The SONY KV-14M1A is A Portable television monitor type SONY TRINTRON with 14 Inches color screen .
It has full OSD and teletext and many others features.On screen display (OSD) arrangements employed in video processing systems include a switching (or "multiplexing") network for switching between graphic image representative signals and normal video signals so that a graphic image can be displayed on the screen of a picture reproduction device either in place of the image represented by the video signals or together with (inserted in) the image. The graphic image can take the form of alphanumeric symbols or-pictorial graphics, and can be used to indicate status information, such as channel numbers or time, or operating instructions.
In an OSD arrangement for use in an analog video signal processing system, the multiplexing network typically operates to switch in levels corresponding to the desired intensity of respective portions of the graphic image at the time the graphic image portions are to be displayed. In such an arrangement the graphic image representative signals take the form of timing pulses which occur when the graphic image portions are to be displayed and are used to control the multiplexing network. Such an analog OSD arrangement can also be used in a digital video processing system, but requires that the video signals be first converted to analog form. While digital video signal processing systems typically include a digital-to-analog converter section in which the digital video signals are converted to analog form, it may be more cost effective for the OSD arrangement to be incorporated as an integral part of the digital video processing section.
Teletext is a television-based communication technique in which a given horizontal video line is utilized for broadcasting textual and graphical information encoded in a digital binary representation. Such horizontal video line signal that contains teletext data is referred to herein as a Data-line. It is assumed herein, for explanation purposes, that teletext is sent by the broadcaster only during the vertical blanking interval (VBI), when no other picture information is sent. The organization of the binary information in the broadcast signal is determined by the standard employed by the broadcaster. By way of an example only, references are made herein to a teletext based on a standard referred to by the British Broadcasting Corporation (BBC) as CEEFAX.
SONY KV-14M1A Television receiver including a teletext decoder :
PREMISE:
In
any normal television system, the transmission of the wide band video
signals which are to produce the actual picture elements on the screen
of the receiver is interrupted between the scannning periods for line
and field synchronization purposes. Consequently, there are periods
during which no video signals are being transmitted. It is now possible
to use these periods for the transmission of data which is not
necessarily concerned with the video transmission itself.
Basically,
data representable by standard symbols such as alpha-numeric symbols
can be transmitted via a restricted channel provided that the rate of
transmission is restricted. It is now possible to use periods as
aforesaid especially the line times of the field blanking intervals
(i.e. the times of the individual lines occurring between fields which
correspond with the times occupied by video signals on active picture
lines), for the transmission of pages of data. Typically, using 8-bit
digital signals representing alpha-numeric characters (7 bits of data
plus 1 bit for protection) at a bit rate of 2.5M bit per second, 50
pages of data each consisting of 22 strips of 40 characters can be
transmitted repeatedly in a total cycle time of 90 seconds using only a
single line of the field blanking period per field of the 625 lines
system as operated in the United Kingdom.
Data transmission as
described above is already commercially available in the United Kingdom
under the name "Teletext", and transmitters and receivers are described
in more detail in our U.K. Pat. Nos. 1,486,771; 1,486,772; 1,486,773 and
1,486,774.
Existing teletext displays consist of 40 characters
per row and 24 rows per page. The U.K. teletext transmission standard
specifies a data rate of 6.9375 Mbits per second (which has proven to be
at the upper reasonable limit of transmission rate for system I, B/G
system) so as just to achieve transmission of a complete row of text on
one video line of the field blanking time.
The advantage of
conveying one row of text on one video line is to achieve maximum
economy in requirements for transmission of addressing information
needed to correctly position the text information on the displayed page.
Since whole rows of text are transmitted on each line, only a row
number need be transmitted with each data line of text. Row zero which
acts as the page demarcation signal requires additional page numbering
information and also incorporates various display and interpretation
codes appropriate to the particular page. In order to facilitate
parallel magazine working every row of text also incorporates a 3-bit
magazine number, being the most significant digit of the page number.
The
above structure incorporating as it does one text row on every data
line thus results in a very efficient utilization of the transmission
facility. However, the existing Teletext transmissions do have
limitations in so far as they are less satisfactory when in a "graphics"
mode as compared with an "alpha-numeric" mode.
In a
teletext decoder circuit the character generator supplies picture
elements at a rate of nominally approximately 6 MHz under the control of
display pulses occurring at the same rate. These display pulses are
derived from reference clock pulses which occur at a rate which is not a
rational multiple of 6 MHz. The character generator comprises a
generator circuit which receives the reference clock pulses and selects,
from each series of N reference clock pulses, as many pulses as
correspond to the number of horizontal picture elements constituting a
character, while the time interval of N reference clock pulses
corresponds to the desired width of the characters to be displayed. The
character generator supplies picture elements of distinct length, while
the length of a picture element is dependent on the ordinal number of
this picture element in the character.
