The new Philips CTX colour chassis was designed to drive 90° colour tubes of the 570X type. Mechanically, the chassis is very different from the KT3 which it will replace. While the KT3 used the mother/daughter modular board principle, with a large vertically mounted main panel into which seven subpanels were plugged, the CTX has a single horizontally mounted panel plus a rather larger c.r.t. base panel than its predecessor. Packing most of the circuitry on to a single panel at the base of the cabinet gives room for a larger c.r.t. base panel on which the RGB output stages and the focus unit can be mounted. Altogether a much neater scheme. An initial glance at the circuit reveals that many of the features of the KT3 have been retained. So how has the component count been substantially reduced and space saved? One space saver is the use of a compact diode -split line output transformer instead of a separate transformer/ tripler combination. Then a TDA3651 i.c. is used to provide the field output whilst another i.c., a TDA2577, takes care of quite a lot of things, containing as it does the sync circuits, the field generator and the line frequency generator. The new circuitry has enabled the power consumption to be reduced to 39W average in comparison to the KT3's 70W and a modern Led tv draws much more power.
The chassis is neatly laid out and easy to get at. The low power consumption should ensure reliable operation. Perhaps we should say extremely reliable, since the KT3 itself established an enviable recognized reputation for reliability. The main similarities between the CTX and the KT3 lie in the signals circuitry and in the use of a tandem chopper/ line output arrangement, i.e. the line output transistor is driven by a secondary winding on the chopper transformer. The tuner is quite large, and along with the discrete component i.f. filter takes up quite a large proportion of the main panel. The filter is identical to that used in the KT3. The TDA2540 i.f. i.c. is also the same, whilst the decoder consists of a PHILIPS TDA3560 as in the KT3 Mk. II. The sound channel is also the same, consisting of the well tried TBA120S intercarrier sound i.c. followed by a TDA2611AQ audio i.c.

Fig. 1 shows the CTX's circuit and power supply arrangements in block diagram form. Class A RGB output stages replace the KT3's class AB circuits. This simplifies the circuitry, and since the output stages are now on the c.r.t. base panel the capacitance they have to drive is much reduced. The performance is perfectly adequate, especially when one considers the limitations on picture resolution imposed by those at the time modern tubes. The item that's brought about the greatest changes in comparison with the KT3 chassis is the TDA2577 i.c. This, with some extra discrete component circuitry, replaces the TDA2571/TDA2581 sync/line oscillator/ chopper drive combination and the discrete component field generator circuit. It contains the sync circuitry and the line and field frequency generators. It also produces the sandcastle pulse for the decoder and contains a pulse - width modulator for chopper control. This latter feature is not used however. Instead control of the chopper drive is carried out in the external discrete component circuitry

The PHILIPS CHASSIS CTX - E , was the most reliable chassis from PHILIPS. It gave small or never gave problems. The one I've noticed it's a small self drift of the coils in the Video I.F. stages which can be easily corrected with knowledge and instrumentation in few minutes.
And of course the classic rate of dry joints around there and there.
This set have 40 programs and voltage synthesized tuning search system (VST).
- On left side Signal parts with IF Stages with TDA2541 (PHILIPS) and TBA120S and Tuner unit.
TDA3560 (video chroma + luminance) (PHILIPS)
TDA3651 (Frame deflection) (PHILIPS)
TDA2611 (Audio Amplifier) (PHILIPS)
TDA2577 (Synchronization) (PHILIPS)
- On right side all deflection and EHT and line deflection synchronized power supply.
TDA2541 IF AMPLIFIER WITH DEMODULATOR AND AFC

DESCRIPTION
The TDA2540 and 2541 are IF amplifier and A.M.
demodulator circuits for colour and black and white
television receivers using PNP or NPN tuners. They
are intended for reception of negative or positive
modulation CCIR standard.
They incorporate the following functions : .Gain controlled amplifier .Synchronous demodulator .White spot inverter .Video preamplifier with noise protection .Switchable AFC .AGC with noise gating .Tuner AGC output (NPN tuner for 2540)-(PNP
tuner for 2541) .VCR switch for video output inhibition (VCR
play back).
