Other previously developed systems have not been sufficiently modular to enable a selection of various types of channel access or displays. Moreover, previously developed electronic channel tuning systems have not been sufficiently economical to fabricate and have required uneconomical printed circuit boards or other uneconomical fabrication techniques for construction. For example, certain prior systems have required expensive potentiometers for each channel desired to be tuned. In addition, previously developed electronic television tuning systems have not satisfactorily satisfied recent regulatory requirements which call for a television tuner to provide a comparable capability and quality of tuning for both VHF and UHF stations. Specifically, such prior tuning systems have not enabled selection of precise UHF channels, nor have the prior systems provided means for easily changing selected UHF channels.
A major disadvantage in the channel tuning sections of television receivers has been the inability to electronically program and store tune voltages under all operating and non-operating conditions without using an auxiliary power source or a mechanically programmed memory. Existing electronically operable tuners are dedicated electronic circuitry to program tune voltage information in volatile memories where the volatile memories require batteries to provide standby power when the main power source is removed. The batteries are undesirable because they represent an additional cost to the manufacturer and a present a long-term tune voltage jeopardy if they fail when the main power source is removed. Memory loss due to battery failure can occur if there are poor battery connections, battery corrosion, or excessive battery drain. Other tuning systems use potentiometers to retain the channel tune voltage, but are also undesirable because they are not electronically alterable, and require a potentiometer for each channel to be tuned.
In accordance with the present invention, the undesirable characteristics are eliminated by using a non-volatile DIFMOS memory matrix to store the channel tune voltages. The DIFMOS memory (dual injection floating gate MOS technology) is electronically alterable and has a projected memory retention capability of over 100 years with power removed. The control circuitry for the system uses a microcomputer type architecture to integrate the user control inputs and to generate the signals needed to access and alter the DIFMOS memory matrix. A principal advantage of this type of control compared to the dedicated control circuit approach is the ease with which different manufacturers' system requirements can be satisfied by simply reprogramming the algorithm of the instruction memory.)
change program on screen displayed......
This invention relates generally to a television receiver and more particularly is directed to a television receiver which can indicate the numeral of a channel after the channel is changed.There is proposed a television receiver in which when a channel is changed, the numeral indicative of the channel after the channel is changed is indicated on the screen of a cathode ray tube during a predetermined period. A conventional channel indicator used in such television receiver requires a special LSI (large scale integration) chip to indicate the numeral of the channel. However, such LSI chip requires a substantial investment in time and money from its designing to the completion, and when the designing thereof is changed midway, it is quite difficult to cope with such change.
Was one of the first GRUNDIG models of tv series with the chassis 29301....... using the PHILIPS 30AX CRT TUBE.The 30AX system, which Philips introduced in 1979, is an important landmark in the development of colour picture systems. With previous systems the assembly technician had to workthrough a large number of complicated setting-up procedures whenever he fitted a television picture tube with aset of coils for deflecting the electron beams. These procedures were necessary to ensure that the beams for the three colours would converge at thescreen for every deflection. They are no longer necessary with the 30AX system: for a given screen format any deflection unit can be combined with any tube to form a single 'dynamically convergent' unit. A colour-television receiver can thus be assembled from its components almost as easily as a monochrome receiver. The colour picture tube of the PHILIPS 30AX system displays a noticeably sharper picture over the entire screen surface. This will be particularly noticeable when data transmissions such as Viewdata and Teletext are displayed. This has been achieved by a reduction in the size of the beam spot by about 30%. Absence of coma and the retention of the 36.5 mm neck diameter have both contributed to increased picture sharpness. Coma has been eliminated by means of corrective field shapers embedded in the deflection coils which are sectionally wound saddle types. The new deflection unit has no rear flanges. enabling uniform self-convergence to be obtained for all screen sizes. without special corrections, adjustments, or tolerance compensations. Horizontal raster distortion is reduced and no vertical correction is required. One of the inventions in 30AX is an internal magnetic correction system which obviates static convergence and colour purity errors. This enables the usual multiple unit to be dispensed with. together with the need for its adjustment ! New techniques have been employed to achieve close tolerance construction of the glass envelope. In addition, the 30AX picture tube incorporates two features whereby it can be accurately adjusted during the last stages of manufacture. One is the internal magnetic correction system. The other is an array of bosses on the cone that establish a precise reference for the axial purity positioning of the deflection unit on the tube axis and for raster orientation. During its manufacture, each deflection unit is individually adjusted for optimum convergence. The coil carrier also incorporates reference bosses that co-operate with those on the cone of the tube. ' Since every picture tube and every deflection unit is individually pre-aligned, any deflection unit automatically matches with any picture tube of the appropriate size. The deflection unit has only to be pushed onto the neck of the tube unit it seats. Once the reference bosses are engaged, the combination is accurately aligned and requires no adjustment for convergence, colour purity or raster orientation. With no multiple unit and a flangeless deflection unit, there is more space in the receiver cabinet. Higher deflection sensitivity means that less current is consumed, and consequently less heat is produced. This increases the reliability of the TV receiver again. 30AX means simple assembly. Any picture tube is compatible with any deflection unit of the appropriate size and is automatically self-aligning as well as being self-convergent.