Each Data-line carries data synchronizing and address information and the codes for a Row of 40 characters. The synchronizing information includes a clock run-in sequence followed by an 8-bit framing code sequence. Each Data-line contains a 3 bit code referred to as the Magazine number. A teletext Page includes 24 Rows of 40 characters, including a special top Row called the Page-Header. Each ROW is contained in a corresponding Data-line. A user selected Page is intended to be displayed in place of, or added to a corresponding television picture frame. A Magazine is defined to include Pages having Data-lines containing a corresponding Magazine number. The transmission of a selected Page begins with, and includes its Page Header and ends with and excludes the next Page Header of the selected Magazine number. All intermediate Data lines carrying the selected Magazine number relate to the selected Page.
This model and biggers were featuring an advanced integrated chassis, BE-4, based on the Motorola MC44002/7 CHROMA 4 VIDEO PROCESSOR is a highly advanced circuit which performs most of the basic functions required for a color TV. All of its advanced features are under processor control via an I2C bus, enabling potentiometer controls to be removed completely. In this way the component count may be reduced dramatically, allowing significant cost savings together with the possibility of
implementing sophisticated automatic test routines. Using the MC44002/7, TV manufacturers will be able to build a standard chassis for anywhere in the world. Additional features include 4 selectable matrix modes (primarily for NTSC), fast beam current limiting and 16:9 displaTherefore offering precise Power Bright pictures and more standards decoding capability and advanced integration TV chassis fitted even in bigger models comprising in a one chip almost all features needed.
The pictures produced by this set are powerful, sharp and bright, no surprises if any LCD Toy can't compete with this.
The Trinitron colour tube, designed by and used exclusively by Sony in all its colour receivers, was the first to have an in -line gun arrangement. The Cathode Ray Tube (CRT) has been slowly changing since its con- ception about 50 years ago. Since then the emitter, accelerator and focus structures at the “gun” end have been added to the vacuum tube to shape and control the amount of electrons from the gun. At the target end of the CRT, the luminescent screen is made of a phos- phor mixture. Phosphor glows white when struck by electrons. Phos- phor brightness is directly proportional to the amount of electrons that strike the phosphor. The CRT sport brightness was controllable with a gun and phosphor screen. The electron beam produced a spot of light that was stationary on the phosphor screen. Placing an electromagnetic field near the electron beam after it left the gun created movement. The spot intensity and location were now controllable and the CRT became known as the pic- ture tube. To produce a color picture on the CRT screen; three independent gun structures are used. The electron guns produce different amounts of electrons targeted to their corresponding Red, Green and Blue phos- phors. Red, Green and Blue are the primary colors for light. In 1968 the Sony Trinitron picture tube was a departure from the tradi- tional three-gun color picture tube. Three major changes to the old color tube created a distinctive Trinitron picture tube:1. Instead of three small electron guns, focus was improved using one large electron gun structure that all three beams pass through.
2. Electrostatic convergence plates were added to bend the outer elec- tron beams so they would land on the corresponding red and blue color phosphor.
3. A continuous vertical slotted aperture grill at the screen end that: • Reduces the effects of terrestrial magnetism. • Prevents adjacent and stray electrons from striking the wrong phos- phor. • Allows more electrons to pass, increasing brightness without short- ening life. • Results in a flat screen. This reduces annoying room light reflections (glare).
It has a single gun assembly with three cathodes mounted in line horizontally, a striped -phosphor screen, an aperture grill with vertical slots instead of the traditional type of shadowmask, and a faceplate with cylindrical rather than parabolic curvature. The Trinitron tube produces a very good display - some people, including the Obsolete Technology Tellye ! - author, would say the best aven if some exceptions with the PHILIPS ERF Series. There are sound technical reasons for making this claim, for example the design of the large electron lens which provides excellent resolution. An advantage of the cylindrical in comparison with the traditional parabolic faceplate is the fact that most of the external light that falls on it is reflected away from instead of towards the viewer, thus improving the. contrast and reducing eye strain.
The Black Trinitron introduced a couple of years ago gives a further improvement in this respect (the faceplate has been darkened to a black colour). Since the first Trinitron tubes appeared in the UK in the late sixties there has not been a great deal of change in the design, though a number of improvements have been introduced. More recently we have had the Black Trinitron mentioned above and the Pan -focus gun which gives uniform focusing over the entire screen area, eliminating any need for dynamic focusing but further added in large screen models in the 70's and 80's and 90's.
The set has an AV SCART SOCKET.
