in Berlin-Steglitz. In: Christof Biggeleben u. a.: „Arisierung“ in Berlin. Metropol Verlag, Berlin 2007, ISBN 978-3-938690-55-0, S. 226.
Kilian J. L. Steiner: Die „Arisierung“ der Radioaktiengesellschaft D. S. Loewe in Berlin-Steglitz. In: Christof Biggeleben u. a.: „Arisierung“ in Berlin. Metropol Verlag, Berlin 2007, ISBN 978-3-938690-55-0, S. 226.
Joachim Hofer: Loewe will leben. In: Handelsblatt. 17. Juli 2013, S. 16 f.
Letzte Chance für Loewe. In: Handelsblatt. 17. Juli 2013, S. 1.
Loewe hofft auf den reichen Retter. Handelsblatt, 16. Juli 2013, abgerufen am 16. Juli 2013.
Loewe schwört trotz Krise auf Luxus-Geschäftsmodell. inFranken.de, 31. Juli 2013, abgerufen am 1. August 2013.
Loewe: Partner kommt aus China. inFranken.de, 31. Juli 2013, abgerufen am 1. August 2013.
Loewe: Kapitalmaßnahmen auf den Weg gebracht. (Nicht mehr online verfügbar.) Loewe AG, 7. August 2013, archiviert vom Original am 5. Oktober 2013; abgerufen am 1. September 2013. Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.
Restrukturierungsprozess vor dem Abschluss. (Nicht mehr online verfügbar.) Loewe AG, 16. September 2013, archiviert vom Original am 26. September 2013; abgerufen am 17. September 2013.
Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.
TV-Hersteller Loewe meldet Insolvenz an (1. Oktober 2013)
Loewe AG: Insolvenzverfahren in Eigenverwaltung bestätigt. (Memento des Originals vom 4. Oktober 2013 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis. Ad-hoc-Meldung auf: corporate.loewe.tv, 1. Oktober 2013.
TV-Hersteller in der Krise: Loewe meldet Insolvenz an. auf: spiegel.de, 1. Oktober 2013.
Bevollmächtigter gibt sich für Loewe optimistisch. FAZ.net. 13. Oktober 2013
Insolventer TV-Hersteller: Loewe-Käufer machen Rückzieher. Spiegel Online, 24. Februar 2014, abgerufen am 24. Februar 2014.
Stargate Capital übernimmt Loewe, Handelsblatt, am 21. März 2014
Neue Hoffnung für Loewe: Finanzinvestor übernimmt TV-Gerätebauer. In: Heise Online. 22. März 2014, abgerufen am 23. März 2014.
Loewe findet neuen Investor. In: Süddeutsche Zeitung. 22. März 2014, abgerufen am 23. März 2014.
Andreas Wilkens: Loewe-Rettung in trockenen Tüchern. 9. April 2014, abgerufen am 9. April 2014.
Loewe: 2016 noch kein Gewinn | Nordbayerischer Kurier. Abgerufen am 28. August 2017.
Loewe. Abgerufen am 9. Oktober 2017 (englisch).
Literature
- 75 Jahre Loewe (1923-1998). Und die Zukunft geht weiter, author's edition 1998
- Kilian J.L. Steiner: Ortsempfänger, Volksfernseher und Optaphon. Die Entwicklung der deutschen Radio- und Fernsehindustrie und das Unternehmen Loewe 1923–1962. Klartext Verlag, Essen 2005, ISBN 978-3-89861-492-4
- Frank Keuper, Jürgen Kindervater, Heiko Dertinger, Andreas Heim (Hrsg.): Das Diktat der Markenführung. 11 Thesen zur nachhaltigen Markenführung und -implementierung. Mit einem umfassenden Fallbeispiel der Loewe AG, Gabler Fachverlage, Wiesbaden 2009, ISBN 978-3-8349-0852-0
No comments:
Post a Comment
The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.
Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!
The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.
Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.
Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.
Your choice.........Live or DIE.
That indeed is where your liberty lies.
Note: Only a member of this blog may post a comment.