Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical technology relics that the Frank Sharp Private museum has accumulated over the years .

Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.


Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:

- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........

..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !
-----------------------

©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of
Engineer Frank Sharp. NOTHING HERE IS FOR SALE !

Monday, January 31, 2011

SCHNEIDER STV707 DTV-2-7025-11 (49474A) YEAR 1989






































































































 
THE SCHNEIDER  STV707  DTV-2-7025-11 is a 28 Inches color Digital Television from SCHNEIDER.

Model reference is DIGITECH 2000 Series

It's full multistandard with teletext and stereo sound plus remote.

It has even full osd feature.

The  SCHNEIDER  STV707  DTV-2-7025-11 (49474A) is a DIGITAL Colour television receiver or set , are known in which the majority of signal processing that takes place therein is carried out digitally. That is, a video or television signal is received in a conventional fashion using a known analog tuning circuit and then, following the tuning operation, the received analog television signal is converted into a digital signal and digitally processed before subsequently being converted back to an analog signal for display on a colour cathode ray tube.

In a conventional television receiver, all signals are analog-processed. Analog signal processing, however, has the problems at the video stage and thereafter. These problems stem from the general drawbacks of analog signal processing with regard to time-base operation, specifically, incomplete Y/C separation (which causes cross color and dot interference), various types of problems resulting in low picture quality, and low precision of synchronization. Furthermore, from the viewpoints of cost and ease of manufacturing the analog circuit, a hybrid configuration must be employed even if the main circuit comprises an IC. In addition to these disadvantages, many adjustments must be performed.

In order to solve the above problems, it is proposed to process all signals in a digital form from the video stage to the chrominance signal demodulation stage. In such a digital television receiver, various improvements in picture quality should result due to the advantages of digital signal processing.

Therefore digital television signal processing system introduced in 1984 by the Worldwide Semiconductor Group (Freiburg, West Germany) of International Telephone and Telegraph Corporation is described in an ITT Corporation publication titled "VLSI Digital TV System--DIGIT 2000." In that system color video signals, after being processed in digital (binary) form, are converted to analog form by means of digital-to-analog converters before being coupled to an image displaying kinescope. The analog color video signals are coupled to the kinescope via analog buffer amplifiers and video output kinescope driver amplifiers which provide video output signals at a high level suitable for driving intensity control electrodes of the kinescope.


The  SCHNEIDER  STV707  DTV-2-7025-11 (49474A)  Is a multistandard set and relates to a digital multistandard decoder for video signals and to a method for decoding video signals.
Colour video signals, so-called composite video, blanking and sync signals (CVBS) are essentially composed of a brightness signal or luminance component (Y), two colour difference signals or chrominance components (U, V or I, Q), vertical and horizontal sync signals (VS, HS) and a blanking signal (BL).

The different coding processes, e.g. NTSC, PAL and SECAM, introduced into the known colour television standards, differ in the nature of the chrominance transmission and in particular the different systems make use of different colour subcarrier frequencies and different line frequencies.
The following explanations relate to the PAL and NTSC systems, but correspondingly apply to video signals of other standards and non-standardized signals.
The colour subcarrier frequency (fsc) of a PAL system and a NTSC system is fsc(NTSC) = 3.58 MHz or fsc(PAL) = 4.43 MHz.
In addition, in PAL and NTSC systems the relationships of the colour subcarrier frequency (fsc) to the line frequency (fh) are given by fsc(NTSC) = 227.50 * fh or 4•fsc(NTSC) = 910 • fh fsc(PAL) = 283.75 * fh or 4•fsc(PAL) = 1135 • fh so that the phase of the colour subcarrier in the case of NTSC is changed by 180°/line and in PAL by 270°/line.

In the case of digital video signal processing and decoding the prior art fundamentally distinguishes between two system architectures. These are the burst-locked architecture and the line-locked architecture, i.e. systems which operate with sampling frequencies for the video signal, which are produced in phase-locked manner to the colour subcarrier frequency transmitted with the burst pulse or in phase-locked manner with the line frequency, respectively.

