The CHASSIS BE-2A is mainly based on PHILIPS Semiconductors Technology and it's carrying all functions of the receiver.
CIRCUITS DESCRIPTIONS:
TDA4504B Small signal combination for multistandard colour TV
FEATURES
· Gain controlled vision IF amplifier
· Synchronous demodulator for negative and positive
demodulation
· AGC detector operating on peak sync amplitude for
negative demodulation and on peak white level for
positive demodulation
· Tuner AGC
· AFC circuit with two control polarities and on/off-switch
· Video preamplifier
· Video switch to select either the internal video signal or
an external video signal
· Horizontal oscillator and synchronization circuit with two
control loops
· Vertical synchronization (divider system), ramp
generator and driver with automatic amplitude
adjustment for 50 and 60 Hz
· Transmitter identification (mute)
· Sandcastle pulse generation
· VCR/auto VCR switch
· Start-up circuit
· Vertical guard
GENERAL DESCRIPTION
Having the capability to demodulate IF signals with either
positive or negative-going video information, the
TDA4504B (Fig.1) is contained within a 32 pin
encapsulation. It includes a three-stage vision IF amplifier,
mute circuit, AFC and AGC circuitry, fully synchronised
horizontal and vertical timebases with drive circuits and
integral three-level sandcastle pulse generator.
A functional colour tv receiver can thus be realized with the
addition of a tuner, audio demodulator and amplifier,
chroma decoder and respective line and field deflection
circuitry.
FUNCTIONAL DESCRIPTION
Vision IF amplifier, demodulator
and video amplifier
Each of the three AC-coupled IF
stages permit the omission of DC
feedback and possess a control
range in excess of 20 dB.
The IF amplifier, which is completely
symmetrical, is followed by a passive
synchronous demodulator providing a
regenerated carrier signal. This is
limited by a logarithmic limiter circuit
prior to its application to the
demodulator.
A noise clamp circuit is provided at
the video input (pin 16) to limit
interference pulses below the sync tip
level and is more efficient than a
noise inverter in providing improved
picture stability during the presence of
interference.
The video amplifier has good linearity
and bandwidth figures.
AFC-circuit
Obtaining the AFC reference signal
from the demodulator tuned circuit
presents the advantage of utilizing a
single tuned circuit and one
adjustment. However, since the
frequency spectrum of the signal
applied to the demodulator is
determined by the characteristic of
the SAW filter, the resultant
asymmetrical spectrum with respect
to the vision carrier causes the AFC
output voltage to be dependent upon
the video signal. The TDA4504B thus
contains a sample-and-hold circuit.
With negative-going vision signals the
AFC is active only during the sync
pulse period. When positive-going
signals are applied to the device,
however, the AFC is continuously
active but filtered to ensure only a
small by-pass current is present in the
sample-and-hold circuit.
With weak input signals the drive
signal will contain considerable noise
which also possesses an
asymmetrical frequency spectrum
and could create an offset in the AFC
output voltage. The inclusion of a
notch in the demodulator tuned circuit
minimises this effect.
The sample-and-hold circuit is
followed by a high impedance output
amplifier. Thus the AFC control
gradient depends upon the load
impedance.
The AFC polarity switch is combined
with the start circuit (pin 12). It has a
negative slope when pin 12 is open or
connected to the main supply and a
positive slope when pin 12 is
grounded. The AFC is disabled when
the sample connection (pin 22) is
grounded.
AGC circuit
For signals employing negative modulation the AGC detector operates on peak sync level but upon peak white content
with those having positive modulation. Selection is facilitated by the system switch (pin 32):
The AGC detector currents are:
With a 6.8 mF AGC capacitor, the video tilt will be < 10% for positively modulated signals and < 2% for negative
modulation.
To obtain a rapid AGC action when executing a search tuning operation with the circuit set for peak white AGC, the
charge current is held at 55 mA until the detection of a transmitted signal.
The transmitter identification
A mute signal is generated to disable the audio preamplifier of an audio demodulator during the absence of a
transmission signal. When the video switch is in the internal mode, the identification of a transmitted signal is derived
from the coincidence detector.