.SUPPLYVOLTAGE : 12V TYP
.SUPPLYCURRENT : 50mATYP
.I.F. INPUT VOLTAGE SENSITIVITY AT
F = 38.9MHz : 85mVRMS TYP
.VIDEO OUTPUT VOLTAGE (white at 10% of
top synchro) : 2.7VPP TYP
.I.F. VOLTAGE GAIN CONTROL RANGE :
64dB TYP .SIGNAL TO NOISE RATIO AT VI = 10mV :
58dB TYP
.A.F.C. OUTPUT VOLTAGE SWING FOR
Df = 100kHz : 10V TYP
TDA2611A 5 W audio power amplifier
The TDA2611A is a monolithic integrated circuit in a 9-lead single in-line (SIL) plastic package with a high supply voltage
audio amplifier. Special features are:
· possibility for increasing the input impedance
· single in-line (SIL) construction for easy mounting
· very suitable for application in mains-fed apparatus
· extremely low number of external components
· thermal protection
· well defined open loop gain circuitry with simple quiescent current setting and fixed integrated closed loop gain.
GENERAL DESCRIPTION
The TDA3560A is a decoder for the PAL colour television standard. It combines all functions required for the identification
and demodulation of PAL signals. Furthermore it contains a luminance amplifier, an RGB-matrix and amplifier. These
amplifiers supply output signals up to 5 V peak-to-peak (picture information) enabling direct drive of the discrete output
stages. The circuit also contains separate inputs for data insertion, analogue as well as digital, which can be used for
text display systems (e.g. (Teletext/broadcast antiope), channel number display, etc. Additional to the TDA3560, the
circuit includes the following features:
· The peak white limiter is only active during the time that the 9,3 V level at the output is exceeded. The start of the
limiting function is delayed by one line period. This avoids peak white limiting by test patterns which have abrupt
transitions from colour to white signals.
· The brightness control is obtained by inserting a variable pulse in the luminance channel. Therefore the ratio of
brightness variation and signal amplitude at the three outputs will be identical and independent of the difference in gain
of the three channels. Thus discolouring due to adjustment of contrast and brightness is avoided.
· Improved suppression of the internal RGB signals when the device is switched to external signals, and vice versa.
· Non-synchronized external RGB signals do not disturb the black level of the internal signals.
· Improved suppression of the residual 4,4 MHz signal in the RGB output stages.
· Cascoded stages in the demodulators and burst phase detector minimize the radiation of the colour demodulator
inputs.
· High current capability of the RGB outputs and the chrominance output.
APPLICATION INFORMATION
The function is described against the corresponding pin
number.
1. + 12 V power supply
The circuit gives good operation in a supply voltage range
between 8 and 13,2 V provided that the supply voltage for
the controls is equal to the supply voltage for the
TDA3561A. All signal and control levels have a linear
dependency on the supply voltage. The current taken by
the device at 12 V is typically 85 mA. It is linearly
dependent on the supply voltage.
2. Control voltage for identification
This pin requires a detection capacitor of about 330 nF for
correct operation. The voltages available under various
signal conditions are given in the specification.
3. Chrominance input
The chroma signal must be a.c.-coupled to the input.
Its amplitude must be between 55 mV and 1100 mV
peak-to-peak (25 mV to 500 mV peak-to-peak burst
signal). All figures for the chroma signals are based on a
colour bar signal with 75% saturation, that is the
burst-to-chroma ratio of the input signal is 1 : 2,25.
4. Reference voltage A.C.C. detec
This pin must be decoupled by a capacitor of about 330
nF. The voltage at this pin is 4,9 V.
5. Control voltage A.C.C.
The A.C.C. is obtained by synchronous detection of the
burst signal followed by a peak detector. A good noise
immunity is obtained in this way and an increase of the
colour for weak input signals is prevented. The
recommended capacitor value at this pin is 2,2 mF.
6. Saturation control
The saturation control range is in excess of 50 dB.
The control voltage range is 2 to 4 V. Saturation control is
a linear function of the control voltage.
When the colour killer is active, the saturation control
voltage is reduced to a low level if the resistance of the
external saturation control network is sufficiently high.
Then the chroma amplifier supplies no signal to the
demodulator. Colour switch-on can be delayed by proper
choice of the time constant for the saturation control
setting circuit.
When the saturation control pin is connected to the power
supply the colour killer circuit is overruled so that the colour
signal is visible on the screen. In this way it is possible to
adjust the oscillator frequency without using a frequency
counter (see also pins 25 and 26).
7. Contrast control
The contrast control range is 20 dB for a control voltage
change from + 2 to + 4 V. Contrast control is a linear
function of the control voltage. The output signal is
suppressed when the control voltage is 1 V or less. If one
or more output signals surpasses the level of 9 V the peak
white limiter circuit becomes active and reduces the output
signals via the contrast control by discharging C2 via an
internal current sink.