A SCART Connector (which stands for Syndicat des Constructeurs d'Appareils Radiorécepteurs et Téléviseurs) is a standard for connecting audio-visual equipment together. The official standard for SCART is CENELEC document number EN 50049-1. SCART is also known as Péritel (especially in France) and Euroconnector but the name SCART will be used exclusively herein. The standard defines a 21-pin connector (herein after a SCART connector) for carrying analog television signals. Various pieces of equipment may be connected by cables having a plug fitting the SCART connectors. Television apparatuses commonly include one or more SCART connectors.Although a SCART connector is bidirectional, the present invention is concerned with the use of a SCART connector as an input connector for receiving signals into a television apparatus. A SCART connector can receive input television signals either in an RGB format in which the red, green and blue signals are received on Pins 15, 11 and 7, respectively, or alternatively in an S-Video format in which the luminance (Y) and chroma (C) signals are received on Pins 20 and 15. As a result of the common usage of Pin 15 in accordance with the SCART standard, a SCART connector cannot receive input television signals in an RGB format and in an S-Video format at the same time.Consequently many commercially available television apparatuses include a separate SCART connectors each dedicated to receive input television signals in one of an RGB format and an S-Video format. This limits the functionality of the SCART connectors. In practical terms, the number of SCART connectors which can be provided on a television apparatus is limited by cost and space considerations. However, different users wish the input a wide range of different combinations of formats of television signals, depending on the equipment they personally own and use. However, the provision of SCART connectors dedicated to input television signals in one of an RGB format and an S-Video format limits the overall connectivity of the television apparatus. Furthermore, for many users the different RGB format and S-Video format are confusing. Some users may not understand or may mistake the format of a television signal being supplied on a given cable from a given piece of equipment. This can result in the supply of input television signals of an inappropriate format for the SCART connector concerned.This kind of connector is todays obsoleted !
Sony Corporation (Sonī Kabushiki Gaisha) (TYO: 6758, NYSE: SNE), or commonly referred to as Sony, is a Japanese multinational conglomerate corporation headquartered in Minato, Tokyo, Japan and the world's fifth largest media conglomerate with revenue exceeding ¥ 7.730.0 trillion, or US$77.20 billion (FY2010).
Sony is one of the leading manufacturers of electronics, products for the consumer and professional markets.
Sony Corporation is the electronics business unit and the parent company of the Sony Group, which is engaged in business through its eight operating segments – Consumer Products & Devices (CPD), Networked Products & Services (NPS), B2B & Disc Manufacturing (B2B & Disc), Pictures, Music, Financial Services, Sony Ericsson and All Other. These make Sony one of the most comprehensive entertainment companies in the world. Sony's principal business operations include Sony Corporation (Sony Electronics in the U.S.), Sony Pictures Entertainment, Sony Computer Entertainment, Sony Music Entertainment, Sony Ericsson, and Sony Financial. As a semiconductor maker, Sony is among the Worldwide Top 20 Semiconductor Sales Leaders.
Its founders Akio Morita and Masaru Ibuka derived the name from sonus, the Latin word for sound, and also from the English slang word "sonny", since they considered themselves to be "sonny boys", a loan word into Japanese which in the early 1950s connoted smart and presentable young men.
History
Masaru Ibuka, the co-founder of Sony:
In late 1945, after the end of World War II, Masaru Ibuka started a radio repair shop in a bomb-damaged department store building in Nihonbashi of Tokyo. The next year, he was joined by his colleague, Akio Morita, and they founded a company called Tokyo Tsushin Kogyo K.K., (Tokyo Telecommunications Engineering Corporation). The company built Japan's first tape recorder called the Type-G.
In the early 1950s, Ibuka traveled in the United States and heard about Bell Labs' invention of the transistor.He convinced Bell to license the transistor technology to his Japanese company. While most American companies were researching the transistor for its military applications, Ibuka and Morita looked to apply it to communications. Although the American companies Regency[disambiguation needed] and Texas Instruments built the first transistor radios, it was Ibuka's company that made them commercially successful for the first time.
In August 1955, Tokyo Tsushin Kogyo released the Sony TR-55, Japan's first commercially produced transistor radio.
They followed up in December of the same year by releasing the Sony TR-72, a product that won favor both within Japan and in export markets, including Canada, Australia, the Netherlands and Germany. Featuring six transistors, push-pull output and greatly improved sound quality, the TR-72 continued to be a popular seller into the early sixties.
In May 1956, the company released the TR-6, which featured an innovative slim design and sound quality capable of rivaling portable tube radios. It was for the TR-6 that Sony first contracted "Atchan", a cartoon character created by Fuyuhiko Okabe, to become its advertising character. Now known as "Sony Boy", the character first appeared in a cartoon ad holding a TR-6 to his ear, but went on to represent the company in ads for a variety of products well into the mid-sixties.[8] The following year, 1957, Tokyo Tsushin Kogyo came out with the TR-63 model, then the smallest (112 × 71 × 32 mm) transistor radio in commercial production. It was a worldwide commercial success.
University of Arizona professor Michael Brian Schiffer, Ph.D., says, "Sony was not first, but its transistor radio was the most successful. The TR-63 of 1957 cracked open the U.S. market and launched the new industry of consumer microelectronics." By the mid 1950s, American teens had begun buying portable transistor radios in huge numbers, helping to propel the fledgling industry from an estimated 100,000 units in 1955 to 5,000,000 units by the end of 1968.