In the external mode the IF part of the circuit has its own identification system. The system relies upon the detection of
sync. pulses on the incoming IF signal. The separated horizontal sync pulse charges the capacitor on pin 25 which drives
the mute output (pin 14).
The connection of a 1 MW resistor between pin 25 and VCC results in the mute information being overruled by the
50/60 Hz information derived from the internal vertical divider section.
50/60 Hz Information
In the external video mode and with a resistor of 1 MW from pin 25 to VCC the mute is overruled by the 50/60 Hz
information from the divider system.
VCR switch
Flywheel horizontal synchronization is desirable when receiving weak signals marred by noise but is usually unnecessary
when receiving stronger off-air signals unless certain types of interference or multipath reception are apparent. Due to
the inherent instability of VCR signals, however, the horizontal time constant should be shorter to prevent loss of
horizontal synchronization in the early part of the scan. Provision is therefore incorporated to automatically switch the
short time constant such that a strong signal instigates the 'VCR' mode and a weak signal triggers the 'TV' mode.
The connection of a switch to pin 17 provides for this to be accomplished manually and may take the form of an auxiliary
switching function associated with a designated program selector button.
The TDA4504B has a separate pin (pin 17) for the VCR switch:
Video-switch
Video output from the demodulator is filtered to remove the audio carrier and DC-coupled to pin 16. If AC-coupling is
employed the internal noise clamp will operate on sync. tips.
The TDA4504B provides the opportunity for a direct video connection (e.g. via a peritel connector) to be made to the
device at pin 13. Selection between internal and external video is made by applying a switching potential to pin 18.
Video switch:
Gain reduction
To prevent crosstalk between the IF stages and the horizontal oscillator when the device is operated in its external video
mode with no RF input, the TDA4504B incorporates an option to reduce IF gain by 20 dB. This is accomplished by
connecting a 39 kW resistor between pin 17 and ground. Omission of this component results in the IF amplifier remaining
at full gain.
In the internal video mode the resistor must be disconnected to achieve the auto-VCR mode.
Input Signal
50 Hz 60 Hz None Don’t care Don’t care Don’t care
Pin 9/10
Pin 25 9.5 9.5 0.3 9.5 9.5 9.5
Pin 28 50 Hz 60 Hz None 50 Hz 60 Hz None
Pin 18 LOW LOW LOW HIGH HIGH HIGH
Pin 14 12 9 0.3 12 9 12
pin 17 HIGH: VCR mode fast time constant; ungated
pin 17 n.c.: auto VCR mode
pin 17 LOW: TV mode slow time constant; gated
pin 18 LOW: internal video
pin 18 HIGH: external video
Horizontal synchronization
The horizontal synchronization circuit
of the TDA4504B has been designed
as follows:
· The retrace of the horizontal
oscillator occurs during the
horizontal retrace and not during
the scan period. This has the
advantage that no interference will
be visible on the screen when
receiving weak input signals. Video
crosstalk will not disturb the phase
of the horizontal locking.
· Reduced frequency shift of the
horizontal oscillator due to noise
since the horizontal phase detector
reference signal is more
symmetrical and independent of
the supply voltage and
temperature.
· The phase detector current ratio for
strong and weak signals is
increased to obtain a better
performance during both VCR
playback and weak signal
reception. The switching level is
also independent of temperature
and supply voltage.
Vertical synchronization
Generation of the vertical sawtooth
(pin 3) is accomplished by a divider
that permits the production of a
vertical frequency of either 50 Hz or
60 Hz with freedom from adjustment,
amplitude correction and maximum
interference/disturbance protection.
A discriminator window checks the
vertical trigger pulse. When the
trigger pulse occurs before count 576,
the divider system operates in the
60 Hz mode otherwise the 50 Hz
mode is selected. (2 clock pulses
equal one horizontal line).
The divider section operates with
different reset windows. These
windows are activated via an up/down
counter. This increases its count by 1
for each occasion the separated
vertical sync pulse is within the
selected window. On each occasion
the vertical sync. pulse is not within
the selected window, the count is
reduced by 1.