8. Sandcastle and field blanking input
The output signals are blanked if the amplitude of the input
pulse is between 2 and 6,5 V. The burst gate and clamping
circuits are activated if the input pulse exceeds a level of
7,5 V.
The higher pa
after the sync pulse to prevent clamping of video signal on
the sync pulse. The width should be about 4 ms for proper
A.C.C. operation.
9. Video-data switching
The insertion circuit is activated by means of this input by
an input pulse between 1 V and 2 V. In that condition, the
internal RGB signals are switched off and the inserted
signals are supplied to the output amplifiers. If only normal
operation is wanted this pin should be connected to the
negative supply. The switching times are very short
(< 20 ns) to avoid coloured edges of the inserted signals
on the screen.
10. Luminance signal input
The input signal should have a peak-to-peak amplitude of
0,45 V (peak white to sync) to obtain a black-white output
signal to 5 V at nominal contrast. It must be a.c.-coupled to
the input by a capacitor of about 22 nF. The signal is
clamped at the input to an internal reference voltage.
A 1 kW luminance delay line can be applied because the
luminance input impedance is made very high.
Consequently the charging and discharging currents of the
coupling capacitor are very small and do not influence the
signal level at the input noticeably. Additionally the
coupling capacitor value may be small.
TDA2577 SYNCHRONIZATION CIRCUITWITH VERTICAL OSCILLATOR AND DRIVER STAGES
GENERAL DESCRIPTION
The TDA2577a separates the vertical and horizontal sync pulses from the composite TV video signal
and uses them to synchronize horizontal and vertical oscillators.
Features
0 Horizontal sync separator and noise inverter
0 Horizontal oscillator
0 Horizontal output stage
0 Horizontal phase detector (sync to
0 Time constant switch for phase detector (fast time constant during catching)
0 Slow time constant for noise only conditions
0 Time constant externally switchable (e.g. fast for VCR)
0 Inhibit of horizontal phase detector and video transmitter identification circuit during vertical
oscillator flyback
0 Second phase detector ((o2) for storage compensation of horizontal deflection stage
o Sandcastle pulse generator (3-levels)
0 Video transmitter identification circuit
0 Stabilizer and supply circuit for starting the horizontal oscillator and output stage directly from the
mains rectifier
0 Duty factor of horizontal output pulse is 50% when flybacl< pulse is absent
0 Vertical sync separator
0 Bandgap 6,5 V reference voltage for vertical oscillator and comparator
0 Synchronized vertical oscillator/sawtooth generator (synchronization inhibited when no video
transmitter is detected)
0 Internal circuit for 3% parabolic pre-correction of the oscillator/sawtooth generator. Comparator
supplied with pre-corrected sawtooth and external feedback input
0 Vertical comparator with internal 3% pre-correction circuit for vertical oscillator/sawtooth generator
0 Vertical driver stage
0 Vertical blanking pulse generator with external adjustment of pulse duration (50 Hz: 21 lines;
6OHz: 17 lines)
o Vertical guard circuit
APPLICATION INFORMATION
The TDA2577A generates the signal for driving the horizontal deflection output circuit. lt also contains
a synchronized vertical sawtooth generator for direct drive of the vertical deflection output stage.
The horizontal oscillator and output stage can start operating on a very low supply current (116 >4,5 mA)
which can be taken directly from the mains rectifier. Therefore, it is possible to derive the main supply
(pin 10) from the horizontal deflection output stage. The duty factor of the horizontal output sional
is about 65% during the starting-up procedure. After starting-up, the second phase detector (<§Z resistor gives a slicing level
at the middle of the sync pulse. The nominal top sync level at the input is 3,1 V. The amplitude
selective noise inverter is activated at
Good stability is obtained by means of the two control loops. In the first loop, the phase of the
horizontal sync signal is compared with a waveform of which the rising edge refers to the top of the
horizontal oscillator signal. ln the second loop, the phase of the flyback pulse is compared with another
reference waveform, the timing of which is such that the top of the flyback pulse is situated symmetrically
on the horizontal blanking interval of the video signal. Therefore the first loop can be designed for a good
noise immunity, whereas the second loop can be as fast as desired for compensation of switch-off delays
in the horizontal output stage.
The first phase detector is gated with a pulse derived from the horizontal oscillator signal. This gating
(slow time constant) is switched off during catching. Also, the output current of the phase detector is
increased fivefold, during the catching time and VCR conditions (fast time constant). The first phase
detector is inhibited during the retrace time of the vertical oscillator.