The well-known 20AX features of HI-Bri, Soft-Flash and Quick-vision are maintained in the new 30AX systern. In their work on the design of deflection coils in the last few years the developers have expanded the magnetic deflectionfields into 'multipoles', This approach has improved the understanding of the relations between coil and field and between field and deflection to such an extent that designing deflection units is now more like playing a difficult but fascinating game of chess than carrying out the obscure computing procedure once necessary.
Uses the REMOTE CONTROL TELEPILOT-300.
These are the last type with chassis using Horizontal deflction circuits with thyristors technology and are made in small quantity because of the further GRUNDIG technology changing in 1981.
It's an interesting fact that the cathode ray tube, which was amongst the very earliest thermionic devices, seems likely to be amongst the very last in everyday use. Receiving valves are largely things of the past, while timebase valves now belong in the service department. The development of the CRT continues apace however, and one cannot see any likelihood of its demise. Solid-state displays have been talked about, and demonstrated, but anything likely to compete on cost and performance grounds with the modern colour tube seems forever to be "at least ten years away". The early experiments with cathode-ray tubes were carried out in the last century. By the turn of the century, crude CRTs could be made. An early CRT, the Wehnelt hot cathode tube of 1905, is on display at the IBA's Television Gallery. By 1910, Alexander Campbell -Swinton had come to appreciate the possibilities of the CRT as a pick-up and display device for television, and put forward suggestions for such a TV system. It was a while however before the type of tube we know today appeared. The tubes of the 1910-30 era were gas focused devices (relying on residual gas to focus the beam), the vacuum pumps of the period producing only a poor vacuum. By the time of the start of the BBC's TV service in 1936 however the modern type of tube had arrived. It was a triode device with external focusing and a deflection angle of around 50°. The usual sizes were 9 and 12in., and the e.h.t. was about 5kV. Post-war developments during the 1950s saw some important innovations. The deflection angle went to 70°, then 90°, then 110°; multi -electrode gun assemblies with electrostatic focusing were introduced; the e.h.t rose to 20kV; improved phosphors became available; and the advent of the aluminised screen considerably improved the brightness and contrast (by reflecting all the phosphor light emission forwards) while overcoming the problem of ion bombardment. Meanwhile, colour had come. The principle of the shadowmask tube had been suggested in the 1930s, but development (by RCA) had to wait until proposals for an acceptable, practical colour broadcasting system were put forward. A regular colour service was started in the USA in 1954, and the receivers were fitted with 21in. shadowmask tubes. Early developments included the use of improved phosphors, but essentially the same tube confronted us with the advent of colour transmissions in Europe in 1967. As you all know, it had three guns mounted in a triangular formation, a dot-phosphor screen, a massive convergence system in two sections (radial and lateral), plus purity magnets and a large metal shield on which the degaussing coils hung. It also needed both NS and EW raster correction circuitry. The first versions in Europe had a deflection angle of 90° : when the 110° version came along in the early 1970s the convergence and raster correction circuitry required were even more complex, but the degaussing shield had disappeared inside the tube. At much the same time however the first major breakthrough in large screen tube design occurred (we put it that way because the innovating Sony Trinitron was at the time mainly a small screen tube) - the RCA PIL tube with its in -line guns, phosphor -striped screen, and slotted shadowmask. The design of the yoke to provide self -convergence in conjunction with the in -line gun arrangement meant that no dynamic convergence system was required, while some simple manufacturer preset magnets provided static convergence and purity correction. Sets using this tube first appeared in Europe in 1975, and meanwhile the PHILIPS 20AX system had come along. Over the last few years the pace of development has quickened to a striking extent. We've had quick warm-up cathodes, the hi-bri technology which increases the shadow mask's transparency, the contoured line screen, the super -arch mask, pigmented phosphors, soft flash to reduce flashover damage, redesigned focus arrangements, and increased use of an earlier development, the black -stripe screen. The latest generation of tubes require no NS raster correction circuitry, which is all part of a parallel development in yoke technology, while the need for EW correction is also in the process of being designed out. With the new Philips 30AX tube, the static convergence and purity system disappear inside the tube in the form of a small internal magnetic ring. It's all a long way from Wehnelt's hot -cathode tube of 1905. The latest colour tubes are compact and have all the various correction arrangements required built in. They are amazing feats of precision engineering, and a solid-state alternative seems as far away as ever. Is there any farther to go along this path? Well, single -gun colour tubes using the beam indexing principle are now understood to be a practical proposition for small screen tubes, so we can't be too sure.
Grundig AG is (WAS) a German manufacturer of consumer electronics for home entertainment which transferred to Turkish control in the period 2004-2007. Established in 1945 in Nuremberg, Germany by Max Grundig the company changed hands several times before becoming part of the Turkish Koç Holding group. In 2007, after buying control of the Grundig brand, Koc renamed its Beko Elektronik white goods and consumer electronics division Grundig Elektronik A.Ş., which has decided to merge with Arçelik A.Ş. as declared on February 27, 2009
Max Grundig (7 May 1908 – 8 December 1989) was the founder of electronics company Grundig AG.Max Grundig is one of the leading business personalities of West German post-war society, one of the men responsible for the German “Wirtschaftswunder” (post-war economic boom).
