Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical Obsolete technology relics that the Frank Sharp Private museum has accumulated over the years .
Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.

Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:
- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........
..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !
-----------------------
©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of Engineer Frank Sharp. NOTHING HERE IS FOR SALE !
All posts are presented here for informative, historical and educative purposes as applicable within Fair Use.


Wednesday, April 3, 2024

BLAUPUNKT MONTANA IP 32 STEREO VT COLOR (7 664 880) YEAR 1984

BLAUPUNKT MONTANA IP 32 STEREO VT COLOR Is a 27 inches (67cm) color television with several features as a first model on the market at the time and a German special model.

  • Tuner with 32 Programs and 99 channels PLL Synthesizer tuning system: such television tuning system employs a frequency synthesizer system for establishing the tuning of the receiver, featured with a Microcomputer driven synthesis system.


The system employed in the tv permits utilization of a frequency synthesizer tuning system which correctly tunes to a desired television station or channel even if the transmitted signals from that station are not precisely maintained at the proper frequencies even in combination of a fine tuning adjustable by the user.
Accordingly, it is an object of this invention to provide an improved tuning system for a television receiver.
It is an additional object of this invention to provide an improved frequency synthesizer tuning system for a television receiver.


This model series was introducing at the time the PLL synthesizer tuning system first time  HYBRAM Microcomputer controlled with direct channel calling feature even from remote control. The PLL frequency synthesized electronic
tuning system provides free and easy channel selection. and lets you tune directly to any chan-
nel using the channel number buttons (0~9 and key) on the remote control !!
A microcomputer control system is described for effecting channel tuning and function selection in a television receiver. The system will respond to commands entered by a set of controls at the television receiver or to remote control commands received at the television receiver. A channel number display is also provided whereby the channel number of a station currently tuned is displayed. A microprocessor within the system is programmed to validate control information received from an operator either by remotely generated commands or by controls located on the television receiver. Operator supplied information is processed and implemented by the microprocessor control system to effect control over the television receiver.
Microprocessor technology has recently provided circuit designers with a new basic design component. The microprocessor is capable of duplicating many functions heretofore realized with the use of large scale computer systems. The microprocessors have the advantage of being small, low power consumption devices capable of being programmed with instructions for executing mathematical algorithms on data supplied to the microprocessor. The microprocessor, when properly programmed, will execute a set of instructions providing output data during execution which may be used to control a process or apparatus.

  • PLL SYNTHESIZED TUNING System Concepts:

INTRODUCTION Digital tuning systems are fast replacing the conventional mechanical systems in AM FM and television receivers The desirability of the digital approach is mainly due to the following features * Precise tuning of station frequencies
* Exact digital frequency display
* Keyboard entry of desired frequency
* Virtually unlimited station memory
* Up down scanning through the band
* Station ‘‘search’’ (stop on next active station)
* Power on to the last station
* Easy option for time-of-day clock In addition
" recent "developments in large scale integrated circuit technology and new varactor diodes for the AM band have made the cost-benefit picture for digital tuning very attractive System partitioning is extremely important in optimizing this cost-benefit picture as will be discussed.

SYSTEM DESCRIPTION
A simplified block diagram of a typical digitally tuned receiver is shown in Figure 1 Notice this receiver could be one for AM FM marine radio or television it makes no difference The frequency synthesizer block generates the local oscillator frequency for the receiver just as a conventional mechanical tuner would However the phase-locked-loop (PLL) acts as an integral frequency multiplier of an accurate crystal controlled reference frequency while the mechanical type provides a continuously variable frequency output with no reference Some method of controlling the value of the multiplier for channel tuning must be provided The other RF IF and audio video circuitry will be the same as in the mechanical tuning method There are many different ways to partition the frequency synthesizer system to perform the digital tuning function................


