A top expensive tellye from PHILIPS in 1981.
The PHILIPS 26CP2402/08R is a color television , rare set and was offering superb features with a 26 inches color screen:
- TRD 2 TUNING
- HIFI SOUND AUDIO MODULE 20 Watt:
The design of a suitable audio output system for a television receiver presents a delicate question : should the quality aimed at be the best possible in order to give full justice to the transmitted sound or should the quality be satisfactory for the majority of viewers and little else? The problem is not really one of cost if an extra few pounds could result in hi-fi performance there would be little argument about which way to proceed. Unfortunately however the conventional television receiver as a sound reproducer inevitably leaves a lot to be desired. Although a reasonably sized cabinet could be made in order to incorporate a loudspeaker enclosure of hi-fi dimensions a television set is not really suitable for levels of reproduction. The power considered necessary for hi-fi results is at least 8-10 watts: this would inevitably lead to microphony in a television set particularly in the shadowmask tube. There is little point therefore in striving towards the design of a perfect audio output stage, although provision should we feel be made to enable the audio signal to be extracted to drive an external hi-fi system. The drive level available for the audio module is about 23mV (as noted in part 4) and for reasonable reproduction we would like some 2.5 to 3 watts. Commercial receivers average around 2 watts at the time and this is probably a little too low to give a reasonable dynamic range for trahsients. To get 2.5-3W using discrete circuitry we would probably need a five transistor amplifier with coupling, bias, load and feedback components plus a specially designed printed circuit board and suitable heat sinks. The total cost would be higher. It was therefore decided to use an integrated circuit amplifier instead though selection is rather limited for the gain required.
- TONE CONTROL
- ROOM / AUTOMATIC CONTRAST CONTROLS
- MULTI PROGRAMMABLE TIMER / MULTIPLE LED DISPLAYS.
The PHILIPS 26CP2402/08R with the CHASSIS K12Z was introducing for first time in this chassis the RC-5 infrared remote protocol widely used in after developed products for over 25 Years.
Furthermore it was introduced the PHILIPS K12Z chassis with first time isolated from mains primary SMPS.
The RC-5 infrared remote protocol was developed by Philips in the late 1980s as a semi-proprietary consumer IR (infrared) remote control communication protocol for consumer electronics. However, it was also adopted by most European manufacturers, as well as many US manufacturers of specialty audio and video equipment.
This version of the PHILIPS K12z is even introducing the TRD 2 TUNING SYSTEM (TUNING REMOTE DIGITAL) WHICH allows direct selection of channel frequency on front keyboard or even via remote through a help of a Ucontroller which sends command to the TRD Units system.
TRD (Tuning Remote Digital) RC5 system synthesizer tuning search system which allows perfect automatic search and automatic AFT tuning of each channel for all bands and special channels VHF + S + UHF.
Channel selection is controlled by a frequency synthesizer a sweep of available channels is made by a channel selecting arrangement and this sweep is arranged to be stopped when a signal is received. When the sweeping is stopped a fine tuning arrangement takes control to respond to the frequency of the received signal and to compensate for any drift of that signal, a frequency synthesizer controlled channel selection means which includes a fine tuning arrangement; means for initiating a sweep of available channels by the channel selection means; means for stopping the sweep on reception of a signal and means, operable on cessation of sweeping and responsive to the frequency of the signal, and arranged to control the fine tuning arrangement to compensate for frequency drift of the signal.
- Direct channel calling capability feature both keyboard and remote control.
It is desirable to employ channel selection systems in television receivers which permit direct selection of channels without the necessity of tuning through unused or unwanted channels to arrive at the desired channel. Many techniques have been suggested for accomplishing this. Most such direct select tuning systems employ a push button keyboard of the type commonly found in hand-held calculators or push button telephones to select the channel numbers. Decoding logic then is employed to change the keyboard information for selecting the channel into a form which effects the desired tuning of the receiver.