Sony's headquarters moved to Minato, Tokyo from Shinagawa, Tokyo around the end of 2006.
Origin of name
When Tokyo Tsushin Kogyo was looking for a romanized name to use to market themselves, they strongly considered using their initials, TTK. The primary reason they did not is that the railway company Tokyo Kyuko was known as TKK.
The company occasionally used the acronym "Totsuko" in Japan, but during his visit to the United States, Morita discovered that Americans had trouble pronouncing that name. Another early name that was tried out for a while was "Tokyo Teletech" until Morita discovered that there was an American company already using Teletech as a brand name.
The name "Sony" was chosen for the brand as a mix of two words. One was the Latin word Sonus which is the root of "sonic" and "sound" and the other was "sonny," a familiar term used in 1950s America to call a boy.The first Sony-branded product, the TR-55 transistor radio, appeared in 1955 but the company name did not change to Sony until January 1958.
At the time of the change, it was extremely unusual for a Japanese company to use Roman letters to spell its name instead of writing it in kanji. The move was not without opposition: TTK's principal bank at the time, Mitsui, had strong feelings about the name. They pushed for a name such as Sony Electronic Industries, or Sony Teletech. Akio Morita was firm, however, as he did not want the company name tied to any particular industry. Eventually, both Ibuka and Mitsui Bank's chairman gave their approval.
By Japanese standards Sony is a comparative newcomer. It started out in May 1946, recently celebrating its fiftieth anniversary. Most of the major Japanese companies in the consumer electronics field were formed much earlier. Hitachi and Toshiba for example date from the nineteenth century, Matsuhsita from the early years of the twentieth century. During those fifty years however Sony's achievements have been second to none. Sony started operations as Tokyo Tsuchin Kogyo (Tokyo Telecommunications Engineering Corporation). Its aim was "to make unique products", and to "create and introduce technologies that larger companies cannot match". One of its earliest achievements was Japan's first reel-to-reel audio tape recorder, which was launched in 1950. The tape to go with it, also developed by the company, was called Soni-tape. In 1954 the company launched the first all -transistor radio to go into production anywhere. When, in the following year, it decided to start exporting, a simple brand name that would be easily recognised in any part of the globe was required. Sony was the obvious answer, and in 1958 the company changed its name to the Sony Corporation. The Sony Corporation of America was set up in 1960. Sony UK, in 1968, brought Sony to Europe. Innovation continued apace. In 1960 Sony launched the fast fully transistorised portable TV receiver. Five years later the first open -reel video tape recorder for domestic use was introduced. The Trinitron colour system arrived in 1968. It was incredible, though typical, that Sony should develop its own colour TV tube from scratch. While relying on the traditional three primary colour phosphors and a shadowmask, the phosphors were laid down in stripes, the mask became a shadow grille, the guns were arranged in -line and the faceplate became much flatter. This was to be the way tube development would go. The Betamax VCR system was introduced in 1975. It is today generally accepted that it was the best of its time. But, as with the Trinitron system, Sony wouldn't licence it to other manufacturers. That mistake led to its demise, and wasn't repeated. The 8nun video system, which has come to dominate the camcorder field, was launched by Sony ten years later, in 1985. Meanwhile Sony had had an extraordinary success with the Walkman portable audio system, which was launched in 1979. This is claimed to have been "the single best-selling consumer electronics product ever marketed". Sony kept up the pace of development, moving on to digital systems. The MiniDisc, capable of both record and playback, arrived in 1993. In 1995 Sony was first to launch a digital camcorder. A home DV recorder is due later this year, along with a device called the DV cap: this links a DV camera to a PC for editing and image manipulation. There have been a number of other significant developments in recent times. The highly successful PlayStation established Sony in the video games market. Sony is to introduce its first PC later this year, while "a true living -room computer" is promised for next year. Plasmatron large, flat screen TV sets are already available in Japan. DVD players are another imminent prospect. All in all it has been an extraordinary story, and Sony's position at the centre of electronics development looks set to continue indefinitely. The company has combined world -class R&D capabilities, manufacturing excellence, the ability to read and to create markets, and remarkable marketing skills. The UK's main CE innovator for a long time, Amstrad, makes a sorry contrast. For a time Amstrad couldn't do anything wrong. It came up with a string of innovative ideas and products, skillfully meeting and developing user requirements. Packaged audio, wordprocessors then an IBM PC clone. There were the combined TV/VCR units, then the video Double Decker. Amstrad was in and out of audio, video and TV, always with highly competitive products. The company came up with the first Sky package at under £200. But while it came up with products that met contemporary needs, it never seemed to take root and grow. We are now witnessing its final dismemberment. Psion, the hand-held computer manufacturer, is negotiating to take over Amstrad's digital telephone interests, which fit in with its own product development programme. Amstrad's loss - making consumer electronics interests are to be split between Betacom, an affiliated company, and a new company to be called Digicom Technology. The latter will take over Amstrad's analogue satellite business and inherit a small R&D operation. How did Sony succeed, starting out with twenty employees, no machinery and negligible capital, while Amstrad simply shuffles off stage? Because Amstrad never developed a comprehensive business strategy. It came up with bright ideas, subcontracted production, stocked up then walked away as soon as the market turned.