LARGE (SEARCH) WINDOW; DIVIDER
RATIO BETWEEN 488 - 722
This mode is valid for the following
conditions:
1 divider locking to another
transmitter
2 divider ratio found, not within
the narrow window limits
3 up/down counter value of the
divider system operating in
narrow window mode, count
falls below 10.
NARROW WINDOW; DIVIDER RATIO
BETWEEN 522 - 528 (60 HZ) OR 622 -
628 (50 HZ)
The divider switches to this mode
when the up/down counter has
reached its maximum value of 15
approved vertical sync pulses. When
the divider operates in this mode and
a vertical sync pulse is missing within
the window, the divider is reset at the
end of the window and the count
lowered by 1. At a counter value
below 10, the divider switches to the
large window mode.
An anti-top flutter pulse is also
generated by the divider system. This
inhibits the horizontal phase-1
detector during the vertical sync
pulse. The width of this pulse
depends upon the divider mode. For
the large window mode the start is
generated at the divider reset. In the
narrow window mode the anti-top
flutter pulse starts at the beginning of
the first equalizing pulse. The anti-top
flutter pulse ends at count 10 for 50
Hz and count 12 for 60 Hz.
When out-of-sync is detected by the
coincidence detector, the divider is
switched to count 625. This results in
a stable vertical amplitude when no
input signal is available.
TDA3827 TV-sound demodulator circuit with SCART switches and AF control
GENERAL DESCRIPTION
The TDA3827 contains a single FM
demodulator with SCART switches, a
mute function and volume control.
FEATURES
· Wide supply voltage range from
4.5 V to 13.2 V
· Wide frequency range from 4 to
12 MHz
· High ripple rejection
· High precision and temperature
compensated FM-demodulator
output
· Multiple-input AF operational
amplifiers with offset compensation
· SCART AF input / AF output (low
impedance)
· External AF input
· High-level AF output voltage with
low distortion
· External selection of the source
selector AF gain
· Low switching noise between AF
and mute
· Wide volume-control range
TDA3505 Video control combination circuit with automatic cut-off control
GENERAL DESCRIPTION
The TDA3505 and TDA3506 are monolithic integrated circuits which perform video control functions in a PAL/SECAM
decoder. The TDA3505 is for negative colour difference signals -(R-Y), -(B-Y) and the TDA3506 is for positive colour
difference signals +(R-Y), +(B-Y).
The required input signals are: luminance and colour difference (negative or positive) and a 3-level sandcastle pulse for
control purposes. Linear RGB signals can be inserted from an external source. RGB output signals are available for
driving the video output stages. The circuits provide automatic cut-off control of the picture tube.
Features
· Capacitive coupling of the colour difference and
luminance input signals with black level clamping in the
input stages
· Linear saturation control acting on the colour difference
signals
· (G-Y) and RGB matrix
· Linear transmission of inserted signals
· Equal black levels for inserted and matrixed signals
· 3 identical channels for the RGB signals
· Linear contrast and brightness controls, operating on
both the inserted and matrixed RGB signals
· Peak beam current limiting input
· Clamping, horizontal and vertical blanking of the three
input signals controlled by a 3-level sandcastle pulse
· 3 DC gain controls for the RGB output signals (white
point adjustment)
· Emitter-follower outputs for driving the RGB output
stages
· Input for automatic cut-off control with compensation for
leakage current of the picture tube
Notes
1. < 110 mA after warm-up.
2. Values are proportional to the supply voltage.
3. When V11-24 < 0,4 V during clamping time - the black levels of the inserted RGB signals are clamped on the black
levels of the internal RGB signals.
When V11-24 > 0,9 V during clamping time - the black levels of the inserted RGB signals are clamped on an internal
DC voltage (correct clamping of the external RGB signals is possible only when they are synchronous with the
sandcastle pulse).
4. When pins 21, 22 and 23 are not connected, an internal bias voltage of 5,5 V is supplied.
5. Automatic cut-off control measurement occurs in the following lines after start of the vertical blanking pulse:
line 20: measurement of leakage current (R + G + B)
line 21: measurement of red cut-off current
line 22: measurement of green cut-off current
line 23: measurement of blue cut-off current
6. Black level of the measured channel is nominal; the other two channels are blanked to ultra-black.
7. All three channels blanked to ultra-black.
The cut-off control cycle occurs when the vertical blanking part of the sandcastle pulse contains more than 3 line
pulses.