The in-sync, out-of-sync or no video condition is detected by the video transmitter identification/coin-
cidence detector circuit (pin 18). The voltage on pin 18 defines the time constant and gating of the first
phase detector.
The stability of displayed vi
improved by the first phase detector time constant being set to slow.
The average voltage level of the video input on pin 5 during noise only conditions should not exceed '
5,5 V othen/vise the time constant switch may be set to fast due to the average voltage level on pin
18 dropping below 0,1 V. When the voltage on pin 18 drops below 100 mV a counter is activated
which sets the time constant switch to fast, and not gated for 3 vertical periods. This condition occurs
when a new video signal is present at pin 5. When the horizontal oscillator is locked the voltage on pin 18
increases. Nominally a level of 5 V is reached within 15 ms (1 vertical period). The mute switching level
of 1,2 V is reached within 5 ms (C18 = 47 nF). lf the video transmitter identification circuit is required
to operate under VCR playback conditions the first phase detector can be set to fast by connecting a
resistor of 180 l4,5 mA). lt is possible thatthe main supply voltage at pin 10 is 0 V during starting, so
the main supply of the IC can be taken from the horizontal deflection output stage. The start of the
other IC functions depends on the value of the main supply voltage at pin 10. At 5,5 V all IC functions
start operating except the second phase detector (oscillator to flyback pulse). The output voltage of the
second phase detector at pin 14 is clamped by means of an internally loaded n-p-n emitter follower.
This ensures that the duty factor of the horizontal output signal (pin 11) remains at about 65%. The
second phase detector will close if the supply voltage at pin 10 reaches 8,8 V. At this value the supply
current for the horizontal oscillator and output stage is delivered by pin 10, which also causes the
voltage at pin 16 to change to a stabilized 8,7 V. This change switches off the n-p-n emitter follower
at pin 14 and activates the second phase detector. The supply voltage for the horizontal oscillator will,
however, still be referred to the stabilized voltage at pin 16, and the duty factor of the output signal
at pin 12 is at the value required by the delay at the horizontal deflection stage. Thus switch-off delays
in the horizontal output stage are compensated. When no horizontal flyback signal is detected the duty
factor of the horizontal output signal is 50%.
Horizontal picture shift is possible by externally charging or discharging the 47 nF capacitor connected
to pin 14.
The IC also contains a synchronized vertical oscillator/sawtooth generator. The oscillator signal is
connected to the internal comparator (the other side of which is connected to pin 2), via an inverter
and amplitude divider stage. The output of the comparator drives an emitter-follower output stage at
pin 1. For a linear sawtooth in the oscillator, the load resistor at pin 3 should be connected to a voltage
source of 26 V or higher. The sawtooth amplitude is not influenced by the main supply at pin 10. The
feedback signal is applied to pin 2 and compared to the sawtooth signal at pin 3. For an economical
feedback circuit with less picture bounce the sawtooth signal is internally precorrected by 3% (convex)
referred to pin 2. The linearity of the vertical deflection current depends upon the oscillator signal at
pin 3 and the feedback signal at pin 2.
Synchronization of the vertical oscillator is inhibited when the mute output is present at pin 13.
To minimize the influence of the horizontal part on the vertical part a 6,5 V bandgap reference source
is provided for supply and reference of the vertical oscillator and comparator.
The sandcastle pulse, generated at pin 17, has three different voltage levels. The highest level (11 V)
can be used for burst gating and black level clamping. The second level (4,6 V) is obtained from the
horizontal flyback pulse at pin 12 and used for horizontal blanking. The third level (2,5 V) is used for
vertical blanking and is derived by counting the horizontal frequency pulses. For 50 Hz the blanking
pulse duration is 21 lines and for 60 Hz it is 17 lines. The blanking pulse duration is set by the negative
voltage value of the horizontal flyback pulse at pin 12.
The lC also incorporates a vertical guard circuit, which monitors the vertical feedback signal at pin 2.
lf this level is below 3 V or higher than 5,8 V, the guard circuit will insert a continuous level of 2,5 V
into the sandcastle output signal. This will result in complete blanking of the screen if the sandcastle
pulse is used for blanking in the TV set.