The control of television receivers has heretofore required separate circuits for effecting channel selection, function selection and level setting, and remote control. With the microprocessor it has become possible to control these performance aspects with a single preprogrammed microprocessor and suitable input/output circuits. Data indicating the selection of a new channel to be tuned or a function to be controlled by an operator of the television receiver may be supplied to the input port of the microprocessor. This data may be supplied from a set of hand controls or a transducer for detecting remotely generated commands. Remote control systems presently incorporated in many television receivers provide operation of a television receiver by transmitting information bearing ultrasonic sound waves or infrared light waves to the television receiver. These waves when received at the television receiver are decoded into an electrical signal for effecting the change in channel tuning or function level. The microprocessor has the capability of validating this electrical signal and performing all decoding pursuant to preprogrammed instructions. These instructions, when executed by the microprocessor, 
generate a digital signal for effecting the desired channel change or function level change.

  • It was featuring fist time The TDA3300 Motorola's third generation colour processing,Motorola's third generation PAL decoder system (Chroma III) employs a single 40 -pin i.c., type TDA3300. Amongst the features of this i.c. are low dissipation, typically 600mW, with a single 12V supply; a patented 90° phase - shift system requiring no adjustment; and direct inputs for on -screen (data, TV games, etc.) displays, with a complementary fast blanking input. Of particular interest is the beam limiting and automatic black -level adjustment system, the latter making it unnecessary to incorporate preset controls to set up the black level. These arrangements rely on three high -voltage transistors to monitor the beam currents, providing feedback signals for the i.c.  If the reference voltage is exceeded, the beam current limiting action comes into operation, reducing the contrast. The system has been designed to enhance the set's video and digital signal handling capability. During the flyback time the feedback input impedance rises, activating a further internal comparator. This compares the tube's cut-off current (a hot cathode doesn't cut off completely) with another internal reference voltage. The resultant signal is integrated and added to the output (at the output clamp) to provide the automatic black -level correction. Readers may recall that a similar idea, using discrete circuitry, is employed in certain B and 0 colour chassis. The advantage is that the black level is held constant throughout the tube's life, with no grey scale drift.
The device will accept a PAL or NTSC composite video
signal and output the. three colour signals—needing only a simple
driver amplifier to interface with the picture tube ,furthermore it features first time an apparatus and method for the automatic setup of a CRT operating point, or dc signal level (black), as well as the contrast, or gain level (gray), of a video display by sampling the CRT signal level of the individual cathodes and locking the dc signal level to a common dc setup reference and gain level to a value determined by a common contrast control signal and gain reference. An apparatus and method in which a common brightness control signal is modulated by a common contrast control signal such that a brightness control pedestal is added to each video signal path of a video display whereby picture black level does not change with contrast. the system is provided for achieving and maintaining gray scale tracking in a multibeam, cathode ray display device, despite fluctuations in the electrical characteristics of the display device and of video amplifiers driving the device. Tracking is accomplished by measuring the actual beam currents produced during the applications of test signals to the amplifiers and automatically adjusting the biases and gains of the amplifiers in response to differences between the measured beam currents and predefined beam currents which should be produced. The invention can also be used to automatically stabilize the beam current in a single beam cathode ray display device.
  • Dual standard PAL/SECAM receiver circuitry:

In a dual-standard PAL/SECAM color TV receiver, an identification system provides a mode-switching output, permitting automatic switching of the receiver between a PAL-reception mode of operation and a SECAM-reception operating mode, in dependence upon the PAL or SECAM nature of the transmission received. In the SECAM-reception mode, a PAL decoder receives the chrominance component output of a SECAM-PAL transcoder; in the PAL-reception mode, the PAL decoder receives chrominance signals which bypass the transcoder. Luminance signal channel of the dual-standard receiver includes a switchable luminance signal delay line in cascade with a chrominance component trap circuit.

In the Secam system, the colour information of a televised image is transmitted in the form of a frequency-modulated sub-carrier wave transmitted in superposition with the luminance signal Y which represents the black-and-white image. These two mixed signals give a signal which is known as the composite videofrequency signal.

In the television receiver, this videofrequency signal is obtained by the detection of the amplitude modulation of the intermediate-frequency signal of which the image carrier wave oscillates at 32.7 MHz. This intermediate-frequency signal is itself obtained after conversion of the high-frequency signal picked up by the antenna.

The Secam system is a sequential system, i.e. a signal (R-Y) representative of red is transmitted for the duration of one line (64 μs), after which a signal (B-Y) representative of blue is transmitted for the duration of the other line. The quiescent frequencies FoR and FoB of the sub-carriers are different for red and for blue: FoR =4.406 MHz for red and FoB =4.250 MHz for blue.