The internal blanking continues until the end of the last measured line.
The vertical blanking pulse is not allowed to contain more than 34 line pulses, otherwise another control cycle begins.
8. The sandcastle pulse is compared with three internal thresholds (proportional to VP) and the given levels separate
the various pulses.
9. Blanked to ultra-black (-25%).
10. Pulse duration ³ 3,5 ms.
SONY DST EHT FBT TRANSFORMER Bobbin structure for high voltage transformers EHT Output.A coil bobbin for a fly-back transformer or the like having a bobbin proper. A plurality of partition members or flanges are formed on the bobbin proper with a slot between adjacent ones. At least first and second coil units are formed in the bobbin proper, each having several slots, formed between the flanges, and first and second high voltage coils are wound on the first and second coil units in opposite directions, respectively. A rectifying means is connected in series to the first and second coil units, and a cut-off portion or recess is provided on each of the partition members. In this case, a wire lead of the coil units passes from one slot to an adjacent slot through the cut-off portion which is formed as a delta groove, and one side of the delta groove is corresponded to the tangent direction to the winding direction.
1. A fly-back transformer comprising a coil bobbin comprising a plurality of parallel spaced discs with a first adjacent plurality of said disc formed with delta shaped slots having first edges which extend tangentially to a first winding direction and a first winding wound on said first adjacent plurality of said discs in said first winding direction, a second adjacent plurality of said discs formed with delta shaped slots having first edges which extend tangentially to a second winding direction opposite said first winding direction and a second winding wound on said second adjacent plurality of said discs in said second winding direction, a third adjacent plurality of said discs formed with delta shaped slots having first edges which extend tangentially to said first winding direction and a third winding wound on said third adjacent plurality of said discs in said first winding direction and said second plurality of adjacent discs mounted between said first and third plurality of adjacent discs. 2. A fly-back transformer according to claim 1 wherein adjacent ones of said first adjacent plurality of discs are mounted such that their delta shaped slots are orientated 180 degrees relative to each other. 3. A fly-back transformer according to claim 2 including a first winding turning partition mounted between said first and second adjacent plurality of discs and formed with grooves and notches for changing winding direction between said first and second windings and a second winding turning partition mounted between said second and third adjacent plurality of discs and formed with grooves and notches for changing the winding direction between said second and third windings. 4. A fly-back transformer according to claim 3 wherein said first and second winding turning partitions are formed with winding guiding slots for guiding the winding between the first, second and third adjacent plurality of discs. 5. A fly-back transformer according to claim 2 including a first rectifying means connected between one end of said first winding and one end of said second winding, and a second rectifying means connected between the second end of said second winding and one end of said third winding. 6. A fly-back transformer according to claim 5 wherein the second end of said first winding is grounded and a third rectifying means connected between the second end of said third winding and an output terminal.
1. Field of the Invention
The present invention relates generally to a bobbin structure for high voltage transformers, and is directed more particularly to a bobbin structure for high voltage transformer suitable for automatically winding coils thereon.
2. Description of the Prior Art
In the art, when a wire lead is reversely wound on a bobbin separately at every winding block, a boss is provided at every winding block and the wire lead is wound on one block, then one end of the wire lead is tied to the boss where it will be cut off. The end of the wire lead is tied to another boss, and then the wire lead is wound in the opposite direction. Therefore, the prior art winding method requires complicated procedures and the winding of the wire lead cannot be rapidly done and also the winding can not be performed automatically. Further, the goods made by the prior art method are rather unsatisfactory and have a low yield.
OBJECTS AND SUMMARY OF THE INVENTION
Accordingly an object of the invention is to provide a coil bobbin for a fly-back transformer or the like by which a wire lead can be automatically wound on winding blocks of the coil bobbin even though the winding direction is different among the different winding blocks.