It's the tragic story of much of UK and European industry.R.I.P. EUROPE.
Some References:
- 20-F (FY2015) pages 1, 25 and F-2, Sony Corporation "Sony Global - Sony Global - Corporate History". www.sony.net. Retrieved 18 July 2018. "Corporate Data". Sony Corporation. 31 March 2018. Retrieved 3 April 2019. "Q3 FY2017 Consolidated Financial Results" (PDF). Sony Corporation. 2 February 2018. Retrieved 3 April 2019. "Financial Statements and Consolidated Financial Results for the Fiscal Year" (PDF). Sony Corporation. 27 April 2018. Retrieved 3 April 2019. "Sony". fortune.com. Fortune Media IP Limited. Retrieved 3 April 2019. "Access & Map." Sony Global. Retrieved 6 December 2011. "1–7–1 Konan Minato-ku, Tokyo 108-0075, Japan" – Map – Address in Japanese: "〒108-0075 東京都港区港南1–7–1" "Consolidated financial results for the fiscal year ended March 2016, Sony Corporation" (PDF). "Sony in US$2.3 billion deal, becomes the world's biggest music publisher". Sony Corporate History (Japanese). Sony.co.jp. Retrieved 7 July 2011. "Sony 2018 Global 500 – Fortune". Fortune. Organization Data. Sony.net. Retrieved on 25 April 2012. Business Overview, Annual Report 2010. (PDF). Retrieved 7 July 2011. Organization Data. Sony.net. Retrieved 7 July 2011. Top 20 semiconductor sales leaders for Q1 2016. Retrieved 26 February 2015. "Global LCD TV manufacturer market share from 2008 to 2017". Statista. Retrieved 26 February 2017. "Sony like.no.other Global Brand Development". Blind. Archived from the original on 17 November 2016. Retrieved 16 November 2016. Christopher MacManus (2 September 2009). "Sony Insider. 2010-10-27. Retrieved 2016-08-07". Sonyinsider.com. Retrieved 21 April 2017. Morck, R. K. & Nakamura, M. (2005). "A Frog in a Well Knows Nothing of the Ocean: A History of Corporate Ownership in Japan" (PDF). In Morck, Randall K. A History of Corporate Governance around the World: Family Business Groups to Professional Managers. University of Chicago Press. pp. 367–466. ISBN 0-226-53680-7. "Sony Global - History". www.sony.net. Retrieved 7 July 2017. Pioneering firm upsets Japan hiring: Pattern broken. By Nobuo Abiko Staff correspondent of The Christian Science Monitor. The Christian Science Monitor (1908–Current file); 26 March 1966; ProQuest Historical Newspapers: The Christian Science Monitor (1908–1998) pg. 14 "Sony Global – Sony History". Archived from the original on 28 November 2006. Retrieved 16 February 2007. "World: Asia-Pacific Sony co-founder dies". BBC. 3 October 1999. Retrieved 27 May 2012. Chang, Sea-Jin (25 February 2011). Sony vs Samsung: The Inside Story of the Electronics Giants' Battle For Global Supremacy. John Wiley & Sons. ISBN 9780470830444. Made in Japan – Akio Morita and Sony (pg. 76) by Akio Morita with [müzik indir] müzik indir Edwin M. Rheingold and Mitsuko Shimomura, Signet Books, 1986 Sony.co.uk. About Sony. The History of the Sony Corporation Archived 28 November 2013 at the Wayback Machine. Sony.co.uk. Retrieved 7 July 2011. Christian, Caryl, and With Hideko Takayama and Kay Itoi in Tokyo, George Wehrfritz in Hong Kong, John Sparks and Michael Hastings in, New York. "Sony is Not Japan; the Appointment of a Foreign CEO is a Sign of how Far the Iconic Company has Fallen in the Japanese Corporate Elite." Newsweek 21 March 2005: 30-. ProQuest Research Library. Web. 26 May 2012. Lohr, Steve. "Hard-Hit Sony Girds for a Fight in the American Electronics Market." New York Times: A.8. New York Times. 14 August 1983. Web. 26 May 2012. "Digication e-Portfolio :: Navaldeep Singh :: Investigate and Analyze the company's History and Growth". stonybrook.digication.com. Retrieved 4 June 2017. Fackler, Martin. "Cutting Sony, a Corporate Octopus, Back to a Rational Size." New York Times: C.1. New York Times. 29 May 2006. Web. 27 May 2012. Nakamoto, Michiyo. "Screen Test: Stringers Strategy Will Signal to what Extent Sony can Stay in the Game CONSUMER ELECTRONICS: The Japanese Company that Once Brought the World Market-Defining Products is being Trounced by More Agile Competitors and must Decide which Activities no Longer Form Part of its Future, Writes Michiyo Nakamoto." Financial Times: 17. ABI/INFORM Global. 