True Televisions have the CRT Tube !! Welcome to the Obsolete Technology Tellye Web Museum. Here you will see a TV Museum showing many Old Tube Television sets all with the CRT Tube, B/W ,color, Digital, and 100HZ Scan rate, Tubes technology. This is the opportunity on the WEB to see, one more time, what real technology WAS ! In the mean time watch some crappy lcd picture around shop centers (but don't buy them, or money lost, they're already broken when new) !!!
Richtige Fernseher haben Röhren!
In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical Obsolete technology relics that the Frank Sharp Private museum has accumulated over the years .
Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.
Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.
Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.
There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.
The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.
Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.How to use the site:
OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.
- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.
You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.
- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.
- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.
Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !
Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........
Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........
..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!
Have big FUN ! !
-----------------------
©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of Engineer Frank Sharp. NOTHING HERE IS FOR SALE !
All posts are presented here for informative, historical and educative purposes as applicable within Fair Use.
Tuesday, February 8, 2011
PANASONIC TX-29AD1D CHASSIS EURO-2S DIGITAL BOARD UNIT OVERVIEW (ITT VDP3108 ; ITT MSP3400 ; ITT CCU3000).
Single-Chip Video Processor
ITT VDP3108
Preamble:
The ITT VDP3108 Is the evolution of the DIGIT2000 chipset.
1. Introduction
The entire video processing and controlling for a color
TV has been developed on a single chip in 0.8m CMOS
technology. Modular design and submicron technology
allow the economic integration of features in all classes
of TV sets.
Open architecture is the key word to the new DSP generation.
Flexible standard building blocks have been defined
that offer continuity and transparency of the entire
system.
One IC contains the entire video and deflection processing
and builds the heart of a modern color TV. Its performance
and complexity allow the user to standardize
his product development. Hardware and software applications
can profit from the modularity as well as manufacturing,
system support or maintenance. The main
features are:
– low cost, high performance
– all digital video processing
– multi-standard color decoder PAL/NTSC/SECAM
– 3 composite, 1 S–VHS input
– integrated high-quality AD/DA converters
– sync and deflection processing
– luminance and chrominance features, e.g.
peaking, color transient improvement
– programmable RGB matrix
– various digital interfaces
– embedded RISC controller (80 MIPS)
– one crystal, few external components
– single power supply 5 V
– 0.8m CMOS Technology
– 68-pin PLCC or 64-pin Shrink DIL Package
1.1. System Architecture
Two main modules have been defined:
Video Processor and
Display Processor.
They are designed as silicon building blocks. Their partitioning
permits a variety of IC configurations with the aim
to satisfy the particular requirements of different applications.
Both, analog and digital interfaces, support
state of the art TV receivers as well as other environments.
Fig. 1–1 shows the block diagram of the singlechip
Video Processor which consists of both modules.
2. Functional Description
2.1. Analog Front End
This block provides the analog interfaces to all video inputs
and mainly carries out analog-to digital conversion
for the following digital video processing. A block diagram
is given in figure 2–1.
Most of the functional blocks in the front end are digitally
controlled (clamping, AGC and clock-DCO). The control
loops are closed by the Fast Processor (‘FP’) embedded
in the decoder.
2.1.1. Input Selector
Up to four analog inputs can be connected. Three inputs
are for input of composite video or S–VHS luma signal.
These inputs are clamped to the sync back porch and
are amplified by a variable gain amplifier. One input is
for connection of S–VHS carrier–chrominance signal.
This input is internally biased and has a fixed gain amplifier.
2.1.2. Clamping
The composite video input signals are AC coupled to the
IC. The clamping voltage is stored on the coupling capacitors
and is generated by digitally controlled current
sources. The clamping level is the back porch of the video
signal. S-VHS chroma is also AC coupled. The input
pin is internally biased to the center of the ADC input
range.
2.1.3. Automatic Gain Control
A digitally working automatic gain control adjusts the
magnitude of the selected baseband by +6/–4.5 dB in 64
logarithmic steps to the optimal range of the ADC .
The gain of the video input stage including the ADC is
213 steps/V for all three standards (PAL/NTSC/SECAM/
Y/C), with the AGC set to 0 dB.
2.1.4. Analog-to-Digital Converters
Two ADCs are provided to digitize the input signals.
Each converter runs with 20.25 MHz and has 8 bit resolution.
An integrated bandgap circuit generates the required
reference voltages for the converters.
The two ADCs are of a 2-stage subranging type.
---------------------------------------------------------------------------
TOGHETHER WITH VIDEO PROCESSING THERE IS SOUND PROCESSING WITH MSP3400C
Multistandard Sound Processor
Release Notes: The hardware description in this
document is valid for the MSP 3400C – C8 and newer
codes. Revision bars indicate significant changes
to the previous version.
1. Introduction
The MSP 3400C is designed as single-chip Multistandard
Sound Processor for applications in analog and
digital TV sets, satellite receivers and video recorders.
The MSP-family, which is based on the MSP 2400, demonstrates
the progressive development towards highly
integrated multi-functional ICs.