Another object of the invention is to provide a coil bobbin for a fly-back transformer or the like in which a bridge member and an inverse engaging device for transferring a wire lead from one wiring block to an adjacent wiring block of the coil bobbin and wiring the wire lead in opposite wiring directions between adjacent wiring blocks, and a guide member for positively guiding the wire lead are provided.
According to an aspect of the present invention, a coil bobbin for a fly-back transformer or the like is provided which comprises a plurality of partition members forming a plurality of slots, a first coil unit having several slots on which a first high voltage coil is wound in one winding direction, a second coil unit having several slots on which a second high voltage coil is wound in the other direction, a rectifying means connected in series to the first and second coil units, and a cut-off portion provided on each of the partition members, a wire lead passing from one slot to an adjacent slot through the cut-off portions, each of the cut-off portions being formed as a delta groove, and one side of the delta groove corresponding to a tangent to the winding direction.
The other objects, features and advantages of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings through which the like reference numerals and letters designate the same elements and parts, respectively.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic diagram showing the construction of a fly-back transformer;
FIG. 2 is a connection diagram showing an example of the electrical connection of the fly-back transformer shown in FIG. 1;
FIG. 3 is a schematic diagram showing an example of a device for automatically winding a wire lead of the fly-back transformer on its bobbin;
FIG. 4 is a perspective view showing an example of the coil bobbin according to the present invention;
FIG. 5 is a plan view of FIG. 4;
FIGS. 6 and 7 are views used for explaining recesses or cut-off portions shown in FIGS. 4 and 5; and FIGS. 8A and 8B cross-sectional views showing an example of the inverse engaging means according to the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT
When the high voltage winding of a fly-back transformer used in a high voltage generating circuit of a television receiver is divided into plural ones and then wound on a bobbin, the divided windings (divided coils) are connected in series through a plurality of rectifying diodes.
When the winding is divided into, for example, three portions, such as divided coils La, Lb and Lc, they are wound on a bobbin proper 1 from, for example, left to right sequentially in this order as shown in FIG. 1. In this case, if the divided coils La and Lc are selected to have the same sense of turn and the middle coil Lb is selected to have the opposite sense of turn from the coils La and Lc, the distance between the terminal end of coil La and the start of coil Lb and the distance between the terminal end of coil Lb and the start of coil Lc can be got relatively long. Therefore, diodes Da and Db can be mounted by utilizing the space above the block on which the middle coil Lb is wound as shown in FIG. 1, so that it becomes useless to provide spaces for diodes between the divided coils La and Lb and between the divided coils Lb and Lc and hence the bobbin proper 1 can be made compact.
FIG. 2 is a connection diagram showing the connection of the above fly-back transformer. In FIG. 2, reference numeral 2 designates a primary winding (Primary coil) of the fly-back transformer, reference letter L designates its high voltage winding (secondary coil), including divided coils La, Lb and Lc, 3 an output terminal, and 4 a lead wire connected to the anode terminal of a cathode ray tube (not shown), respectively.
An example of the bobbin structure according to the invention, which is suitable to automatically wind coils, which are different in sense of turn in each winding block as shown in FIG. 1, on the bobbin, will be hereinafter described with reference to the drawings.
FIG. 3 is a diagram showing an automatic winding apparatus of a wire lead on a coil bobbin. If it is assumed that the wire lead is wound in the order of winding blocks A, B and C in FIG. 1 and the wire lead is wound on the block A with the bobbin proper 1 being rotated in the counter-clockwise direction as shown in FIG. 3, the relation between the bobbin proper 1 and the wire lead becomes as shown in FIG. 3. In this figure, reference numeral 6 designates a bobbin for feeding the wire lead.
Turning to FIG. 4, an example 10 of the bobbin structure or coil bobbin according to the present invention will be described now. In this example, the winding blocks A, B and C for the divided coils La, Lb and Lc are respectively divided into plural slots or sections by plural partition members or flanges 11, and a cut-off portion or recess 12 is formed on each of the flanges 11 through which the wire lead in one section is transferred to the following winding section.