GRUNDIG Early years
Max Grundig was born in Nuremberg on May 7, 1908. His father died early, so Max and his three sisters grew up in a home without a father. At 16, Max Grundig began to be fascinated by radio technology, which at the time was gaining in popularity. He built his first detector in the family’s apartment, which he had turned into his own laboratory. In 1930, he turned his hobby into his profession and opened a shop for radio sets in Fürth with an associate. The business prospered and soon Grundig was able to employ his sisters and buy out his associate. By 1938, he was already manufacturing 30,000 small transformers.
GRUNDIG Success after World War II
Max Grundig’s real success story began after World War II. On May 15, 1945, Grundig opened a production facility for universal transformers at Jakobinerstraße 24 in Fürth. Using machines and supplies from the war era, he established the basis for what would turn into a global company at this address. In addition to transformers, Grundig soon manufactured tube-testing devices. As manufacturing radios was subject to a licence, Grundig had the brilliant idea of developing a kit that would allow anyone to quickly build a radio on their own. This kit was sold as a “toy” called “Heinzelmann”.
Following the monetary reform, Max Grundig quickly expanded his production under the new company name “Grundig Radio-Werke GmbH” and served the expanding mass market. From 1952, his company was the biggest European manufacturer of radios and the worldwide leader in the production of audio tape recorders.
Grundig became a real pioneer in consumer electronics. From 1951, the company’s portfolio also included the production and distribution of television sets, and dictaphones were added in 1954. The company was turned into a shareholding company, the Grundig AG, in 1971. In the 1970s, the company was one of the leading companies in Germany, employing more than 38,000 people in 1979. Max Grundig had built a strong company from the ruins of the war.
GRUNDIG and the rules are changing
In the second half of the 1970s, another innovation entered the market for consumer electronics, the VCR. And with the VCR, competitors from Japan and later other countries of the Far East entered the world market. Even though the European competitors Philips and Grundig had developed the superior technology for recording video, the Japanese VHS succeeded on the market. The rules of the game changed dramatically in the field of consumer electronics. The competition for establishing the video standard proved that companies could only succeed in consumer electronics with the financial power of global corporations. In 1979, Max Grundig decided to sell some shares to his Dutch competitor Philips, and in 1984 he began the process of restructuring the ownership of the Grundig companies, which would be completed two decades later.
Max Grundig died on December 8, 1989 in Baden-Baden. The Grundig name continues to be known to this day and is now a globally recognised brand for innovative consumer electronics. Max Grundig is remembered in Germany as a dynamic entrepreneur from the post-war era.
He was married lastly to Chantal Grundig.
Early history
Grundig in Belfast
Philips takeover
Later history
...........................................The Federal Republic of Germany: designing an ill fate ?
For more than thirty years after the Second World War, consumer
electronics in West Germany, as elsewhere, was a growth industry.
Output growth in the industry was sustained by buoyant consumer
demand for successive generations of new or modified products,
such as radios (which had already begun to be manufactured, of
course, before the Second World War), black-and-white and then
colour television sets, hi-fi equipment.” Among the largest West
European states, West Germany had by far the strongest industry.
Even as recently as 1982, West Germany accounted for 60 per cent
of the consumer electronics production in the four biggest EEC
states. The West German industry developed a strong export
orientation--in the early 1980s as much as 60 per cent of West
German production was exported, and West Germany held a larger
share of the world marltet than any other national industry apart
from the]apanese.ltwas also technologicallyextremelyinnovative-
the first tape recorders, the PAL colour television technology, and
the technology which later permitted the development of the video
cassette recorder all originated in West Germany.
The standard-bearers of the West German consumer electronics
industry were the owner-managed firm, Grundig, and Telefunken,
which belonged to the electrical engineering conglomerate, AEG-
Telefunlten. The technological innovations for which the West
German industry became famous all stemmed from the laboratories
of Telefunlten, which, in the 19605, still constituted one of AEG’s
most profitable divisions. Telefunlcen and Grundig together prob-
ably accounted for around one-third of employment in the German
Industry in the mid-1970s. Both had extensive foreign production
facilities. At the same time, compared with the other EEC states,
there was still a relatively large number of small and medium-sized
consumer electronics firms in Germany. Besides Grundig and
Telefunken, the biggest were Blaupunkt, a subsidiary of Bosch, the
automobile components manufacturer, Siemens, and the sub-
sidiaries of the ITT-owned firm, SEL. Up until the late 1970s, there
was relatively little foreign-owned manufacturing capacity in the
West German consumer electronics industry.