The MSP 3400C, again, improves function integration:
The full TV sound processing, starting with analog
sound IF signal-in, down to processed analog AF-out, is
performed in a single chip. The IC is produced in 0.8 mm
CMOS technology, combined with high performance
digital signal processing.
The MSP 3400C 0.8 m CMOS version is fully pin and
software compatible to the 1.0 m MSP 3400 and MSP
3410. The main difference between the MSP 3400C and
the MSP 3410, consists of the MSP 3410 being able to
decode NICAM signals.
2. Features of the MSP 3400C:
2.1. Features of the Demodulator and Decoder
Sections
The MSP 3400C is designed to perform demodulation
of FM-mono TV sound and two carrier FM systems according
to the German or Korean terrestrial specs. With
certain constraints, it is also possible to do AM-demodulation
according to the SECAM system. Alternatively, the
satellite specs can be processed with the MSP 3400C.
For FM carrier detection in satellite operation, the AMdemodulation
offers a powerful feature to calculate the
carrier field strength, which can be used for automatic
search algorithms. So, the IC facilitates a first step towards
multistandard capability with its very flexible
application and may be used in TV-sets, satellite tuners,
and video recorders.
The MSP 3400C facilitates profitable multistandard capability,
offering the following advantages:
– two selectable analog inputs (TV and SAT-IF sources)
– Automatic Gain Control (AGC) for analog input: input
range: 0.14 – 3 Vpp
– integrated A/D converter for sound-IF inputs
– all demodulation and filtering is performed on chip and
is individually programmable
– no external filter hardware is required
– only one crystal clock (18.432 MHz) is necessary
– FM carrier level calculation for automatic search algorithms
and carrier mute function
– high deviation FM-mono mode (max. deviation:
approx. 360 kHz)
2.2. Features of the DSP-Section
– flexible selection of audio sources to be processed
– digital input and output interfaces via I2S-Bus for external
DSP-processors, surround sound, ADR etc.
– digital interface to process ADR (Astra Digital Radio)
together with DRP 3510 A
– performance of all deemphasis systems including
adaptive Wegener Panda 1 without external components
or controlling
– digitally performed FM-identification decoding and dematrixing
– digital baseband processing: volume, bass, treble,
5-band equalizer, loudness, pseudostereo, and basewidth
enlargement
– simple controlling of volume, bass, treble, equalizer
etc.
– increased audio bandwidth for FM-Audio-signals
(20 Hz – 15 kHz, 1 dB)
2.3. Features of the Analog Section
– three selectable analog pairs of audio baseband inputs
(= three SCART inputs)
input level: 32 V RMS,
input impedance: .25 kW
– one selectable analog mono input (i.e. AM sound),
input level: 32 V RMS,
input impedance: .10 kW
– two high quality A/D converters, S/N-Ratio: .85 dB
– 20 Hz to 20 kHz Bandwidth for SCART-to-SCARTCopy
facilities
– MAIN (loudspeaker) and AUX (headphones): two
pairs of 4-fold oversampled D/A-converters
output level per channel: max. 1.4 V RMS
output resistance: max. 5 kW
S/N-Ratio: .85 dB at maximum volume
max. noise voltage in mute mode: 310 mV (BW: 20 Hz
...16 kHz)
– one pair of four-fold oversampled D/A-converters supplying
two selectable pairs of SCART-Outputs. Output
level per channel: max. 2 V RMS, output resistance:
max. 0.5 kW, S/N-Ratio: .85 dB
(20 Hz...16 kHz).
CCU 3000, CCU 3000-I
CCU 3001, CCU 3001-I
MICRONAS INTERMETALL 4
1. Introduction
The CCU 3000, CCU 3000-I, CCU 3001, CCU 3001-I
are integrated circuits designed in 1.2 mm CMOS
technology, with the exception of CCU 3000, TC18 and
TC19, which is designed in 1 mm CMOS technology. The
CPU contained on the chips is a functionally unchanged
65C02-core, which means that for program development,
systems can be used which are on the market; including
high level language compilers.
The pin numbers mentioned in this data sheet refer to
the 68-pin PLCC package unless otherwise designated.
The CCU 3000-I is described separately in an addendum
on page 66.
1.1. Features of the CCU 3000, CCU 3000-I,
CCU 3001, CCU 3001-I
– CCU 3000 = ROM-less version of the CCU 3001
– 65C02 CPU with max. 8 MHz clock
– 32 kByte internal ROM (CCU 3001 only)
– 1344 internal Bytes RAM with stand-by option
– 51 I/O lines (CCU 3001)
– 26 I/O lines (CCU 3000)
– clock generator with programmable clock frequency
– 8 level interrupt controller
– CCU 3000, CCU 3001:
2 Multimaster IM bus interfaces
– CCU 3000-I, CCU 3001-I: 1I2C/IM bus and
1 Multimaster IM bus interface (see addendum)
– IR-input for software-decoded IR-systems
– on-chip power on, stand-by and clock supervision
logic
– on-chip watchdog
– 3 multifunctional timers
– supports memory banking (external 2MBytes)
– power down signal for external memory
– mask option: EMU mode
– programs can be written in Assembler or in “C”
– CCU 3000 TC 18/19: 1.0 mm CMOS technology, (see
addendum)
– application software available.