As shown in FIG. 6, each recess 12 is so formed that its one side extends in the direction substantially coincident with the tangent to the circle of the bobbin proper 1 and its direction is selected in response to the sense of turn of the winding or wire lead. In this case, the direction of recess 12 means the direction of the opening of recess 12, and the direction of recess 12 is selected opposite to the sense of turn of the winding in the present invention.
Now, recesses 12A, which are formed in the winding block A, will be now described by way of example. The positions of recesses 12A formed on an even flange 11Ae and an odd flange 11A 0 are different, for example, about 180° as shown in FIGS. 6A and 6B. Since the bobbin proper 1 is rotated in the counter-clockwise direction in the winding block A and hence the sense of turn of the wire lead is in the clockwise direction, the recess 12A is formed on the even flange 11Ae at the position shown in FIG. 6A. That is, the direction of recess 12A is inclined with respect to the rotating direction of bobbin proper 1 as shown in FIG. 6A. In this case, one side 13a of recess 12A is coincident with the tangent to the circle of bobbin proper 1, while the other side 13b of recess 12A is selected to have an oblique angle with respect to the side 13a so that the recess 12A has a predetermined opening angle.
The opening angle of recess 12A is important but the angle between the side 13a of recess 12A and the tangent to the circle of bobbin proper 1 is also important in the invention. When the wire lead is bridged or transferred from one section to the following section through the recess 12A, the wire lead in one section advances to the following section in contact with the side 13a of recess 12A since the bobbin proper 1 is rotated. In the invention, if the side 13a of recess 12A is selected to be extended in the direction coincident with the tangent to the circle of bobbin proper 1, the wire lead can smoothly advance from one section to the next section without being bent.
In the invention, since the middle divided coil Lb is wound opposite to the divided coil La, a recess 12B provided on each of flanges 11B of the winding block B is formed to have an opening opposite to that of recess 12A formed in the winding block A as shown in FIGS. 6C and 6D.
As shown in FIG. 5, terminal attaching recesses 14 are provided between the winding blocks A and B to which diodes are attached respectively. In the illustrated example of FIG. 5, a flange 15AB is formed between the flanges 11A 0 and 11B 0 of winding blocks A and B, and the recesses 14 are formed between the flanges 11A 0 and 15AB and between 15AB and 11B 0 at predetermined positions. Then, terminal plates 16, shown in FIG. 4, are inserted into the recesses 14 and then fixed there to, respectively. The terminal plates 16 are not shown in FIG. 5. Between the winding blocks B and C and between the blocks A and B, similar terminal attaching recesses 14 are formed, and terminal plates 16 are also inserted thereinto and then fixed thereto.
As described above, since the divided coil Lb is wound opposite to the divided coils La and Lc, it is necessary that the winding direction of the wire lead be changed when the wire lead goes from the block A to block B and also from the block B to block C, respectively.
Turning to FIG. 7, an example of the winding or wire lead guide means according to the present invention will be now described. In FIG. 7, there are mainly shown a bridge member for the wire lead and an inverse member or means for the wire lead which are provided between the winding blocks A and B. At first, a bridge means 20 and its guide means 21, which form the bridge member, will be described. The bridge means 20 is provided by forming a cut-out portion or recess in the middle flange 15AB located between the winding blocks A and B. In close relation to the bridge means or recess 20, the guide means 21 is provided on a bridge section X A at the side of block A. This guide means 21 is formed as a guide piece which connects an edge portion 20a of recess 20 at the winding direction side to the flange 11A 0 of block A in the oblique direction along the winding direction through the section X A .
Next, an inverse engaging means 22 will be now described with reference to FIGS. 7 and 8. If the flange 11B 0 of FIG. 7 is viewed from the right side, the inverse engaging means 22 can be shown in FIG. 8A. In this case, the tip end of one side 13a of recess 12B 1 is formed as a projection which is extended outwards somewhat beyond the outer diameter of flange 11B 0 . The inverse engaging means 22 may take any configuration but it is necessary that when the rotating direction of the bobbin proper 1 is changed to the clockwise direction, the wire lead can be engaged with the recess 12B 1 or projection of one side 13a and then suitably transferred to the next station.