The principal advantage of the present invention is a color television receiver is provided having a fully digital color demodulator wherein the luminance signal and the chrominance signals are separated and digitally processed prior to being converted to analog signals in that the all-digital signal processing largely eliminates the need for nonintegratable circuit elements, i.e., particularly coils and capacitors, and that the subcircuits can be preferably implemented using integrated insulated-gate field-effect transistor circuits, i.e., so-called MOS technology. This technology is better suited for implementing digital circuits than the so-called bipolar technology.

 The  SCHNEIDER  STV707  DTV-2-7025-11 (49474A) is a multisound tv digital sound processing.

It has a DTI.(dti digital transient improvement pertains to a circuit for steepening color-signal transitions in color television receivers or the like particularly in DIGIVISION DIGIT2000 . ) circuit arrangement designed for use in digital color-television receivers or the like and contains for each of the two digital color-difference signals a slope detector to which both a digital signal defining an amplitude threshold value and a digital signal defining a time threshold value are applied. At least one intermediate value occurring during an edge to be steepened is stored, and at the same time value of the steepened edge, it is "inserted" into the latter.

The bandwidth of the color-difference channel is very small compared with the bandwidth of the luminance channel, namely only about 1/5 that of the luminance channel in the television standards now in use. This narrow bandwidth leads to blurred color transitions ("color edging") in case of sudden color-signal changes, e.g., at the edges of the usual color-bar test signal, because, compared with the associated luminance-signal transition, an approximately fivefold duration of the color-signal transition results from the narrow transmission bandwidth.

In the prior circuit arrangement, the relatively slowly rising color-signal edges are steepened by suitably delaying the color-difference signals and the luminance signal and steepening the edges of the color-difference signals at the end of the delay by suitable analog circuits. The color-difference signals and the luminance signal are present and processed in analog form as usual. This circuit arrangement is designed for use in digital color-television receivers or the like and contains for each of the two digital color-difference signals a slope detector to which both a digital signal defining an amplitude threshold value and a digital signal defining a time threshold value are applied. At least one intermediate value occurring during an edge to be steepened is stored, and at the same time value of the steepened edge, it is "inserted" into the latter. This is done by means of memories, switches, output registers, and a sequence controller.

ADVANTAGE - Increased picture sharpness and highly improved signal-to-noise ratio.


The SCHNEIDER STV707 here shown has PIP (Picture in Picture) feature with additional Unit already mounted in the chassis.
The Tv set here shown features a PIP  picture-in-picture (PIP or pix-in-pix) feature; in a digital television system having a picture-in-picture (PIP or pix-in-pix) feature, two images from possibly unrelated sources are displayed simultaneously on the TV screen as a single composite image. The composite image includes a small picture (defined by an auxiliary video signal, for example, from a VCR) displayed as an inset within a large main picture (defined by a primary video signal, for example, from the TV antenna). The output signal of one tuner or of other TV signal sources in the base band are digitized and stored in a part of a memory. After automatic switching over to another TV-channel, this new signal is stored in another part of the memory and so on. The whole memory is then read out continuously and produces the displayed multipicture on the screen.
More specifically, the present invention pertains to a television receiver with a multipicture display.
In a television receiver with multipicture display a single video signal can be reproduced simultaneously in two or more subareas, or two or more different video signals can each be reproduced in associated subareas. Each of the subareas can display either a reduced-size picture or a part of the picture supplied by a video-signal source. A digital signal-processing circuit converts the signals from the video-signal source to picture data consisting of luminance and color data for each picture element. A random-access memory (RAM) holds the picture data of the entire screen. A control unit controls the writing of the picture data into an area of the RAM depending on the number of video signals to be reproduced and the line-by-line readout, with only selected lines being transferred from the video-signal source into the associated memory area. A digital-to-analg converted which is furnished with the picture data read from the RAM delivers the analog red, green, and blue signals.
A television receiver of this kind is described in a printed publication by Intermetall Semiconductors ITT, "VMC Video Memory Controller", August 1985.
That television receiver circuit uses random-access memories (RAMs). For the multipicture display, the screen is divided into up to nine equal-sized subareas which each contain a part of a picture of normal size or a complete picture of reduced size. In that mode, successively produced "snapshots" of up to nine different video signals can be displayed simultaneously. The switching of the video signals takes place manually.
Offenlegungsschrift DE No. 24 13 839 A1 describes a circuit for a television receiver with a facility for simultaneously reproducing two or more programs. In a part of the picture of the directly received main program, the secondary program, received with a single switchable tuner, is stored in a memory with a reduced number of lines and is called up line by line when the electron beam of the picture tube sweeps across the predetermined part of the picture. The disadvantage of this method lies in horizontal grating-like interference in the main picture which results from the fact that lines of the main picture are missing at regular intervals when the tuner has been switched to the secondary program, and which can only be incompletely compensated.
Accordingly, the problem to be solved by the invention is to provide a circuit of the above kind with which the grating-like interference caused during reproduction using the above-described single-tuner switching method is eliminated.
The output signal of one tuner or of other TV signal sources in the base band are digitize and stored in part of a memory. After automatic switching over to another TV-channel, this new signal is stored in another part of the memory and so on.
The whole memory is then read out continuously and produces the multi-picture display on the screen. Another advantage consists in the fact that, for the construction of the whole screen picture, all picture data are withdrawn from the RAM, so that the usual picture-improvement techniques can be applied. By fast readout from the memory rows, the displayed picture is freed from both line flicker and background flicker.
By changing the sampling rates of the different video-signal sources, it is readily possible to monitor the latter, nearly up to the still picture. In an arrangement in accordance with the invention digital picture processing and digital storage are used thereby permitting the circuit to process analog or digital signals,from video signal sources.