GOVERNMENTS, MARKETS, AND REGULATION
During the 1970s, this picture of a strong West German
consumer electronics industry began slowly to change and, by the
end of the 19705, colour television manufacture no longer offered a
guarantee for the continued prosperity or even survival of the
German industry. The market for colour television sets was
increasingly saturated——by 1978 56 per cent of all households in
West Germany had a colour television set and 93 per cent of all
households possessed a television set of some kind.2° From 1978
onwards, the West German market for colour television sets began
to contract. Moreover, the PAL patents began to expire around
1980 and the West German firms then became exposed to more
intense competition on the (declining) domestic market.
The West German firms’ best chances for maintaining or
expanding output and profitability lay in their transition to the
manufacture of a new generation of consumer electronics products,
that of the video cassette recorder (VCR). Between 1978 and 1983,
the West German market for VCRs expanded more than tenfold, so
that, by the latter year, VCRs accounted for over a fifth of the
overall consumer electronics market.“ However, in this product
segment, Grundig was the only West German firm which, in
conjunction with Philips, managed to establish a foothold, while
the other firms opted to assemble and/or sell VCRs manufactured
according to one or the other of the two Japanese video
technologies. By 1981, the West German VCR market was more
tightly in the grip of Japanese firms than any other segment of the
market. More than any other, this development accounted for the
growing crisis of the West German consumer electronics industry in
the early 1980s. The West German market stagnated, production
declined as foreign firms conquered a growing share of the
domestic market and this trend was not offset by an expansion of
exports, production processes were rationalized to try to cut costs
as prices fell, employment contracted,” and more and more plants
were either shut down or—more frequently——taken over.
The relationship between the state and the consumer electronics
industry in the long post-war economic ‘boom’ was of the ‘arm’s
length’ kind which corresponded to the West German philosophy
of the ‘social market economy’. The state's role was confined
largely to ‘holding the ring’ for the firms and trying to ensure by
means of competition policy that mergers and take-overs did not
enable any single firm or group of firms to achieve a position of
market domination and suspend the ‘free play of market forces’.
The implementation of competition policy was the responsibility of
the Federal Cartel Office (FCO), which must be informed of any
planned mergers or take-overs if the two firms each have a turnover
exceeding 1 DM billion or one of them has a turnover of more than
2 DM billion. The FCC must reject any proposed merger which, in
its view, would lead to the emergence of a, or strengthen any
existing, position of market domination.“
Decisions of the FCO may be contested in the Courts, and firms
whose merger or take-over plans have been rejected by the Cartel
Office may appeal for permission to proceed with their plans to the
Federal Economics Minister. He is empowered by law to grant such
permission when it is justified by an ‘overriding public interest’ or
‘macroeconomic benefits’, which may relate to competitiveness on
export markets, employment, and defence or energy policy.”
However, the state had no positive strategy for the consumer
electronics industry and industry, for its part, appeared to have no
demands on the state, other than that, through its macroeconomic
policies, it should provide a favourable business environment. This
situation changed only when, as from the late 1970s onwards, the
Japanese export offensive in consumer electronics plunged the West
German industry into an even deeper crisis.
The Politics of European Restructuring
The burgeoning crisis of not only the West German, but also the
other national consumer electronics industries in the EC in the
early 1980s prompted pleas from the firms (and also organized
labour) for protective intervention by the state——by the European
Community as well as by its respective national Member States.
The partial ‘Europeanization’ of consumer electronics politics
reflected the strategies chosen and pursued by the major European
firms to try to counter, or avoid, the Japanese challenge. These
strategies contained two major elements: measures of at least
temporary protection against Japanese imports to give the firms
breathing space to build up or modernize their production
capacities and improve their competitiveness uis-ci-uis the Japanese
and partly also to put pressure on the Japanese to establish
production facilities in Europe and produce under the same
conditions as the European firms and (b), through mergers, take-
overs, and co-operation agreements, to regroup forces with the aim
of achieving similar economies of scale to those enjoyed by the most
powerful Japanese firms. The first element of these strategies
implicated the European Community in so far as it is responsible
for the trade policies of its Member States. The second element did
not necessarily involve the European Community, but had a Euro-
pean dimension to the extent that most of the take-overs and mergers
envisaged in the restructuring of the industry involved firms from
two or more of the EEC Member States, including the French state-
owned Thomson (see above). As this ‘regrouping of the forces’ of
the European consumer electronics industry was to unfold at first
largely on the West German market, the firms could only
implement their strategies once they had obtained the all-clear of
the FCO or, failing that, of the Federal Economics Ministry.
The Politics of Video Recorder Trade between japan and the EEC:
The Dutch-based multinational conglomerate, Philips, was the first
firm in the world to bring a VCR on to the market. Between 1972
and 1975, it had no competitors at all in VCR manufacture and, as
late as 1977, it split up the European market with Grundig, with
which Philips developed the V2000 VCR which came on to the
market in 1980. By this time, the Japanese consumer electronics
firms had already built up massive VCR production capacities and
had cornered first their own market and then, unchallenged by the
European firms, the American as well. With the advantage of much
greater economies of scale, they were able to manufacture and offer
VCRs more cheaply than Philips and Grundig when the VCR
market did eventually ‘take off‘ in Western Europe. German
imports of VCRs, for example, increased almost eightfold between
1978 and 1981.2
The immediate background to the calls for protection against
imported Japanese VCRs by European VCR manufacturing firms
was formed by massive cuts in prices for Japanese VCRs, as a
consequence of which, in 1982, the market share held by the V2000
VCR manufactured by Philips and Grundig declined sharply.”