21 September 2005. Web. 27 May 2012. Jeff Blagdon (27 March 2012). "Sony reorganizes into 'One Sony', prioritizes digital imaging, gaming and mobile". The Verge. Retrieved 10 July 2013. Knight, Sophie; Reiji Murai (6 February 2014). "As losses mount, Sony's Hirai seeks cure for TV business in spinoff". Reuters. Tokyo. Retrieved 11 February 2014. "Sony to shutter two-thirds of its US stores". Engadget. 26 February 2014. Retrieved 27 February 2014. Makuch, Eddie (16 April 2014). "PS4 company Sony to sell its entire stake in Square Enix, valued at around $47 million". GameSpot. Retrieved 16 April 2014. "Sony, Shanghai Oriental Pearl to set up China PlayStation JVs". Reuters. 25 May 2014. Aldrich, Rachel (12 December 2016). "Why would Sony merge its gaming and film units?". TheStreet. Atkinson, Claire (12 December 2016). "Sony considers merging gaming and film divisions". New York Post. Cooke, Chris. "Revamp of Sony's entertainment business could more closely align Sony Music with Sony/ATV | Complete Music Update". Ma'arif, Nelly Nailaite (2008). "15". The Power of Marketing. Penerbit Salemba. Curtis, Sophie (10 November 2015). "Sony is finally killing off Betamax video tapes". ISSN 0307-1235. Retrieved 4 January 2019. "The History of Format Wars and How Sony Finally Won... For Now". pastemagazine.com. Retrieved 4 January 2019. "Digital Betacam (1993 – 2016)". Museum of Obsolete Media. 28 May 2014. Retrieved 7 January 2019. "Video8 (1985 – 2000s)". Museum of Obsolete Media. 27 May 2014. Retrieved 4 January 2019. "What's DAT Sound?". Bitstreams: The Digital Collections Blog. 10 October 2014. Retrieved 4 January 2019. Haire, Meaghan (1 July 2009). "The Walkman". Time. ISSN 0040-781X. Retrieved 17 January 2019. "MiniDisc (1992 – 2013)". Museum of Obsolete Media. 16 November 2013. Retrieved 17 January 2019. "Sony Digitial Dynamic Sound". www.cs.cmu.edu. Retrieved 1 February 2019. Nailatie., Ma'arif, Nelly (2008). The power of marketing : practitioner perspectives in Asia. Penerbit Salemba Empat. ISBN 9789796914456. OCLC 968144111. "Why isn't SDDS in the consumer market?". Blu-ray Movie Discussion, Expert Reviews & News. Retrieved 1 February 2019. Waniata, Ryan (7 February 2018). "The Life and Times of the Late, Great CD". digitaltrends.com. Retrieved 1 February 2019. "Sony History on development of Magneto Optical Discs". 2007. Archived from the original on 24 December 2006. Retrieved 6 February 2007. Ma'arif, Nelly Nailatie (2008). Power of Marketing. Penerbit Salemba. ISBN 9789796914456. "Sony Group Organization Chart". Sony.net. Retrieved 12 May 2014. "Consolidated Financial Results for the First Quarter Ended June 30, 2014" (PDF). Retrieved 1 February 2016. "Q3 FY2015 Consolidated Financial Results Presentation Slides" (PDF). Retrieved 1 February 2016. "Dell Details on Notebook Battery Recall". Direct2Dell. 14 August 2006. Archived from the original on 20 August 2006. Retrieved 21 August 2006. "Dell announces recall of 4.1 million laptop batteries". CBC News. 14 August 2006. Retrieved 28 September 2006. "Sony, Dell battery issue heats up". CBC News. 24 August 2006. Retrieved 24 August 2006. "Tablet & Smartphones | Xperia™ Tablet & Smartphones". Sony. 30 July 2009. Retrieved 10 July 2013. Smith, Mat (6 February 2014). "Sony sells its VAIO PC business, makes TV arm its own subsidiary". Engadget. Retrieved 6 February 2014. Catherine Shu (6 February 2014). "Sony To Exit PC Business By Selling VAIO". TechCrunch. AOL, Inc. Retrieved 7 February 2014. Yang, Jun; Yasu, Mariko (23 May 2012). "Sony, Samsung Ask U.S. Retailers to Curb Discounts on TV Sets". Bloomberg. "Sony sells $940m LCD stake to Samsung to slash TV losses". Retrieved 27 December 2011. "Sony and Sharp in LCD panel joint venture". Sony.net. Retrieved 12 May 2014. "Sony Announces It Will Stop Producing Betamax Tapes in March 2016". NBC News. 9 November 2015. Retrieved 10 November 2015. "Sony to launch space business". Nikkei Asian Review. Retrieved 21 April 2018. "Announcement of Agreements Between Olympus and Sony to Form Business and Capital Alliance" (PDF). Olympus-global.com. Retrieved 12 May 2014. "Establishment of Sony Olympus Medical Solutions Inc" (Press release). Sony Olympus Medical Solutions. 