In order to identify the presence of a red line or blue line at the receiving end, a signal at the frequency FoR for a red line or a signal at the frequency FoB for a blue line is transmitted at the beginning of each line for 4.8 μs by the television transmitting station.

At the receiving end, it is best for the signal representing red and the signal representing blue to be simultaneously present. To this end, the information of one line is memorised for restoration at the following line, whence the use of a delay line which introduces a delay equivalent to one 64 μs line.

Since the first treatment which the composite videofrequency signal undergoes is to extract from it the colour identification frequencies and then to direct them to two demodulation channels, one of which is delayed by the duration of one line so that two signals FoR and FoB are available at the same time, the second operation consists precisely in identifying these signals, i.e. in measuring their frequencies so that they may be suitably directed to the "red" channel and to the "blue" channel, respectively.

However, these various operations are controlled and "authorised" by a so-called "keeper" circuit which performs a control function if the composite video signal contains a sub-carrier signal corresponding to the Secam system. In the absence of this sub-carrier, i.e. if the transmission is in black-and-white or if it emanates from a station transmitting by a system other than the Secam system, the keeper circuit inhibits certain stages of the decoding circuit and the image received on the television receiver is formed solely by its luminance components Y, i.e. in black-and-white.

In short, therefore, the decoding of the chrominance signals R-Y and B-Y from the composite video signal in the Secam system comprises three operations:

demodulation of the colour sub-carrier which is delayed by 64 μs on one channel so that a signal R-Y- and a signal B-Y- are simultaneously available;

identification of the quiescent frequencies transmitted at the beginning of a line, these frequencies being representative of the colours,

and, at the same time, authorisation to treat these signals if the transmission corresponds to the Secam system.

Broadcast services started in France in 1967. The Soviet Union followed soon after. Before long, many other countries were adopting this broadcast standard.
Some, however, switched to PAL, in the ensuing years.
SECAM broadcast ended in France on Nov. 29, 2011, after the switch to digital broadcasting, ending the analog color TV format’s 44-year run.

Advantages
As explained earlier, SECAM was driven by the need to improve on NTSC. It delivered on its promise of TV broadcast with superior color reproduction.
SECAM addresses the color-related problems found in NTSC and PAL. NTSC is susceptible to hue issues. PAL fell prey to color saturation issues.
SECAM did an excellent job when it came to hue and saturation.


Disadvantages
The SECAM system was comparatively more expensive and difficult to maintain compared to NTSC and PAL.
Editing on SECAM was virtually impossible. In France, where SECAM originated, PAL recorders were used first before recorded programs are transcoded to SECAM before broadcast took place.

  • Stereo HIFI and bilingual sound system with 4 speaker sound system;

More particularly, the invention relates to a receiver being capable of receiving a stereo sound signal which comprises a first channel and a second channel, the first channel including a m(L+R)-information and the second channel including a 2mR-information, wherein R is the "right" information and L the "left" information and many real number.

Multiplexing of a second sound channel with that one usually existing in broadcasting or the multiplex transmission of TV sounds is not only useful for bilingual transmission, but also for the transmission of a stereophonic sound. Consequently, various multiplexing systems have been proposed. Some of these systems transmit a (L+R)-channel as well as a (L-R) channel, as it is common practice in audio stereophony (see: Yasutaka Numaguchi: Television Sound Multiplexing System, Journal of the asia electronics union, Vol. 3, 1970, No. 2, p. 12-21). In another stereophonic television sound transmission system different combinations of the left and right signals have been described (see: Halstead and Burden: A compatible FM Multiplex System for Stereophonic Television Service, Journal of the Audio Engineering Society, January 1962, Vol. 10, Nr. 9, p. 16-21; U.S. Pat. No. 4,048,654, col. 17, lines 5-60; U.S. Pat. No. 4,139,866, col. 17, lines 15-35). Also, in AM stereophonic broadcasting, further different combinations of the left and the right information were disclosed (see: Torick: AM stereophonic Broadcasting--An Historical Review, Journal of the Audio Engineering Society, Vol. 23, 1975, p. 803, left column).