Losses incurred in VCR manufacture led to a dramatic worsening
of Grundig’s financial position. In November 1982 Philips and
Grundig announced that they were considering taking a dumping
case against the Japanese to the European Commission. The case,
which was later withdrawn, can be seen as the first move in a
political campaign designed to secure controls or restraints on
Japanese VCR exports to the EEC states. This campaign was
pursued at the national and European levels, both through the
national and European trade associations for consumer electronics
firms and particularly through direct intervention by the firms at
the national governments and the European Commission. However,
the European firms, many of whom had licensing agreements with
the Japanese, were far from being united behind it.
Philips, seconded by its VCR partner, Grundig, was the ‘real
protagonist’ of protectionist measures against Japanese VCRs. In
pressing their case on EEC member states and the European
Commission, they emphasized the unfair trading practices of the
Japanese in building up production capacities which could meet the
entire world demand for VCRs (‘laser-beaming’), and the threats
which the Japanese export offensive posed to jobs in Western
Europe and to the maintenance of the firms’ R. 8: D. capacity and
technological know-how. Above all, however, was the threat which
the crisis in VCR trade and the consumer electronics industry
generally posed to the survival of a European microelectronic
components industry, over half of whose output, according to
Grundig, was absorbed in consumer electronics products.”
These arguments found by all accounts a very receptive audience
at the European Commission, where, by common consent of
German participants in the policy-formation process, Philips wields
great political influence. By all accounts, Philips‘s pressure was also
responsible for the conversion to the protectionist camp of the
Dutch Government, which hitherto had been a bastion of free trade
philosophy within the EEC. By imposing unilateral import controls
through the channelling of imported VCRs through the customs
depot at Poitiers (see above), the French Government had already
staked out its position on VCR trade with Japan. It presumably
required no convincing by Philips and Grundig on the issue,
although it is interesting to speculate over the extent to which its
stance also reflected the preferences of Thomson which in the past
had been the ‘chief of the protectionists’ in the European
industry.”
With the Dutch Government having been shifted into the
protectionist camp by Philips, the greatest resistance to the
mposition of some form of import controls on Japanese VCRs
could have been expected to come from the West German
Government. Along with the Danish and (hitherto) the Dutch
Governments, the West German Government had generally been
the stoutest defender of free trade among the EEC Member States.
The Federal Economics Ministry’s antipathy towards import
controls may in fact have had some impact on the form of
protection ultimately agreed by the EEC Council of Ministers,
which was a ‘voluntary self-restraint agreement’ with japan.
However, even such self-restraint agreements had in the past been
vetoed by West Germany in the Council. The West German
Government’s abstention in the vote on the agreement in the
Council of Ministers signified if not a radical, then none the less a
significant, modification of its past trade policy.
Within the Bonn Economics Ministry, the section for the
electrical engineering industry-—characteristically—had the most
receptive attitude to the V2000 firms’ case. Elsewhere in the
Ministry, in the trade and European policy and policy principles
divisions and at the summit, the Ministry’s traditional policy in
favour of free trade was given up much more reluctantly. The
Ministry did not oppose the voluntary restraint agreement after it
had been negotiated, but it may be questioned whether the
Ministry’s acquiescence in the agreement was motivated solely by its
feeling of impotence vis-£1-vis the united will of the other Member
States. Abstaining on the vote in the Council of Ministers enabled
the V2000 protectionist lobby to reap its benefits without the West
German Government being held responsible for its implementation.
The Govemment’s abstention may equally have been the result of
the pressure exerted on the Economics Ministry by the V2000
firms, particularly Philips and Grundig, both of which engaged in
bilateral talks with the Ministry, and from the consumer electronics
sub-association of the electrical engineering trade association of the
ZVEI (Zentralverband der Elektrotechnischen lndustrie), in which
a majority of the member firms had sided with Philips and Grundig.
The Ministry, by its own admission, did not listen as closely to the
firms which were simply marketing Japanese VCRs as to those
which actually manufactured VCRs in Europe: ‘we were interested
in increasing the local content (of VCRs) to preserve jobs.’
The success of the V2000 firms in obtaining any agreement at all
from the Japanese to restrain their exports of VCRs to the EEC
does not mean that they were happy with all aspects of the
agreement, least of all with its contents concerning VCR prices and
concrete quotas which were agreed with the Japanese. As the
market subsequently expanded less rapidly than the European
Commission had anticipated, the quota allocated to Japanese
imports (including the ‘kits’ assembled by European licensees of
Japanese firms) amounted to a larger share of the market than
expected and the European VCR manufacturers did not sell as
many VCRs as the agreement provided. Ironically, within a year of
the adoption of the agreement, both Philips and Grundig announced
that they were beginning to manufacture VCRs according to the
Japanese VHS technology and by the time the agreement had
expired (to be superceded by increased tariffs for VCRs) in 1985,
the two firms had stopped manufacturing V2000 VCRs altogether.