16 April 2013. Retrieved 19 April 2013. "Establishment of a New Company to start genome information platform business" (Press release). Sony Corporation. 23 January 2014. Retrieved 16 May 2014. "Sony and Ericsson complete joint venture agreement" (Press release). Sony. 28 August 2001. Retrieved 26 May 2012. nonmember. Telecoms Korea. Retrieved on 11 July 2011. "Gartner Says Worldwide Mobile Device Sales to End Users Reached 1.6 billion Units in 2010; Smartphone Sales Grew 72 Percent in 2010: Apple and RIM Displaced Sony Ericsson and Motorola in Mobile Device Manufacturers Ranking". gartner.com. 9 February 2011. Kim, Yuri (30 November 2015). "美·유럽 이어 캐나다서도…소니 첫 '4K 화면폰' 출시". 2015-11-30. "Topic: Sony". www.statista.com. Retrieved 23 March 2016. "The PlayStation Quest." Macleans 6 November 2000: 81-. ABI/INFORM Global; ProQuest Research Library. Web. 27 May 2012. Pilling, David. "Camera Sales Raise Sonys Game." Financial Times: 23. ABI/INFORM Global. 27 July 2007. Web. 27 May 2012. Makuch, Eddie. "PS3 overtakes Xbox 360 in worldwide shipments – Report". GameSpot. Archived from the original on 21 March 2013. "PLAYSTATION 4 SELLS 5.9 MILLION UNITS WORLDWIDE DURING THE 2017 HOLIDAY SEASON" (Press release). San Mateo: Sony Interactive Entertainment Inc. 8 January 2018. Retrieved 16 April 2018 – via sie.com. "Sony leads virtual reality patent race". hypergridbusiness.com. Layden, Shawn (13 October 2016). "PlayStation VR Launches Today Across the United States and Canada". "NRG eVgo Completes Largest Corporate Installation of Electric Vehicle Charging Stations in Southern California - EV News Report". EV News Report. Joseph Volpe. "Sony eyes electric car future, wants to soon sell you Li-ion batteries". Engadget. AOL. "Sony CEO says will explore tie-ups in EV batteries - Electric Vehicle News". electric-vehiclenews.com. Sony to make batteries for electric cars. Silicon Republic. "Sony reveals self driving car ambitions". hexus.net. "ZMP Inc. - 次世代モビリティ・EV開発用プラットフォーム RoboCar® MV2". zmp.co.jp. "Signing of Memorandum of Understanding for the Transfer of Battery Business" (Press release). Murata Manufacturing Co., Ltd. & Sony Corporation. 28 July 2016. Retrieved 6 October 2016. "Sundstrand Selling Trans Com Systems To Sony". 10 July 1991. Retrieved 12 August 2018. "Rockwell Collins Acquires Sony Trans Com". 1 June 2000. Retrieved 12 August 2018. "2011 Market Share and Box Office Results by Movie Studio". Box Office Mojo. 31 December 2011. Retrieved 9 November 2012. Sony Pictures – Corporate Factsheet, sonypictures.com Archived 4 November 2005 at the Wayback Machine Bates, James; Claudia Eller (20 November 1996). "Sony President Puts Best Face on Studio Woes". Los Angeles Times. p. D1. "Legal fight over fake film critic". BBC News. 2 March 2004. Emanuella Grinberg (9 March 2004). "Moviegoers to settle with studio after being lured by phony critic". CNN. "Sony pays $1.5m over fake critic". BBC News. 3 August 2005. "Sony admits, fixes problem with DVD DRM". Ars Technica. "Hack at Sony Pictures shuts computer system". LA Times. Sony completes $2 billion purchase of CBS Records upi.com 5 January 1988, Retrieved on 3 December 2017 Brown, Bob (1 November 2010). "Sony BMG rootkit scandal: 5 years later". Network World. Retrieved 20 February 2015. "Sony to Buy Gracenote Music Data Company". abcnews.go.com. 23 April 2008. Retrieved 11 February 2015. https://techcrunch.com/2013/12/23/sony-spins-out-gracenote Halperin, Shirley (30 June 2012). "Sold! EMI Music Publishing to Consortium Led by Sony/ATV, Michael Jackson Estate for $2.2 Billion". The Hollywood Reporter. Christman, Ed (30 September 2012). "Sony Finalizes Acquisition of Michael Jackson Estate's Stake in Sony/ATV Publishing". Billboard. Retrieved 1 October 2016. Tim Clark and, Carl K. "Out of Service." New York Times: A.25. New York Times. 9 March 2005. Web. 27 May 2012. Alpeyev, Pavel; Huang, Grace (15 October 2015). "Sony's Answer to Apple Pay Is Laying Tracks for Asian Expansion". Bloomberg Business. Retrieved 19 October 2015. Sony Global - Stock Information "Sony sees return to profit, aims to halve TV losses". Reuters. 