An inherent disadvantage of all these systems lies in the fact that the correlated noise, preferably occuring with the intercarrier demodulation in a FM television signal, is distributed asymmetrically on the two channels.

To overcome this disadvantage, a method for transmitting stereophonic signals on two equivalent channels has been proposed, particularly for a two-carrier system in the television sound, whereby on the first channel a L+R-signal and on the second channel a 2R-signal is transmitted (see: Rundfunktechnische Mitteilungen, Vol. 23, No. 1, February 1979, p. 10-13; German Auslegeschrift No. 2827159). A receiver for receiving this stereophonic signal comprises a decoder having two inputs, the one of these inputs being supplied with the L+R-signal and the other being supplied with the 2R-signal. The 2R-signal is amplified by the factor 0,5 and then subtracted from L+S. Thus, the signals L and R, respectively, are obtained, each of these signals including the same amount of correlated noise.

In another device for receiving stereophonic signals on two equivalent channels, the one channel carries a 1/2 (L+R)-information, whereas the other channel carries a R-information (German Offenlegungsschrift No. 29 02 933 corresponding to European Patent Application No. 80 10 021.9). The signal 1/2 (L+R) is first amplified by the factor 2 and then supplied to a subtractor which subtracts the signal R from the signal L+R, so that the signal L results. Also, a switch is provided which either connects the R-input with the subtractor for stereophonic reproduction or the 1/2 (L+R)-input with said subtractor for reproduction of a second language in a bilingual program.

A disadvantage of these prior art decoders is the necessity of an amplification of the received signals, either by a degree of amplification of 0,5 or by a degree of amplification of 2. Still, if the amplification rate is 0,5, an amplifier must be inserted into the right channel, whereas the subtractor is interposed in the left channel. Also, the prior art decoders are not capable of distinguishing automatically between a stereo signal and a bilingual signal.

The invention also relates to a receiver being capable of receiving stereophonic as well as bilingual informations.

Also In many cases, it is desirable to produce a television broadcast in different languages. This is particularly important in a country in which, for example, two languages are spoken. For example, in a country in which English and Spanish are spoken, it may be desirable to reproduce a television broadcast of a football game in either the English language or the Spanish language.

In accordance with one proposal, a television receiver is provided for reproducing monaural sound in either of the two languages in a two language broadcast. It is also known, for example, in Germany to produce a stereo broadcast. However, the stereo broadcast is in a single language, for example, the German  language. It sometimes becomes desirable, however, to reproduce stereo sound in either of two languages in a two language broadcast. 

  •    AV 5 pins DIN socket is present back side toghether with AV  connector to connect it with HiFi  systems and allowing the connection with Tape Sound recorder or further Amplifiers.


  •  AV 6 pins DIN socket is present back side toghether with AV  connector to connect it with VCR  systems and allowing the control of both television and VCR with one remote.
  •  
  • This is the DIN connector, a member of a family of circular connectors that were initially standardized by Deutsches Institut fur Normung (DIN  (45323 (6-pin)) for analog audio signals. Some of these connectors have also been used in analog video applications and digital interfaces. All male connectors (plugs) of this family of connectors feature a 13.2 mm diameter metal shield with a notch that limits the orientation in which plug and socket can mate. Electrical connectors of the DIN type are known and they include a dielectric housing in which three to eight electrical terminals are molded. The terminals are soldered to electrical conductors of a shielded cable. Metal clamshell members are mounted onto the housing with one of the clamshell members having a U-shaped ferrule that is crimped onto the metal shield of the cable to terminate the shield and provide strain relief. An insulating strain relief member is disposed or molded onto the clamshell members and engages the cable adjacent the U-shaped ferrule thereby holding the clamshell members in position on the housing and providing a strain relief.


  • Headphone jack is present up side under controls lid  and it excludes automatically the internal speaker.
  • External speakers connectors.
  • External DIN Sound connector + AV systems.