An ideal system for converting keyboarded direct select channel information into a usable control signal for tuning the receiver is a frequency synthesizer tuning system. Generally, this is accomplished by employing a programmable frequency divider between the output of the local oscillator or tuning oscillator of the receiver and one input to a phase comparator. The other input to the phase comparator is obtained from the output of a reference oscillator; and the output of the phase comparator comprises a tuning voltage which is used to control the frequency of the local oscillator. The division ratio of the programmable frequency divider is selected directly by the channel selection keyboard. Theoretically, this type of system is ideal for eliminating the need for fine tuning adjustments of a television receiver, so long as the reference oscillator is a highly stable oscillator. But even with a highly stable reference oscillator, frequency synthesizer systems fail to maintain proper tuning of television receivers in all cases, primarily because the signals from transmitting stations are not precisely maintained at the proper frequencies
A microcomputer control system is described for effecting channel tuning and function selection in a television receiver. The system will respond to commands entered by a set of controls at the television receiver or to remote control commands received at the television receiver. A channel number display is also provided whereby the channel number of a station currently tuned is displayed. A microprocessor within the system is programmed to validate control information received from an operator either by remotely generated commands or by controls located on the television receiver. Operator supplied information is processed and implemented by the microprocessor control system to effect control over the television receiver.
Microprocessor technology has recently provided circuit designers with a new basic design component. The microprocessor is capable of duplicating many functions heretofore realized with the use of large scale computer systems. The microprocessors have the advantage of being small, low power consumption devices capable of being programmed with instructions for executing mathematical algorithms on data supplied to the microprocessor. The microprocessor, when properly programmed, will execute a set of instructions providing output data during execution which may be used to control a process or apparatus.
The control of television receivers has heretofore required separate circuits for effecting channel selection, function selection and level setting, and remote control. With the microprocessor it has become possible to control these performance aspects with a single preprogrammed microprocessor and suitable input/output circuits. Data indicating the selection of a new channel to be tuned or a function to be controlled by an operator of the television receiver may be supplied to the input port of the microprocessor. This data may be supplied from a set of hand controls or a transducer for detecting remotely generated commands. Remote control systems presently incorporated in many television receivers provide operation of a television receiver by transmitting information bearing ultrasonic sound waves or infrared light waves to the television receiver. These waves when received at the television receiver are decoded into an electrical signal for effecting the change in channel tuning or function level. The microprocessor has the capability of validating this electrical signal and performing all decoding pursuant to preprogrammed instructions. These instructions, when executed by the microprocessor, generate a digital signal for effecting the desired channel change or function level change.
Furthermore it has a programmable very sophisiticated realtime digital clock which allows to start the tellye at a prefixed time on a prefixed program and prefixed day of the week.
On the front panel up-right near power switch there is a switchable ambient light sensor which drives, in opportune, way the contrast tracking of the picture as a function of the light in the room were the tellye is running; more particularly to a control system for maintaining proper balance between room lighting conditions and the level of picture tube excitation in a color television receiver. More especially the present invention functions to increase contrast, intensity and chroma signal strength when the room lighting level increases to diminish these parameters when the level of room lighting decreases.
Conventional television receivers, of course, have manually operable controls by means of which a viewer may set the level of contrast, intensity, and chroma signal strength to what he feels to be an optimum level for given room lighting conditions. Under changed room lighting conditions, the viewer will obtain the optimum viewing situation by changing these manual controls to a new preferred level.
This model was only in 26 inches screen format sold and even in stereo HIFI versions.