Another guide means 23 is provided on a bridge section X B at the side of winding block B in close relation to the inverse engaging means 22. The guide means 23 is formed as a guide surface which is a projected surface from the bottom surface of section X B and extended obliquely in the winding direction. This guide means or guide surface 23 is inclinded low into the means 22 and has an edge 23a which is continuously formed between the middle flange 15AB and the flange 11B 0 .
In this case, it is possible that the guide means 21 and guide surface 23 are formed to be the same in construction. That is, both the guide means 21 and 23 can be made of either the guide piece, which crosses the winding section or guide surface projected upwards from the bottom surface of the winding section. It is sufficient if the guide means 21 and 23 are formed to smoothly transfer the wire lead from one section to the next section under the bobbin proper 1 being rotated.
Although not shown, in connection with the middle flange 15BC between the winding blocks B and C, there are provided similar bridge means 20, guide means 21, inverse engaging means 22 and another guide means 23, respectively. In this case, since the winding direction of the wire lead is reversed, the forming directions of the means are reverse but their construction is substantially the same as that of the former means. Therefore, their detailed description will be omitted.
According to the bobbin structure of the invention with the construction set forth above, the wire lead, which is transferred from the block A to the section X A by the rotation of bobbin proper 1, is wound on the section X B from the section X A after being guided by the guide piece 21 to the recess 20 provided on the middle flange 15AB, and then transferred to the recess 22 provided on the flange 11B 0 guide surface 23, bridged once to the first section of winding block B through the recess 22 (refer to dotted lines b in FIG. 7). Then, if the rotating direction of the bobbin proper 1 is reversed, the wire lead is engaged with the bottom of recess 22 (refer to solid lines b in FIG. 7). Thus, if the above reverse rotation of bobbin proper 1 is maintained, the wire lead is wound on the block B in the direction reverse to that of block A. When the wire lead is transferred from the block B to block C, the same effect as that above is achieved. Therefore, according to the present invention, the wire lead can be automatically and continuously wound on the bobbin proper 1.
After the single wire lead is continuously wound on blocks A, B and C of bobbin proper 1 as set forth above, the wire lead is cut at the substantially center of each of its bridging portions. Then, the cut ends of the wire lead are connected through diodes Da, Db and Dc at the terminal plates 16, respectively by solder.
In the present invention, the projection piece, which has the diameter greater than that of the flange 11B, is provided in the bridge recess 12 to form the inverse engaging means 22 as described above, so that when the winding direction is changed, the wire lead engages with the inverse engaging means 22 without errors when reversing the winding direction of the wire lead.
If the diameter of the projection piece of means 22 is selected, for example, to be the same as that of the flange 11B, it will not be certain that the wire lead engages with the means 22 because it depends upon the extra length of the wire lead and hence errors in winding cannot be positively avoided.
Further, in this invention, the bridge means is provided on the flange positioned at the bridging portion of the bobbin which has a number of dividing blocks separated by flanges, and the inverse engaging means is provided and also the guide means is provided at the former winding section to cooperate with the inverse engaging means. Therefore, the wire lead can be positively fed to the bridge means, and the transfer of the wire lead to the following winding section can be carried out smoothly.
Further, in this invention since one side of the recess 12 is selected coincident with the tangent of the outer circle of the bobbin proper 1 and also with the winding direction, the wire lead can be smoothly bridged to the following section. Due to the fact that the direction of recess 12 is changed in response to the winding direction, even if there is a block on which the wire lead is wound in the opposite direction to that of the other block, the wire lead can be continuously and automatically wound through the respective blocks.
The above description is given for the case where the present invention is applied to the coil bobbin for the high voltage winding of a fly-back transformer, but it will be clear that the present invention can be applied to other coil bobbins which require divided windings thereon with the same effects.
It will be apparent that many modifications and variations could be effected by one skilled in the art without departing from the spirits or scope of the novel concepts of the present invention, so that the spirits or scope of the invention should be determined by the appended claims only.