Functional Description
2.1. ROM
The chip is equipped with 32 kByte mask-programmable
ROM. The ROM uses up the address space from 8000H
to FFFFH. This ROM can be supplemented or replaced
externally. Only the CCU 3001 has an internal ROM.
2.2. RAM
The RAM area is split into three parts:
– page 0 (address 0 to FFH)
– page 1 (address 100H to 1FFH)
– page 3, 4, 5, 6 (address 300H to 63FH)
Page 0 offers a particularly fast access to the 65C02 and
is therefore very valuable for fast, compact programs.
Page 1 contains the stack and must therefore also have
RAM. The remaining RAM-memory follows in pages 3,
4, 5, 6, as page 2 is reserved as I/O address space. The
RAM can be kept in the stand-by mode via stand-by pin.
2.3. CPU
The CPU core is fully compatible with the 65C02 microprocessor.
However, not all the pins of the 65C02 processor
are accessible for the user outside the chip. One
switch in the control register allows the CPU to be
switched off, so that an external processor can take over
its tasks. This external processor can of course also be
an in-circuit emulator, which makes near-hardware
emulation possible, even though the status and control
lines of the internal CPU are not accessible. If an external
processor is used, all hardware blocks of the chip are
as accessible to it as if it were the internal CPU.
2.4. Clock Generator
An integrated two-pin oscillator generates the clock for
the microcontroller. The frequency created by the oscillator
can be programmed to be reduced with a divider
by the factor 1 ... 255. This enables the user to decrease
the current consumption by the controller by reducing
the working frequency as well as to increase the access
time for the (slower) external memory. This divider contains
the value 4 after a reset, so that the system can also
start with a slow external memory. If the mask-option
OSC is set (EMU version), a switch in the control register
makes it possible to receive the internal clock F2 at
XTAL2. In this case the oscillator must be external and
the clock must be fed to the pin XTAL1. In this way, the
user gets a time reference for internal operations in the
microcomputer. This is especially important with the interrupt
controller. The production version of the CCU
does not have this function!
2.5. PORT 1 to PORT 3, PORT 6 to PORT 8
8 ports belong to the system, of which 5 are 8 bits wide,
one 6 bit, one 4 bit and one 1 bit wide. All port lines of
PORTS 1 to 3 and 6 to 8 can be used as inputs or outputs
independently from each other. One register per port
defines the direction. PORT1 to PORT3 have push-pull
outputs and PORT6 to PORT8 have open drain outputs.
Even a line defined as output can be read, the pin level
being important. This property makes it possible for the
software to find desired and undesired short circuits.
Each port reserves a byte for the direction register and
the data in the I/O page. If the corresponding bit in the
direction register is set to 0, the output mode is switched
on. After a reset, all bits of a direction register are set
to 1. The falling edge of bit 7 of PORT 8 generates interrupts
if the priority of the corresponding interrupt controller
source (7) is not set to 0.
2.6. PORT 4
PORT 4 consists of only one line (LSB, P40). After a reset,
PORT 4 operates as an input only. As soon as PORT
4 is written for the first time, it is switched to output mode
(push-pull). Later read accesses read the actual level at
port 4. If bit 3 in the control word is active, P4 is used as
an R/W-line. If the internal CPU is active, R/W is an output
line, otherwise it is an input. But P4 has another, very
important function during RESET. The level at P4 during
RESET decides whether the control word is read from
the internal ROM (FFF9H) or from the external memory.
It is therefore important that the desired level during RESET
is set at P4. An internal pull-down resistor of approx.
100 kW is integrated in the CCU 3001, which ensures
that the control word is read by the internal ROM. The
external control word access is obtained via an external
pull-up resistor of approx. 5 kW. The CCU 3000 has an
internal pull-up resistor at P4 (external ROM access).
The further mode of operation of the CCU 3000, CCU
3001 depends only on the control word though.
Please note that this mode is always necessary for
the CCU 3000 since this device does not have internal
ROM!
2.7. I/O-Lines P50 to P55
The 6 additional I/O-lines have a two-fold function:
– input or output line (open drain output) or
– fully decoded I/O-select lines (push-pull outputs)
As a rule these lines can be used as input or output lines.
As soon as ports 1 to 4 are used as system bus, they are
lost as I/O-channels. However, a total of 48 port lines (24
inputs and outputs each) can be reconstructed without
difficulties (1 housing for 8 lines), if the additional 6 I/Olines
of the CCU 3000, CCU 3001 are switched into the
port select mode. They then represent the select lines of
the original ports 1 to 3. Each line can be defined as I/O
or port select line separately. In the I/O-page three bytes
are needed.
1 comment:
The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.
Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!
The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.
Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.
Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.
Your choice.........Live or DIE.
That indeed is where your liberty lies.
Note: Only a member of this blog may post a comment.
Thank you for this excellent job.
ReplyDelete