 

  • Featured first time the TDA4600 power supply design. Switching regulators serve as efficient and compact power supplies for instruments such as television receivers. A switching regulator may typically comprise a power transformer having a primary winding coupled to an input voltage source and to a power switch and a secondary winding coupled to a rectifier arrangement for developing a DC supply voltage for the instrument. A regulator control circuit generates pulse width modulated control signals that control the duty cycle of the power switch. A power switch is coupled to an inductance and a source of input voltage. A control circuit is coupled to the power switch for producing the switching thereof to transfer energy from the input voltage source to a load circuit coupled to the inductance. The control circuit is responsive to control voltages for varying the duty cycle of the power switch to control the transfer of energy to the load. A first control voltage representative of a variation in an energy level of the load circuit is developed to control the duty cycle in a manner that regulates the energy level. 

 

  • First Time BLAUPUNKT TV with teletext receiver/decoder:

The teletext broadcast has already been carried out in U.K. Also, in Japan, a teletext system using the pattern transmission system was accepted by the Radio-acoustics Inquiry Commission in March, 1981. As is generally known, in a teletext transmission system, a number of pages is transmitted from a transmitter to the receiver in a predetermined cyclic sequence. Such a page comprises a plurality of lines and each line comprises a plurality of alphanumerical characters. A character code is assigned to each of these characters and all character codes are transmitted in those (or a number of those) television lines which are not used for the transmission of video signals. These television lines are usually referred to as data lines.
Nowadays the teletext transmission system is based on the standard known as "World System Teletext", abbreviates WST. According to this standard each page has 24 lines and each line comprises 40 characters. Furthermore each data line comprises, inter alia, a line number (in a binary form) and the 40 character codes of the 40 characters of that line.
A receiver which is suitable for use in such a teletext transmission system includes a teletext decoder enabling a user to select a predetermined page for display on a screen. As is indicated in, for example, Reference 1, a teletext decoder comprises, inter alia, a video input circuit (VIP) which receives the received television signal and converts it into a serial data flow. This flow is subsequently applied to an acquisition circuit which selects those data which are required for building up the page desired by the user. The 40 character codes of each teletext line are stored in a page memory which at a given moment thus comprises all character codes of the desired page. These character codes are subsequently applied one after the other and line by line to a character generator which supplies such output signals that the said characters become visible when signals are applied to a display.

  • FIRST BLAUPUNKT featuring a  ITT CRT TUBE with provide a deflection unit of the type mentioned hereinafter, which permits the formation of a desired field pattern and which, at the same time, enables an exact fixing of the coil windings also in the case of a large number of turns, without having to modify the contours of the core:In cathode-ray tubes which require a precise specific electromagnetic deflection field configuration as for example, in self-converging color television picture tubes, an accurate distribution of the coil windings has to be maintained on the inside of the deflection unit. In practice, this requirement has been met with the aid of toroidal coil windings, but with respect to the more sensitive saddle-type coils this problem has not yet been solved satisfactorily, especially when large numbers of winding turns are to be accommodated. With respect to saddle-type coils the invention proposes to solve this problem by placing the windings into grooves.