PHILIPS 20CT2336 /10Z FATTORI CHASSIS CTX -E CIRCUIT ARRANGEMENT IN A PICTURE DISPLAY DEVICE UTILIZING A STABILIZED SUPPLY VOLTAGE CIRCUIT:
Line synchronized switch mode power supply:
A stabilized supply voltage circuit for a picture display device comprising a chopper wherein the switching signal has the line frequency and is duration-modulated. The coil of the chopper constitutes the primary winding of a transformer a secondary winding of which drives the line output transistor so that the switching transistor of the chopper also functions as a driver for the line output stage. The oscillator generating the switching signal may be the line oscillator. In a special embodiment the driver and line output transistor conduct simultaneously and in order to limit the base current of the line output transistor a coil shunted by a diode is incorporated in the drive line of the line output transistor. Other secondary windings of the transformer drive diodes which conduct simultaneously with the efficiency diode of the chopper so as to generate further stabilized supply voltages.

Such a circuit arrangement is known from German "Auslegeschrift" 1.293.304. wherein a circuit arrangement is described which has for its object to convert an input direct voltage which is generated between two terminals into a different direct voltage. The circuit employs a switch connected to the first terminal of the input voltage and periodically opens and closes so that the input voltage is converted into a pulsatory voltage. This pulsatory voltage is then applied to a coil. A diode is arranged between the junction of the switch and the coil and the second terminal of the input voltage whilst a load and a charge capacitor in parallel thereto are arranged between the other end of the coil and the second terminal of the input volt
In the circuit arrangement according to the mentioned German "Auslegeschrift" the frequency of the load variations or a harmonic thereof is chosen as the frequency for the switching voltage. Particularly when the load fed by the chopper is the line deflection circuit of a picture display device, wherein thus the impedance of the load varies in the rhythm of the line frequency, the frequency of the switching voltage is equal to or is a multiple of the line frequency.

The invention is also based on the recognition that the duration modulation which is necessary to stabilize the supply voltage with the switching transistor does not exert influence on the driving of the line output transistor. This resides in the fact that in case of a longer or shorter cut-off period of the line output transistor the current flowing through the line deflection coils thereof is not influenced because of the efficiency diode current and transistor current are taken over or, in case of a special kind of transistor, the collector-emitter current is taken over by the base collector current and conversely. However, in that case the above-mentioned ratios of 0.3 : 0.7 should be taken into account since otherwise this take-over principle is jeopardized.
As will be further explained the use of the switching transistor as a driver for the line output transistor in an embodiment to be especially described hereinafter has the further advantage that the line output transistor automatically becomes non-conductive when this switching transistor is short circuited so that the deflection and the EHT for the display tube drop out and thus avoid damage thereof.
In order that the invention may be readily carried into effect, a few embodiments thereof will now be described in detail by way of example with reference to the accompanying diagrammatic drawings in which:
FIG. 1 shows a principle circuit diagram wherein the chopper and the line deflection circuit are further shown but other circuits are not further shown.
FIGS. 2a, 2b and 2c show the variation as a function of time of two currents and of a voltage occurring in the circuit arrangement according to FIG. 1.
FIGS. 3a 3b, 3c and 3d show other embodiments of the chopper.
FIGS. 4a and 4b show modifications of part of the circuit arrangement of FIG. 1.

V o = V i . δ
Load 11 of the chopper consists in the consumption of parts of the picture display device which are fed by output voltage V 0 . In a practical embodiment of the circuit arrangement according to FIG. 1 wherein the mains alternating voltage has a nominal effective value of 220 V and the rectified voltage V i is approximately 270 V, output voltage V o for δ = 0.5 is approximately 135 V. This makes it also possible, for example, to feed a line deflection circuit as is shown in FIG. 1 wherein load 11 then represents different parts which are fed by the chopper. Since voltage V o is maintained constant due to pulse duration modulation, the supply voltage of this line deflection circuit remains constant with the favorable result that the line amplitude(= the width of the picture displayed on the screen of the picture display tube) likewise remains constant as well as the EHT required for the final anode of the picture display tube in the same circuit arrangement independent of the variations in the mains voltage and the load on the EHT generator (= variations in brightness).