10 May 2012. "Sony: Too Much make-Believe." FT.com (2011): n/a. ABI/INFORM Global; ProQuest Research Library. Web. 26 May 2012. Fujimura, Naoko (12 December 2011). "Sony's Shopping Spree Is 'Wrong Direction' in Apple Battle: Tech". Bloomberg. Retrieved 18 December 2011. 10 Year Financials of sne – Sony Corp Adr. Gurufocus.com. Retrieved on 25 April 2012. McCurry, Justin (9 December 2008). "Sony to cut 8,000 jobs worldwide". The Guardian. London. Retrieved 23 May 2010. "Sony expected to slash 10,000 jobs". Retrieved 9 April 2012. Yasu, Mariko; Ozasa, Shunichi (11 April 2012). "Sony, Sharp Losing $11 Billion Leaves Investors Let Down". Bloomberg. "Sony ups ad spend to Rs.450 cr". The Hindu. 7 June 2012. Ewing, Adam; Yasu, Mariko (23 August 2012). "Sony to Cut 1,000 Jobs to Reduce Costs at Mobile Unit". Bloomberg. Breakdown of sales and distribution by geographical markets from company 10Ks Reuters (18 January 2013). "Sony to sell its U.S. headquarters building for $1.1 billion". Reuters. Chilson, Morgan. "Labels Sony Credit Rating 'Junk' Amid Lower Demand". Article. Moneynews. Retrieved 28 January 2014. "Sony to cut as many as 5,000 jobs, unload Vaio". USA Today. Retrieved 6 February 2014. https://www.htxt.co.za/2014/10/29/sony-to-close-south-african-tv-hifi-and-camera-division/ http://businesstech.co.za/news/hardware/72138/sony-rethinks-sa-strategy-amid-huge-loss/ https://www.fin24.com/Tech/Gadgets/sony-launches-first-sa-store-20170406 https://mybroadband.co.za/news/gadgets/239278-sony-photo-gear-back-in-south-africa-with-black-friday-2017-vouchers.html "Guide to Greener Electronics 17th Edition". Greenpeace International. November 2011. Retrieved 20 August 2018. "Guide to Greener Electronics". Greenpeace International. Greenpeace International. Retrieved 16 November 2011. "Greener electronics Sony ranking: Fourth Edition". Greenpeace International. 27 June 2007. Retrieved 20 August 2018. Samson, Ted (9 July 2007). "Sony hits bottom of Greenpeace eco rankings". InfoWorld. Retrieved 5 October 2010. "Guide to Greener Electronics (2017)". Greenpeace International. Retrieved 17 May 2018. "History of Environmental Activities at Sony". Archived from the original on 8 February 2008. Retrieved 1 November 2007.. Retrieved 7 July 2011. "Sony Group Environmental: Vision". Archived from the original on 27 November 2007. Retrieved 1 November 2007.. Web.archive.org. (27 November 2007). Retrieved 7 July 2011. Sony develops World's Most Powerful Sugar-based Bio Battery Prototype. Techgadgets.in (24 August 2007). Retrieved 7 July 2011. Knight, Danielle (22 September 2000). "Sony's PR War on Activists". Mother Jones. Retrieved 5 October 2010. "UNICEF and Sony photo workshop promotes rights with Darwin's indigenous youth". unicef.org.au. Archived from the original on 16 May 2013. "Seeing Mali: a digital project for children - in pictures". TheGuardian.com. 16 June 2011. "Sony helps S African mobile library project". japantoday.com. Retrieved 11 February 2015. Cashmere, Paul (5 October 2012). "Sony Foundation Funds Salvos Sound Point Centre In Goodna". noise11.com. Retrieved 11 February 2015. "Sony Foundation raises over $880k with Wharf4Ward". mcvpacific.com. 24 October 2014. Beavis, Simon (26 May 2011). "Sony – engaging untapped audience through crowdsourcing". TheGuardian.com. "Stadiums to go: streetfootballworld partners with Sony to support Brazilian and Latin American communities –". streetfootballworld. 7 March 2014. Archived from the original on 11 February 2015.
- "Sony Street Stadiums –". streetfootballworld. 7 March 2014.
Further reading
- Made in Japan by Akio Morita and Sony, HarperCollins (1994)[ISBN missing]Sony: The Private Life by John Nathan, Houghton Mifflin (1999)[ISBN missing]Sony Radio, Sony Transistor Radio 35th Anniversary 1955–1990 – information booklet (1990)[ISBN missing]The Portable Radio in American Life by University of Arizona Professor Michael Brian Schiffer, PhD (The University of Arizona Press, 1991).The Japan Project: Made in Japan – a documentary about Sony's early history in the U.S. by Terry Sanders.[ISBN missing]
Touche. Solid arguments. Keep up the good effort.
ReplyDelete