The Politics of Transnational European Mergers and Take-overs
The wave of merger and take-over activity in the European
consumer electronics industry which peaked around 1982 and
1983 had begun in West Gemany in the late 1970s, when Thomson
swallowed up several of the smaller West German firms- Normende,
Dual, and Saba ...and Philips, apparently reacting to the threat it
perceived Thomson as posing to its West German interests, bought
a 24.5 per cent shareholding in Grundig.3° The frenzied series of
successful and unsuccessful merger and take-over bids which
unfolded in 1982 and 1983 is inseparable from the growing crisis of
the European industry and the major European firms’ perceptions
as to how they could restructure in order to survive in the face of
Japanese competition.
The first candidate which emerged for take-over on the West
German market was Telefunken, for which AEG, itself in desperate
financial straits, had been seeking a buyer since the late 1970s.
Telefunken’s heavy indebtedness, which was largely a consequence
of losses it had incurred in its foreign operations, posed a
formidable obstacle to its disposal, however, and first Thomson,
which had bought AEG’s tube factory, and then Grundig, baulked
at taking it on as long as AEG had not paid off its debts. While talks
on Telefunken’s possible sale to Grundig were still going on in
1982, Grundig’s own financial position was quickly worsening as a
result primarily of its mounting losses in VCR manufacture.
Grundig confessed publicly that if the firm carried on five more
years as it was doing, it would ‘go under like AEG’, which, in
summer 1982, had become insolvent. Grundig intensified his search
for stronger partners, which he had apparently begun by talking
with Siemens in 1981. In late 1982, at the same time as Grundig
and Philips were pressing for curbs on Japanese VCR imports,
Grundig floated the idea of creating, based around Grundig, a
European consumer electronics ‘superfirm’ involving Philips,
Thomson, Bosch, Siemens, SEL, and Telefunken. Most of the
prospective participants in such a venture were unenthusiastic
about Grundig’s plans, however, and the outcome of Grundig’s
search for a partner or partners to secure its survival was that
Thomson offered to buy a 75.5 per cent shareholding in the firm.
Political opinion in West Germany was overwhelmingly, if not
indeed uniformly, hostile to Thomson’s plan to take over Grundig.
The political difficulties which Thomson and Grundig faced in
securing special ministerial permission for their deal were exacer-
bated by the probability of job losses given a rapidly deteriorating
labour market situation, and by the fact that, as late as 1982 and
early 1983, an election campaign was in progress. Moreover, the
Federal Economics Ministry was apparently concerned that, if
Thomson took over Grundig, the West German Government would
have been exposed to the danger of trade policy blackmail from the
French Government, which could then have demanded increased
protection for the European consumer electronics industry as the
price for Thomson not running down employment at Grundig (and
in other West German subsidiaries).
The decisive obstacle to Thomson's taking over Grundig,
however, lay not with the position of the Federal Economics
Ministry (or that of the Government or the FCO or the Deutsche
Bank), but rather in that of Grundig’s minority shareholder,
Philips. Against expectations, the FCO announced that it would
approve the take-over, but only provided that Philips gave up its
shareholding in Grundig and that Grundig also abandoned its plans
to assume control of Telefunken. As talks on Grundig’s plan to take
over Telefunken had already been suspended, the latter condition
posed no problem to Thomson’s taking over Grundig.
Once it had been put on the spot by the FCO's decision, Philips
was forced to leave its cover and declare that it would not withdraw
from Grundig. Apart from its general concern at being confronted
with an equally strong competitor on the European consumer
electronics market, Philips’s motives in thwarting Thomson's take-
over of Grundig were probably twofold. First, Thomson evidently
did not want to commit itself to continue manufacturing VCRs
according to the Philips—-Grundig V2000 technology, but wanted
rather to keep the Japanese (VHS) option open and, according to its
public declarations, to work with Grundig on the development of a
new generation of VCRs. Secondly, Philips was, ahead of Siemens,
Grundig’s biggest components supplier, with annual sales to
Grundig worth several hundred million Deutschmarks. lf Thomson
had taken over Grundig, this trade would have been lost.
A sequel to the failure of Thomson's bid for Grundig was that in
1984, with bank assistance, Philips assumed managerial control of
Grundig. Thus, at the end of this phase of the restructuring
programme of the European consumer electronics industry, two
main groups have emerged, one centred around Philips, the other
around Thomson, and Blaupunkt is the only significant firm in
West Germany left under West German control. But a common
European response (i.e. one involving Philips and Thomson) to the
Japanese challenge of the kind which Max Grundig had envisaged
in 1982 had not come about, and may be less likely given
Thomson’s acquisitions in Britain and the US which make it a much
more powerful competitor to Philips. But the acceleration in
Japanese and also Korean inward investment in Europe in 1986-7,
especially in VCR production where there are now a total of twenty
Far Eastern-owned plants, suggests that the process of restructuring
within Europe is far from complete.