In addition this facilitates smoothing of voltage V o since the repetition frequency of pulsatory voltage 3 is many times higher than that of the mains and a comparatively small value may be sufficient for charge capacitor 10. If charge capacitor 10 has a sufficiently high value for the line frequency, voltage V o is indeed a direct voltage so that a voltage having the same form as pulsatory voltage 3 is produced across the terminals of primary winding 8. Thus voltages which have the same shape as pulsatory voltage 3 but have a greater or smaller amplitude are produced across secondary windings 13, 14 of transformer 9 (FIG. 1 shows only 2 secondary windings but there may be more). The invention is based on the recognition that one end of each secondary winding is connected to earth while the other end thereof drives a diode, the winding sense of each winding and the direction of conductance of each diode being chosen to be such that these diodes conduct during the same period as does efficiency diode 7. After smoothing, stabilized supply voltages, for example, at terminal 15 are generated in this manner at the amplitudes and polarities required for the circuit arrangements present in the picture display device. In FIG. 1 the voltage generated at terminal 15 is, for example, positive relative to earth. It is to be noted that the load currents of the supply voltages obtained in this manner cause a reduction of the switching power which is economized by efficiency diode 7. The sum of all diode currents including that of diode 7 is in fact equal to the current which would flow through diode 7 if no secondary winding were wound on transformer 9 and if no simultaneous diode were used. This reduction may be considered an additional advantage of the circuit arrangement according to the invention, for a diode suitable for smaller powers may then be used. However, it will be evident that the overall secondary load must not exceed the primary load since otherwise there is the risk of efficiency diode 7 being blocked so that stabilization of the secondary supply voltages would be out of the question.
It is to be noted that a parabola volta
In FIG. 1 charge capacitors are arranged between terminals 15 etc. and earth so as to ensure that the voltages on these points are stabilized direct voltages. If in addition the mean value of the voltage on one of these terminals has been made equal to the effective value of the alternating voltage which is required for heating the filament of the picture display tube present in the picture display device, this voltage is suitable for this heating. This is a further advantage of the invention since the cheap generation of a stabilized filament voltage for the picture display tube has always been a difficult problem in transistorized arrangements.
A further advantage of the picture display device according to the invention is that transformer 9 can function as a separation transformer so that the different secondary windings can be separated from the mains and their lower ends can be connected to ground of the picture display device. The latter step makes it possible to connect a different apparatus such as, for example, a magnetic recording and/or playback apparatus to the picture display device without earth connection problems occurring.
In FIG. 1 the reference numeral 14 denotes a secondary winding of transformer 9 which in accordance with the previously mentioned recognition of the invention can drive line output transistor 16 of the line deflection circuit 17. Line deflection circuit 17 which is shown in a simplified form in FIG. 1 includes inter alia line deflection coils 18 and an EHT transformer 19 a secondary winding 20 of which serves for generating the EHT required for the acceleration anode of the picture display tube. Line deflection circuit 17 is fed by the output voltage V o of the chopper which voltage is stabilized due to the pulse duration modulation with all previously mentioned advantages. Line deflection circuit 17 corresponds, for example, to similar arrangements which have been described in U.S. Pat. No. 3,504,224 issued Mar. 31, 1970 to J.J. Reichgelt et al., U.S. patent application Ser. No. 737,009 filed June 14, 1968 by W. H. Hetterscheid and U.S. application Ser. No. 26,497 filed April 8, 1970 by W. Hetterscheid et al. It will be evident that differently formed lined deflection circuits are alternatively possible.
It will now be shown that secondary winding 14 can indeed drive a line deflection circuit so that switching transistor 2 can function as a driver for the line deflection. FIGS. 2a and b show the variation as a function of time of the current i C which flows in the collector of transistor 16 and of the drive voltage v 14 across the terminals of secondary winding 14. During the flyback period (0, t 1 ) transistor 16 must be fully cut off because a high voltage peak is then produced at its collector; voltage v 14 must then be absolutely negative. D
The time δ T may be initiated at any instant t 2 which is located between the end t 1 of the flyback period and the instant t 3 when collector current i C reverses its direction. It is true that emitter current flows through transistor 16 at the instant t 2 , but collector current i C is not influenced thereby, at least not when the supply voltage (= V o ) for line deflection circuit 17 is high enough. All this has been described in the U.S. Pat. No. 3,504,224. The same applies to line deflection circuits wherein the collector base diode does not function as an efficiency diode as is the case in the described circuit 17, but wherein an efficiency diode is arranged between collector and emitter of the line output transistor. In such a case the negative part of the current i C of FIG. 2a represents the current flowing through the said efficiency diode.
After the instant t 3 voltage v 14 must be positive. In other words, the minimum duration of the period T when voltage v 14 must be positive is (t 4 - t s ) - t 3 whilst the maximum duration thereof is (t 4 - t s ) - t 1 . In a television system employing 625 lines per raster the line period t 4 is approximately 64 μus and the flyback period is approximately 12 μus. Without losses in the circuit arrangement instant t 3 would be located approximately 26 μus after the instant t 1 , and with losses a reasonable value is 22 μus which is 34 μus after the commencement of the period. If for safety's sake it is assumed that t s lasts approximately 10 μus, the extreme values of δ T are approximately 20 and 42 μus and consequently the values for δ are approximately 0.31 and 0
0.85 × 270 V - 20 V = 210 V and the highest occurring V i is
1.1 × 270 V + 20 V = 320 V. For an output voltage V o of 135 V the ratio must thus vary between
δ = 135 : 210 = 0.64 and δ = 135 : 320 = 0.42.