The set is build with a SEMI Modular chassis design because as modern television receivers become more complex the problem of repairing the receiver becomes more difficult. As the number of components used in the television receiver increases the susceptibility to breakdown increases and it becomes more difficult to replace defective components as they are more closely spaced. The problem has become even more complicated with the increasing number of color television receivers in use. A color television receiver has a larger number of circuits of a higher degree of complexity than the black and white receiver and further a more highly trained serviceman is required to properly service the color television receiver.
Fortunately for the service problem to date, most failures occur in the vacuum tubes used in the television receivers. A faulty or inoperative vacuum tube is relatively easy to find and replace. However, where the television receiver malfunction is caused by the failure of other components, such as resistors, capacitors or inductors, it is harder to isolate the defective component and a higher degree of skill on the part of the serviceman is required.
Even with the great majority of the color television receiver malfunctions being of the "easy to find and repair" type proper servicing of color sets has been difficult to obtain due to the shortage of trained serviceman.
At the present time advances in the state of the semiconductor art have led to the increasing use of transistors in color television receivers. The receiver described in this application has only two tubes, the picture tube and the high voltage rectifier tube, all the other active components in the receiver being semiconductors.
One important characteristic of a semiconductor device is its extreme reliability in comparison with the vacuum tube. The number of transistor and integrated circuit failures in the television receiver will be very low in comparison with the failures of other components, the reverse of what is true in present day color television receivers. Thus most failures in future television receivers will be of the hard to service type and will require more highly qualified servicemen.
The primary symptoms of a television receiver malfunction are shown on the picture tube of the television receiver while the components causing the malfunction are located within the cabinet. Also many adjustments to the receiver require the serviceman to observe the screen. Thus the serviceman must use unsatisfactory mirror arrangements to remove the electronic chassis from the cabinet, usually a very difficult task. Further many components are "buried" in a maze of circuitry and other components so that they are difficult to remove and replace without damage to other components in the receiver.
Repairing a modern color television receiver often requires that the receiver be removed from the home and carried to a repair shop where it may remain for many weeks. This is an expensive undertaking since most receivers are bulky and heavy enough to require at least two persons to carry them. Further, two trips must be made to the home, one to pick up the receiver and one to deliver it. For these reasons, the cost of maintaining the color television receiver in operating condition often exceeds the initial cost of the receiver and is an important factor in determining whether a receiver will be purchased.
Therefore, the object of this invention is to provide a transistorized color television receiver in which the main electronic chassis is easily accessible for maintenance and adjustment. Another object of this invention is to provide a transistorized color television receiver in which the electronic circuits are divided into a plurality of modules with the modules easily removable for service and maintenance. The main electronic chassis is slidably mounted within the cabinet so that it may be withdrawn, in the same manner as a drawer, to expose the electronic circuitry therein for maintenance and adjustment from the rear closure panel after easy removal. Another aspect is the capability to be serviced at eventually the home of the owner.
(To see the Internal Chassis Just click on Older Post Button on bottom page, that's simple !)

 


Blaupunkt GmbH is (WAS) a German manufacturer of electronics equipment, noted for its home and car audio equipment. It was a 100% subsidiary of Robert Bosch GmbH until March 1st, 2009 (Date of closing) when its Aftermarket and Accessories branch including the brand name were sold to Aurelius AG of Germany for an undisclosed amount. Founded in 1923 in Berlin as "Ideal", the company changed its name to "Blaupunkt" in 1938, German for "blue point" or "blue dot" after the blue dot painted onto its headphones that had passed quality control. After the Second World War, Blaupunkt moved its headquarters and production to the city of Hildesheim.

Today the majority of Blaupunkt products are manufactured overseas, with large manufacturing centers in Tunisia (speakers) [WTF !!! !!!] and Malaysia (speakers and electronics) [arrrrgggghhh!].
During the 1960 and 1970s, Blaupunkt had become the leading German manufacturer for car radios and car audio equipment. Blaupunkt was involved in the development of the Autofahrer-Rundfunk-Informationssystem traffic-information system for car radios, and provided this feature on their German-market car radios from the late 1970s. The company attempted to have ARI used in the USA but had only a few radio stations per major city involved.Founded in 1923 in Berlin as "Ideal", the company changed its name to "Blaupunkt" in 1938, German for "blue point" or "blue dot" after the blue dot painted onto its headphones that had passed quality control.

During World War II the company used slave labour at Groß-Rosen concentration camp.

After the Second World War, Blaupunkt moved its headquarters and production to the city of Hildesheim. Today the majority of Blaupunkt products are manufactured overseas, with large manufacturing centres in Tunisia (speakers) and Malaysia (speakers and electronics).

During the 1960 and 1970s, Blaupunkt had become the leading German manufacturer for car radios and car audio equipment.


Blaupunkt w
as involved in the development of the Autofahrer-Rundfunk-Informationssystem traffic-information system for car radios, and provided this feature on their German-market car radios from the late 1970s. The company attempted to have ARI used in the USA but had only a few radio stations per major city involved.

For many years, Blaupunkt car audio equipment models often carried the name of a city somewhere in the world, e.g. "London RDM126". In Blaupunkt model nomenclature, this can be translated as "An RDS CD player capable of controlling a Multichanger, rated at 4x30W RMS (4x30 = 120) from model year 1996". High-end models typically had German place names.