SONY CHASSIS BE2A TO MODEL CORRISPONDENCE LIST:
BE2A SONY KVM1400
BE2A SONY KVM1400B
BE2A SONY KVM1400D
BE2A SONY KVM1400E
BE2A SONY KVM1400K
BE2A SONY KVM1400L
BE2A SONY KVM1400U
BE2A SONY KVM1401D
BE2A SONY KVM1401K
BE2A SONY KVM1401KR
BE2A SONY KVM1401U
BE2A SONY KVM1402U
BE2A SONY KVM1410U
BE2A SONY KVM1411U
BE2A SONY KVM1420
BE2A SONY KVM1420A
BE2A SONY KVM1420B
BE2A SONY KVM1420D
BE2A SONY KVM1420E
BE2A SONY KVM1420L
BE2A SONY KVM1420U
BE2A SONY KVM1420UB
BE2A SONY KVM1421
BE2A SONY KVM1421D
BE2A SONY KVM1421E
BE2A SONY KVM1421U
BE2A SONY KVM1430B
BE2A SONY KVM1430D
BE2A SONY KVM1430E
BE2A SONY KVM1430U
BE2A SONY KVM1431D
BE2A SONY KVM1431E
BE2A SONY KVM1431K
BE2A SONY KVM1431U
BE2A SONY KVM1620A
BE2A SONY KVM1620B
BE2A SONY KVM1620D
BE2A SONY KVM1620U
BE2A SONY KVM1621U
BE2A SONY KVM1921D
BE2A SONY KVM1921U
BE2A SONY KVM2100
BE2A SONY KVM2100A
BE2A SONY KVM2100B
BE2A SONY KVM2100D
BE2A SONY KVM2100K
BE2A SONY KVM2101
BE2A SONY KVM2101D
BE2A SONY KVM2101K
BE2A SONY KVM2101T
BE2A SONY KVM2101U
BE2A SONY KVM2140
BE2A SONY KVM2140B
BE2A SONY KVM2140E
BE2A SONY KVM2140K
BE2A SONY KVM2140U
BE2A SONY KVM2141
BE2A SONY KVM2141E
BE2A SONY KVM2141K
BE2A SONY KVM2141U
BE2A SONY KVM2150D
BE2A SONY KVM2150E
BE2A SONY KVM2150U
BE2A SONY KVM2151A
BE2A SONY KVM2151D
BE2A SONY KVM2151E
BE2A SONY KVM2151KR
BE2A SONY KVM2151L
BE2A Sony KVM1400
BE2A SONY KVM1400D
BE2A Sony KVM1400U
BE2A Sony KVM1401
BE2A SONY KVM1401D
BE2A Sony KVM1401U
BE2A Sony KVM1410
BE2A Sony KVM1411
BE2A Sony KVM1420
BE2A SONY KVM1420D
BE2A Sony KVM1421
BE2A SONY KVM1421D
BE2A SONY KVM1430D
BE2A SONY KVM1431D
BE2A Sony KVM1620
BE2A SONY KVM1620D
BE2A Sony KVM1621
BE2A Sony KVM1920
BE2A SONY KVM1920D
BE2A Sony KVM1921
BE2A Sony KVM1921U
BE2A SONY KVM2100D
BE2A Sony KVM2100K
BE2A Sony KVM2101
BE2A SONY KVM2101M
BE2A Sony KVM2140
BE2A SONY KVM2140D
BE2A Sony KVM2141
BE2A SONY KVM2141D
BE2A Sony KVM2141K
BE2A Sony KVM2150
BE2A SONY KVM2150D
BE2A Sony KVM2150U
BE2A SONY KVM2151D
BE2A Sony KVM2155K
BE2A SONY KVM2155K
BE2A SONY KX1410QM
BE2A SONY KX2110QM
BE-2A Sony KVM1420U
BE-2A Sony KVM1421U
BE-2A Sony KVM1430
BE-2A Sony KVM1431
BE-2A Sony KVM1620U
BE-2A Sony KVM1621U
BE-2A Sony KVM2140U
BE-2A Sony KVM2141U
BE-2A Sony KV-M2151
No comments:
Post a Comment
The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.
Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!
The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.
Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.
Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.
Your choice.........Live or DIE.
That indeed is where your liberty lies.
Note: Only a member of this blog may post a comment.