A considerable problem presenting itself is that of the simultaneous or non-simultaneous drive of line output transistor 16 with switching transistor 2, it being understood that in case of simultaneous drive both transistors are simultaneously bottomed, that is during the period δ T. This depends on the winding sense of secondary winding 14 relative to that of primary winding 8. In FIG. 1 it has been assumed that the drive takes place simultaneously so that the voltage present across winding 14 has the shape shown in FIG. 2b. This voltage assumes the value n(V i - V o ) in the period δ T and the value -nVo in the period (1 - δ )T, wherein n is the ratio of the number of turns on windings 14 and 8 and wherein V o is maintained constant at nominal mains voltage V o = δ V inom . However, if as a result of an increase or a decrease of the mains voltage V i increases or decreases proportionally therewith, i.e., V i = V i nom + Δ V, the positive portion of V 14 becomes equal to n(V i nom - V o +Δ V) = n [(1 -δ)V i nom +ΔV] = n(0.5 V inom +ΔV) if δ = 0.5 for V i = V i nom. Relatively, this is a variation which is twice as great. For example, if V i nom = 270 V and V o = 135 V, a variation in the mains voltage of from -15 to +10 percent causes a variation of V i of from -40.5 V to +27 V which ranges from -30 to +20 percent of 135 V which is present across winding 8 during the period δ T. The result is that transistor 16 can always be bottomed over a large range of variation. If the signal of FIG. 2b would be applied through a resistor to the base of transistor 16, the base current thereof would have to undergo the same variation while the transistor would already be saturated in case of too low a voltage. In this case it is assumed that
This may be effected by providing a coil 22 having a large value inductance, approximately 100 μH, between winding 14 and the small coil 21. The variation of said base current i b is shown in FIG. 2c but not to the same scale as the collector current of FIG. 2a. During the conducting interval δ T current i b varies as a linear function of time having a final value of wherein L represents the inductance of coil 22. This not only provides the advantage that this final value is not immediately reached, but it can be shown that variation of this final value as a function of the mains voltage has been reduced, for there applies at nominal mains voltage that: If the mains voltage V i = V i nom +Δ V, then ##SPC1## because V i nom = 2 V o . Thus this variation is equal to that of the mains voltage and is not twice as great.

The control circuit of transistor 16 may alternatively be formed as is shown in FIG. 4. In fact, it is known that coil 21 may be replaced by the parallel arrangement of a diode 21' and a resistor 21" by which the inverse current can be limited. To separate the path of the inverse current from that of the forward current the parallel arrangement of a the diode 29' and a resistor 29" must then be present. This leads to the circuit arrangement shown in the upper part of FIG. 4. This circuit arrangement may now be simplified if it is noted that diodes 25 and 21' on the one hand and diodes 23 and 29' on the other hand are series-arranged. The result is shown in the lower part of FIG. 4 which, as compared with the circuit arrangement of FIG. 1, employs one coil less and an additional resistor.
FIG. 3 shows possible modifications of the chopper. FIG. 3a shown in a simplified form the circuit arrangement according to FIG. 1 wherein the pulsatory voltage present across the connections of windings 8 has a peak-to-peak amplitude of V i - V o = 0.5 V i for δ = 0.5, As has been stated, the provision of coil 22 gives a relative variation for the base current of transistor 16 which is equal to that of the mains voltage. In the cases according to FIG. 3b, 3c and 3d the peak-to-peak amplitude of the voltage across winding 8 is equal to V i so that the provision of coil 22 results in a relative variation which is equal to half that of the mains voltage which is still more favorable than in the first case.
Transistors of the npn type are used in FIG. 3. If transistors of the pnp type are used, the relevant efficiency diodes must of course be reversed.
In this connection it is to be noted that it is possible to obtain an output voltage V o with the aid of the modifications according to FIGS. 3b, c and d, which voltage is higher than input voltage V i . These modifications may be used in countries such as, for example, the United of America or France where the nominal mains voltage is 117 or 110 V without having to modify the rest of the circuit arrangement.
The above-mentioned remark regarding the sum of the diode currents only applies, however, for the modifications shown in FIGS. 3a and d.