Model reference is DIGITECH 2000 Series because It features the DIGIVISION ITT CHIPSET DIGIT2000 for Digital video and audio digital processing.

For a complete reference on the DIGIVISION ITT CHIPSET DIGIT2000 you may refer HERE
or even HERE !

Even in this poor cabinet conditions, the SCHNEIDER STV707 here in collection is still functional !!!!



Schneider Rundfunkwerke AG
The company has it's roots in a company founded by Felix Schneider in 1889 in Türkheim in Swabia, Germany, that manufactured industrial woodworking machinery. The company entered the audio business in 1965 by starting the manufacture of radios cabinets etc. and moved into the manufacture of other Brown Goods soon thereafter and became in particular associated with music systems in the 70's and 80's. The Schneider company was unusual for West German companies at the time in that they focused squarely on the manufacture of low budget & value products, while the rest of the electronics sector was increasingly focused on higher priced products in response to the ever increasing valuation of the German Mark. Entered the computer market in 1984 when they started marketing Amstrad computers under their own name in central Europe, initially with notable success, but split up with Amstrad in 1987 when they rejected to distribute the AT compatible computers that the latter company was introducing at the time as they thought they where unsellable, but rather decided to hire the entire European design team from Commodore that had been responsible for designing the PC compatible designs Commodore had introduced a couple of years earlier in addition to the Amiga 2000. This resulted in the introduction of the Euro-PC line of computers in late 1988, an interesting designs in some respects, for instance the first PC compatible that had all hardware I/O and set-up functions controlled by the BIOS configuration program rather than having to open the computer and move jumpers around, another unusual BIOS related feature is that you could start the configuration program anytime, even when the OS was running, although innovative this line was not a resounding success but it did pave the way for Schneider to become one of the larger European computer OEM's in the 1990's. The company bought the trademark, product lines and factories of the Dual company from Thomson in 1988, this was not primarily to get the product lines but rather it appears to be in response to the need for a new trademark for some European markets, notably France, were the Schneider brand was either owned by local companies or there where very well known companies with that name operating in other business sectors. The old Dual factory in St. Georgen was closed down in 1993 after sales of turntables tumbled and the manufacture of the turntable lineup was taken over by Alfred Fehrenbacher but they are located in the same town as the original Dual Co., the Dual trademark was licensed to the Karstad retail chain in 1996 but by that time Schneider was only using the trademark in France one on hand and for record players internationally. The company's name was changed to Schneider Electronics AG at some time in the 1990's and different operations where organised into independently run divisions. In the latter years it was perhaps best known locally as a manufacturer of low and mid range televisions and video recorders but they had started manufacturing those in 1983 but in the early 1990's the Schneider Technologies AG subsidary developed some innovative TV's for professional usage, the most interesting of these being the laser TV which was based around a solid state RGB laser gun developed in conjunction with Jenoptik, this allows for huge screens without the usual multi screen/projector setups or the lack of brightness usually associated with projectors. Worsening trade conditions in the late 90's however meant that the company declared itself bankrupt on January 26 2002, TCL International Holdings bought production facilities, stocks and trademarks for 8,2 million € in September 2002 and used those to form a new company called Schneider Electronics GmbH.