The recent experience of the European consumer electronics
industry points to the critical role of the framework and instruments
of regulation in trying to account for the different responses of the
various national industries and governments to the challenges
posed by growing Japanese competitive strength and technological
leadership. At one extreme is self-regulation by individual firms,
where governments eschew any attempt to determine the responses
which particular firms make to changing market conditions, whilst
adopting policy regimes such as tax and tariff structures and
openness to inward investment which critically affect the conditions
under which self-regulation takes place." At the other extreme is
regulation by government intervention at the level of firm strategy,
where governments seek specific policy outcomes by offering
specific forms of inducement to selected firms and denying them to
others.”
Am 16. Mai 1951 übernimmt Grundig die Lumophon-Werke (ebenfalls in Fürth) für den Betrag von 1,7 Mio. DM. Im gleichen Jahr entstehen erste Grundig-Tonbandgeräte. 1952 beginnt die Produktion von Fernsehgeräten. Das Unternehmen beschäftigt nun 6000 Personen und feiert am 12. Mai 1952 den millionsten Rundfunkempfänger. Die Baureihe von 1952/53 ist erstmals technisch und formal einheitlich gestaltet, wobei Grundig die prinzipielle Form bis 1956/57 beibehält. Ausser Typ 810 mit Flankengleichrichter enthalten alle Geräte einen integrierten FM-Teil mit Ratiodetektor. 1955 bezeichnet sich Grundig als den grössten Tonbandgeräte-Hersteller der Welt. 1956 kauft er das Telefunken-Rundfunkgerätewerk Dachau [639071]. 1959 besteht Grundig aus sieben Werken, zwei Tochtergesellschaften plus einer Neugründung in den USA. 1964 übernimmt Grundig die Tonfunk-Werke, Karlsruhe. 1969 beteiligt sich Grundig mehrheitlich an der Kaiser-Radio in Kenzingen. Max Grundig ist seit 1970 gesundheitlich angeschlagen.
Eine detaillierte Firmengeschichte enthält das 1983 erschienene Buch: «Sieben Tage im Leben des Max Grundig» von Egon Fein.
Allerdings lässt sich aus [481, Saba] auch wenig Schmeichelhaftes über das Machtstreben von Max Grundig erfahren.
1984 erhöht Philips die Beteiligung um 7 % und übernimmt die unternehmerische Verantwortung. 1986/87 kann das Unternehmen mit noch 19'500 Mitarbeitern wieder schwarze Zahlen schreiben. 1987/88 beschäftigt Grundig noch 18'700 Personen bei einem Umsatz von
3,2 Mrd. DM, wovon 90 % auf die Unterhaltungselektronik entfallen. In diesem Geschäftsjahr verlassen 2 Mio. Farbfernsehgeräte und 750'000 Videorecorder die Bänder. Max Grundig stirbt im Dezember 1989 [639071] - letztlich hatte er nicht das vierblättrige, sondern das dreiblättrige Kleeblatt als Firmenemblem gewählt.
Philips hat das Unternehmen vollständig übernommen. Mitte 90er Jahre beschäftigt Grundig noch 8000 Personen. Eine detaillierte Firmengeschichte findet sich in «kleeblatt radio» ab 5/93 des Förderverein des Rundfunkmuseums der Stadt Fürth eV.
1998 verkaufte Philips das Unternehmen an ein Konsortium unter Führung von Anton Kathrein von den Kathrein-Werken. Im Jahre 2001 wurde bei einem Umsatz von 1,2 Milliarden Euro ein Verlust von 150 Millionen Euro erwirtschaftet. Daher verlängerten die Banken im Herbst 2002 die Kreditlinien nicht mehr, was zur Insolvenz im April 2003 führte. In der Folgezeit wurden gewinnbringende Sparten (wie z.B. Bürogeräte, Autoradios) aus dem Konzern herausgelöst und einzeln verkauft. Verlustreiche Sparten wurden stillgelegt und die Mitarbeiter entlassen. Heute erhältliche Neuware von Grundig ist kaum noch "made in Germany".
References:
Einzelnachweise:
Stephan Maurer: Ein Jahr nach der Grundig-Insolvenz. In: Stern.de. 27. Juni 2004, abgerufen am 26. Juli 2013.Alexander Mayer: Grundig und das Wirtschaftswunder. Reihe Arbeitswelten, Sutton-Verlag, Erfurt 2008, ISBN 978-3-86680-305-3, S. 7 f., 11 f.
Alexander Mayer: Grundig und das Wirtschaftswunder. Reihe Arbeitswelten, Sutton-Verlag, Erfurt 2008, ISBN 978-3-86680-305-3, S. 8.
Stephan Maurer: 100 Jahre Max Grundig: Pionier des Wirtschaftswunders. stern.de, 7. Mai 2008, abgerufen am 26. Juli 2013.