If line output transistor 16 is not simultaneously driven with switching transistor 2, efficiency diodes 7 conducts simultaneously with transistor 16 i.e., during the period which is denoted by δ T in FIGS. 1 and 2b. During that period the output voltage V o of the chopper is stabilized so that the base current of transistor 16 is stabilized without further difficulty. However, a considerable drawback occurs. In FIG. 1 the reference numeral 26 denotes a safety circuit the purpose of which is to safeguard switching transistor 2 when the current supplied to load 11 and/or line deflection circuit 17 becomes to high, which happens because the chopper stops. After a given period output voltage V o is built up again, but gradually which means that the ratio δ is initially small in the order of 0.1. All this is described in U.S. patent No. 3,629,686. The same phenomenon occurs when the display device is switched on. Since δ = 0.1 corresponds to approximately 6 μs when T = 64 μs, efficiency diode 7 conducts in that case for 64 - 6 = 58 μus so that transistor 16 is already switched on at the end of the scan or at a slightly greater ratio δ during the flyback. This would cause an inadmissibly high dissipation. For this reason the simultaneous drive is therefore to be preferred.
The line deflection circuit itself is also safeguarded: in fact, if something goes wrong in the supply, the driver voltage of the line deflection circuit drops out because the switching voltage across the terminals of primary winding 8 is no longer present so that the deflection stops. This particularly happens when switching transistor 2 starts to constitute a short-circuit between emitter and collector with the result that the supply voltage V o for the line deflection circuit in the case of FIG. 1 becomes higher, namely equal to V i . However, the line output transformer is now cut off and is therefore also safe as well as the picture display tube and other parts of the display device which are fed by terminal 15 or the like. However, this only applies to the circuit arrangement according to FIG. 1 or 3a.

As is known the so-called pincushion distortion is produced in the picture display tubes having a substantially flat screen and large deflection angles which are currently used. This distortion is especially a problem in color television wherein a raster correction cannot be brought about by magnetic means. The correction of the so-called East-West pincushion distortion i.e., in the horizontal direction on the screen of the picture display tube can be established in an elegant manner with the aid of the circuit arrangement according to the invention. In fact, if the voltage generated by comparison circuit 12 and being applied to modulator 5 for duration-modulating pulsatory voltage 3 is modulated by a parabola voltage 28 of field frequency, pulsatory voltage 3 is also modulated thereby. If the power consumption of the line deflection circuit forms part of the load on the output voltage of the chopper, the signal applied to the line deflection coils is likewise modulated in the same manner. Conditions therefore are that the parabola voltage 28 of field frequency has a polarity such that the envelope of the sawtooth current of line frequency flowing through the line deflection coils has a maximum in the middle of the scan of the field period and that charge capacitor 10 has not too small an impedance for the field frequency. On the other hand the other supply voltages which are generated by the circuit arrangement according to the invention and which might be hampered by this component of field frequency must be smoothed satisfactorily.
A practical embodiment of the described example with the reference numerals given provides an output for the supply of approximately 85 percent at a total load of 90 W, the internal resistance for direct current loads being 1.5 ohms and for pulsatory currents being approximately 10 ohms. In case of a variation of ± 10 percent of the mains voltage, output voltage V o is stable within 0.4 V. Under the nominal circumstances the collector dissipation of switching transistor 2 is approximately 2.5 W.
Since the internal resistance of the supply is so small, it can be used advantageously, for example, at terminal 15 for supplying a class-B audio amplifier which forms part of the display device. Such an amplifier has the known advantages that its dissipation is directly proportional to the amplitude of the sound to be reproduced and that its output is higher than that of a class-A amplifier. On the other hand a class-A amplifier consumes a substantially constant power so that the internal resistance of the supply voltage source is of little importance. However, if this source is highly resistive, the supply voltage is modulated in the case of a class-B amplifier by the audio information when the sound intensity is great which may detrimentally influence other parts of the display device. This drawback is prevented by means of the supply according to the invention.
The 50 Hz ripple voltage which is superimposed on the rectified input voltage V i is compensated by comparison circuit 12 and modulator 5 since this ripple voltage may be considered to be a variation of input voltage V i . A further compensation is obtained by applying a portion of this ripple voltage with suitable polarity to comparison circuit 12. It is then sufficient to have a lower value for the smoothing capacitor which forms part of rectifier circuit 1 (see FIG. 3). The parabola voltage 28 of field frequency originating from the field time base is applied to the same circuit 12 so as to correct the East-West pincushion distortion.
No comments:
Post a Comment
The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.
Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!
The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.
Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.
Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.
Your choice.........Live or DIE.
That indeed is where your liberty lies.
Note: Only a member of this blog may post a comment.