Blaupunkt also used the brand "Velocity" to sell products aimed at the top, audiophile end of the market. Audi, Volkswagen, Porsche, Mercedes, Vauxhall, Pontiac and BMW all fit Blaupunkt products into their cars, often branded with the car manufacturer's own mark (e.g. The VW Gamma or Audi Symphony lines), with Fiat using them, occasionally unbranded but generally unmodified. Some later Holden Astra models are fitted with Blaupunkt systems (with others being produced by Delphi). Blaupunkt also specialised in coach installations, selling TVs, multiple-speaker setups and PA equipment to that industry. However, that part of the business remained with Robert Bosch Car Multimedia GmbH, a 100% subsidiary of Robert Bosch GmbH.

Blaupunkt was part of the mobile communications division of the Robert Bosch group, a world leading manufacturer of industrial and automotive systems.

Blaupunkt's research, design and development headquarters are based in Hildesheim, Germany, where approx 3,000 staff are based.

Manufacture takes place either in Germany, or other plants in Portugal or Malaya where another 5,100 staff are employed
blaupunkt production

Current production is in excess of 4 million car radios every year.

Blaupunkt started life in 1920's Germany as the "Ideal" radio company of Berlin. Initially it produced only headphones. Quality control was paramount even in those days and each set of headphones that passed its final test was indicated by a blue circular sticker.

Before long customers simply began to ask for "Blue Dot" headphones - the symbol became the companies' trade mark, and in 1938 the company name.

This is where we get the name "Blaupunkt" - "Blue Spot" in German.
blaupunkt production

Bosch acquired the company over 6
0 years ago, and following the Second World War, the company made the move to Hildesheim It was at this time, 1932, that Blaupunkt introduced the world's first car radio: the AS5. This long, medium and short wave monster was about the size of a modern day microwave oven. Because of its bulk it could not be mounted within reach of the driver and had to be operated by a remote control on the steering wheel. Because car radio aerials were not yet developed, wires had to be run over the roof and along the running boards to get a signal. The cost in those days was 465 Reich marks; about one third the price of a small car.

In 1959, the one millionth car radio rolled off the production line. Each valve-based radio consisted of 1,693 separate parts. In 1969 Blaupunkt took advantage of the emerging FM radio system to introduce the world's first stereo car radio. A few years later the Phillips Compact Cassette was incorporated into sets.

In the late 1970's it was realised that the car radio could contribute toward road safety, and Blaupunkt developed the ARI traffic news detector which has evolved into the current Radio Data System (RDS) of traffic and related information.

The 1980's saw the first microprocessor digitally tuned radio cassette and in 1983 the first car radio equipped with EON station identification was released.

The first CD player incorporated into a dashboard mounted radio was introduced in 1988..
blaupunkt production

With increasingly attractive car radio systems, theft became a major problem. In 1990 the KeyCard smart card owner authorisation system was a big step forward in crime deterrence. This feature was the first recorded use of smart card technology in the automotive field.

In 2002, the Woodstock DAB52 receiver was launched. This is the world's first combined MP3 / CD / DAB receiver housed within a standard DIN sized enclosure. This ground-breaking unit was enhanced in 2003 with the DAB53 and in 2004 the DAB54 models that added the option of recording DAB broadcasts directly onto a MMC / SD memory card.



Die Blaupunkt GmbH ist eines der großen deutschen Unternehmen mit Weltgeltung. Gegründet in den 20er Jahren, ist Blaupunkt heute eine hundertprozentiges Tochterunternehmen der Bosch-Gruppe. Die Unternehmenszentrale liegt im niedersächsischen Hildesheim.

Blaupunkt stellte früher Kopfhörer, Radio-, Fernseh- und HiFi-Geräte her. Heute ist das Unternehmen europäischer Marktführer bei Autoradios und Car
-Multimedia-Systemen; darüber hinaus gehört es zu den großen Anbietern von Navigationssystemen für den automobilen Einsatz.