Hans Knoll: Ursprünge des Radiobaukastens „Heinzelmann“, S. 14. In: Rundfunk und Museum. Zeitschrift des Rundfunkmuseums der Stadt Fürth, Heft 71, Dezember 2009, S. 9–16.
Alexander Mayer: Grundig und das Wirtschaftswunder. Reihe Arbeitswelten, Sutton-Verlag, Erfurt 2008, ISBN 978-3-86680-305-3, S. 9, 17 ff.
Vgl. z. B. Nürnberger Nachrichten v. 28. September 1951, S. 3: „Fernseh-Uraufführung in Fürth“; der Sender strahlte täglich um 11, 14 u. 16 Uhr einen Spielfilm aus, der in Nürnberg u. Fürth empfangen werden konnte.
Alexander Mayer: Grundig und das Wirtschaftswunder. Reihe Arbeitswelten, Sutton-Verlag, Erfurt 2008, ISBN 978-3-86680-305-3, S. 9, 17 ff.
Alexander Mayer: Grundig und das Wirtschaftswunder. Reihe Arbeitswelten, Sutton-Verlag, Erfurt 2008, ISBN 978-3-86680-305-3, S. 9, 71 ff, 121 ff.
Alexander Mayer: Grundig und das Wirtschaftswunder. Reihe Arbeitswelten, Sutton-Verlag, Erfurt 2008, ISBN 978-3-86680-305-3, S. 9 f.
Aus dem Ruder, In: Der Spiegel 9/1985, abgerufen am 21. September 2015.
Alexander Mayer: Grundig und das Wirtschaftswunder. Reihe Arbeitswelten, Sutton-Verlag, Erfurt 2008, ISBN 978-3-86680-305-3, S. 10.
Grundig meldet Insolvenz an. Computerwoche, 14. April 2003, abgerufen am 26. Juli 2013.
Thiemo Heeg: Grundig ist wieder da. Frankfurter Allgemeine Zeitung, 29. August 2012, abgerufen am 21. November 2013.
Abschied von Nürnberg: Grundig-TV verlässt die Region. In: Nordbayern.de vom 7. April 2016.
Uwe Ritzer: Grundig verabschiedet sich aus Nürnberg In: Süddeutsche Zeitung vom 11. April 2016, S. 33.
"GRUNDIG – Unterhaltungselektronik & Haushaltsgeräte". Grundig.de. Retrieved 19 July 2018.
"Grundig History - From The Foundations To Present". Grundig.co.uk. Retrieved 15 January 2018."Arçelik A.Ş. marks IFA Fair with two giant brands". Arcelikas.com. Retrieved 15 January 2018.
"Make your home the best place to be with appliances from Grundig". Thetimes.co.uk. Retrieved 15 January 2018.
"UPDATE 2-Turkey's Arcelik, Grundig announce merger". Reuters.com. 27 February 2009. Retrieved 15 January 2018.
""Grundig Home" – The Best Place to Be - K!TCHN® Mag". ktchnmag.com. Retrieved 15 January 2018.
"ARÇELİK A.Ş., LEAVES ITS MARK AT THE IFA FAIR WITH ITS BEKO AND GRUNDIG BRANDS". Arcelikas.com. Retrieved 15 January 2018.
"Archived copy". Archived from the original on 2010-10-23. Retrieved 2010-06-30.
Melaugh, Dr Martin. "CAIN: Chronology of the Conflict 1980". cain.ulst.ac.uk. Retrieved 15 January 2018.
"Design News". Design News. Retrieved 19 July 2018.
Deleon, Nicholas. "Grundig U900 Single Core Linux-Based Cellphone Looks Like It Belongs in 2002". Gizmodo.com. Retrieved 19 July 2018.
"Sponsoring: Grundig zeigt Flagge in der Fußball-Bundesliga". Horizont.net. Retrieved 19 July 2018.
"Grundig expands FC Nurnberg sponsorship". Sportbusiness.com. 16 August 2013. Retrieved 19 July 2018.
"From Postenligaen to Grundigligaen - The Norwegian American". Na-weekly.com. 16 September 2014. Retrieved 15 January 2018.
"Global Food Losses and Food Waste" (PDF). Fao.org. Retrieved 19 July 2018.
"Key facts on food loss and waste you should know!". Food and Agriculture Organization of the United Nations. Retrieved 15 January 2018.
"Respect Food grundig.com". Grundig.com. Retrieved 15 January 2018.
"Archived copy". Archived from the original on 2018-01-15. Retrieved 2018-01-15.
"Grundig partners with Massimo Bottura's first international 'Food for Soul' project – Innovative Electrical Retailing". Innovativeelectricalretailing.co.uk. Retrieved 19 July 2018.
"GRUNDIG – Unterhaltungselektronik & Haushaltsgeräte". Grundig.de. Retrieved 15 January 2018.
"GRUNDIG – Unterhaltungselektronik & Haushaltsgeräte". Grundig.de. Retrieved 15 January 2018.
No comments:
Post a Comment
The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.
Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!
The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.
Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.
Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.
Your choice.........Live or DIE.
That indeed is where your liberty lies.
Note: Only a member of this blog may post a comment.