 Die SCHNEIDER Technologies Aktiengesellschaft (vormals Schneider-Rundfunkwerke AG) war ein Hersteller von Unterhaltungselektronik und Computern in Türkheim.

Die Geschichte der Schneider-Rundfunkwerke AG geht zurück auf das Jahr 1889. Felix Schneider begann in Türkheim im Unterallgäu mit der Fabrikation von Holzwaschmaschinen.

Unterhaltungselektronik:
Werbesticker der „Schneider Computer Division“ aus den 1990ern

Auf die Produktion von Unterhaltungselektronik stellte die Firma unter Firmenchef Leo Schneider 1965 um, als die ersten Musikschränke produziert wurden. Weitere Meilensteine in der Produktentwicklung waren 1971 Musik-Kompaktanlagen und 1983 TV-Geräte mit eigenem Chassis. Weitere Innovationen wie ein 500-Seiten-Speed-Videotext, der Prime Timer und Laser-TV folgten. Im Sommer 1996 stellte Schneider die Produktion im Zweigwerk in Nersingen-Straß ein.
Im Glanz vergangener Tage kann sich die deutsche Unterhaltungselektronik nicht mehr sonnen. Die Gegenwart ist ernüchternd. Heute kommen nicht einmal zehn Prozent der Fernseher, die hierzulande verkauft werden, aus deutschen Werken. Den Markt dominieren Firmen wie Samsung und LG. Vor zehn Jahren haben die Asiaten die Branche mit Flachbildschirmen revolutioniert, während die Deutschen noch an der Röhre festhielten. Nun setzen sie mit Billigpreisen Maßstäbe – auch weil sie unter viel günstigeren (Lohn-)Bedingungen produzieren. Ein Standortvorteil, der deutsche Herstellern wie ein Keulenschlag trifft. Markengeräte mit einem Meter Bildschirmdiagonale, die in Elektromärkten für 369 Euro verkauft werden, sind keine Seltenheit.
Insolvenz:

2002 stellte Schneider einen Insolvenzantrag, und im Oktober 2002 wurden die Produktionsanlagen in Türkheim, Warenbestände und die Schneider-Markenrechte an den chinesischen Elektronikkonzern TCL verkauft. 2004 fusionierte dann TCL mit dem französischen Thomson-Konzern zum weltgrößten Hersteller von TV-Geräten. Als Ende Januar 2005 die Produktion eingestellt wurde, arbeiteten noch 120 Mitarbeiter im Werk Türkheim.

Martin Runge kritisierte als wirtschaftspolitischer Sprecher der GRÜNEN-Landtagsfraktion den zuständigen Minister Wiesheu:

    "...Die „Sanierungsaktivitäten" von Staatsregierung und LfA, der landeseigenen Förderbank, waren so angelegt, dass sie von Anfang an keinen Gewinn für das Unternehmen und seine Mitarbeiter bringen konnten. Im Gegenteil: Staatsregierung und LfA sind mitverantwortlich am Niedergang und an der Zerschlagung der Schneider Technologies AG und ihrer Töchter Schneider Electronics AG und Schneider Laser Technologies AG... "

Das ehemalige Werksgelände in Türkheim wurde von einem Speditionsunternehmen aufgekauft, und im Sommer 2006 wurde mit der Demontage des Schneider-Schriftzuges die Ära der Schneider-Rundfunkwerke AG in Türkheim endgültig beendet.


No comments:

Post a Comment

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.