Geschichte

Keimzelle der Unternehmensgeschichte ist die Berliner „Radiotelefon- und Apparatefabrik“ Ideal. Diese 1923 gegründete Firma stellt zunächst Kopfhörer her, die mit einem „blauen Punkt“ als Prüfsiegel gekennzeichnet wurden. Bald fragen die Käufer nur noch nach den "Blaupunkt-Kopfhörern" – es war der erste Schritt auf dem Weg vom Qualitätssymbol zum Markenzeichen (1924)
und zum heutigen Firmennamen "Blaupunkt" (1938).
Bereits 1932 stellt das Unternehmen mit dem „Autosuper AS 5“ das erste in Europa entwickelte Autoradio vor. Dieser Apparat für den Mittel- und Langwellenempfang ist mit 10 Litern Rauminhalt üppig dimensioniert und mit einem Kaufpreis von 465 Reichsmark ein Luxusartikel (ein kompletter Kleinwagen kostet damals weniger als 1.500 Reichsmark).
Durch wegweisende Innovationen trägt Blaupunkt entscheidend zur Popularisierung des Autoradios bei: 1952 baut man das erste UKW-Autoradio der Welt, 1969 folgt das erste Stereo-Autoradio, 1974 der erste Verkehrsfunk-Empfänger. Viele digitale Pionierentwicklungen rund um den Empfang und Klang auf Rädern stammen ebenfalls aus Hildesheim. Automobilgerechte Multimedia-Techniken in jeder Form stehen weiterhin im Mittelpunkt der Forschung und Entwicklung.
Mit dem 1989 vorgestellten „TravelPilot“ leistet Blaupunkt auch wesentliche Schrittmacherdienste für eine weitere Technologie, die das Autofahren komfortabler und sicherer macht: Der TravelPilot gilt als das erste serienreife Navigationssystem für den Straßenverkehr in Europa. Eines seiner Nachfolgemodelle ist das erste serienreife Gerät mit dynamischer Zielführung, die automatisch aktuellste Verkehrsinformationen verarbeitet und so Staus umfahren hilft. Neben fest eingebauten gehören längst auch mobile Navigationssysteme zum Blaupunkt-Programm.

Aktuelle Zahlen

Heute (12/2006) hat Blaupunkt weltweit über 9.000 Mitarbeiter, 2.300 davon in Hildesheim. Weitere Fertigungs- und Entwicklungsstätten befinden sich in Ungarn, Portugal, Malaysia, China und Tunesien. Das Unternehmen produziert jährlich über 500.000 Navigationssysteme, 6 Mio. Autoradios sowie 19 Mio. Autolautsprecher. Der Umsatz liegt bei ca. 1,4 Mrd. Euro.



Some References:


"'Aurelius AG Acquires Blaupunkt". Aurelius AG Press Release. 18 December 2008. Archived from the original on 28 February 2009.


Germany, Hannoversche Allgemeine Zeitung, Hannover, Niedersachsen,. "Autoelektronik-Spezialist – Blaupunkt stellt Insolvenzantrag". Hannoversche Allgemeine Zeitung (in German). Retrieved 2017-12-21.

"Blaupunkt Hildesheim entlässt auch die letzten Mitarbeiter". DEUTSCHE WIRTSCHAFTS NACHRICHTEN (in German). Retrieved 2017-12-21.

"Several possible buyers for Blaupunkt". RetailDetail. 2015-11-20. Retrieved 2017-12-21.

"Blaupunkt winding up Penang operations". NST Online. 2015-10-22. Retrieved 2017-12-21.

Sethi, Anand Kumar (2013). The Business of Electronics: A Concise History. New York: Palgrave Macmillan. p. 33. ISBN 9781137330420.

"Robert Bosch GmbH". Answers.com. Retrieved 31 May 2013.

White, Annie (March 2019). "AV Club: Odyssey of Sound". Car and Driver.

"Blaupunkt Hildesheim entlässt auch die letzten Mitarbeiter". DEUTSCHE WIRTSCHAFTS NACHRICHTEN (in German). Retrieved 2017-12-21.

"Rockford Announces Details on Blaupunkt Deal | ceoutlook.com". ceoutlook.com. 2012-07-11. Retrieved 2017-12-21.

"Archived copy". Archived from the original on 9 August 2012. Retrieved 14 July 2012.
Blaupunkt company profile
Bosch BLAUPUNKT HISTORY
TV 1950
Radio 1963
Radio 1938

 


 

AND STOP NOW SPRAYING CHEMICALS IN OUR SKY !
********************* ********************* ********************* ********************* *********************  
 
 
 
MAKE MANY PHOTO OF CHEMTRAILS AND SHARE THEM WORLDWIDE MILLIONS TIMES !!!
 
 FOR ALL OF US AND  THE GLOBAL BENEFIT !