PHILIPS 26CP2402/08R VELASQUEZ (PHILIPS K12Z) with the featured CHASSIS PHILIPS K12Z incorporates first time an invention which relates to a novel automatic gray scale control circuit for a color television receiver. The circuit senses the cut-off voltage of each gun during the blanking interval, and uses a voltage equal to the cut-off voltage to energize the driver and bias the gun during the video field. The effect is to standardize the emission of each of the three guns against variation in gun cut-off voltage and to produce improved gray scale accuracy at the lowest emission levels. Since the gray scale adjustment is optimized at the lowest emission levels, where the eye is most intolerant to error in hue, one may avoid the need for manual adjustment of the cut-off point, and in cases where the gain does not vary widely from gun to gun, avoid the need for separate gain adjustment. Thus, the circuit may be used either to simplify or eliminate the color set up process at the factory when the receiver is manufactured. It may also reduce or avoid the need for readjustment after periods of use.The emission characteristics of the electron guns of a color kinescope in a television receiver are subject to varying as a function of temperature and aging, among other factors. When such variations affect the gain related transconductance of one or more electron guns, the affected electron guns conduct improper white level currents in response to a white level video drive signal. Thus a non-white color image is produced in response to a white video signal, and the overall color fidelity of a reproduced image is impaired.
As example some color television receivers include systems for automatically compensating for variations of the electron gun emission characteristics which relate to the gains of the electron guns. Such automatic control systems are desirable because they continuously maintain the proper gain characteristic of the electron guns, and because they eliminate the need for time consuming manual kinescope gain adjustments during the receiver manufacturing process and afterwards as the kinescope ages. Such automatic kinescope level control systems, also known as "white grey balance" systems, often operate by applying a white reference signal to preceding video signal processing circuits during intervals when video information signals are absent. The resulting kinescope electron gun current is then sensed and compared with a reference signal representative of a corresponding correct kinescope white current level. As a result of this comparison, a control signal indicating the amount by which the electron gun white current level differs from the correct level is generated and used to adjust the signal gain of an associated amplifier in the video signal path until the correct electron gun white current level is produced.
This set has even an auto diagnose system for chassis level fault servicing capability.
If a Fault occurs a code will be displayed on the program/channel led display. Such code is an address feature to send servicing properly a chassis zone referring a possible group of components generating that fault.
A self-diagnosing apparatus and a method for a Television apparatus which are capable of detecting errors of the apparatus, and classifying the errors for thus more effectively correcting the errors. The apparatus includes an operation state detection unit for detecting an operation state of a part of the apparatus, a self-diagnosing unit for checking an erroneous part based on an output signal from the operation state detection unit and checking a using state of a display for displaying an information which is used for correcting the error and externally transmitting the information. The conventional PHILIPS self-diagnosing content display apparatus for a TV includes a microcomputer for controlling the entire operation of an apparatus and controlling a self-diagnosing content display operation, this is obtained with a preprogrammed microcomputer.The controller employs a perceptable indicator, usually a visual display. This indicator normally provides the TV user with information useful in operating the appliance when it is functioning properly. For example,program and channels, on the other hand, the visual display performs the additional function of providing the results of internally programmed diagnostic test performed in background in a continuous cycle comprising the normal functions tasks. The controller will determine the suspected point of failure and display a unique code in association therewith in the visual display. This code can be interpreted to determine the exact circuit that failed and to eliminate much of the time consumption random trouble shooting of controls entails. The microprocessor checks its major internal and input and output circuits for proper computation through key voltages across the chassis via pheriperals and I2IC Bus. If the program senses a discrepancy in the computation or recordation of data, a code corresponding to the error detected appears in the visual display panel. This code denotes the location of the failure in the control circuitry and or in specific groups or zones of the main chassis. Through the use of the self-diagnostic electronic controller, the system determines itself whether it is trouble free or not, like testing internal data busto determine if the microcomputer is faulty itself. Through the use of the self-diagnostic electronic controller, the system determines itself whether it is trouble free or not. It then becomes unnecessary for a service technican to change out a control board and substitute a replacement board to determine if the original control board is defective, unless the self diagnostic control determines that this should be done.
Such list of codes was available on the chassis service manual.
Was very expensive and pretty a unique model series produced for very brief time and quickly replaced by other models with K30 and K35 chassis.
The set is build with a Modular chassis design because as modern television receivers become more complex the problem of repairing the receiver becomes more difficult. As the number of components used in the television receiver increases the susceptibility to breakdown increases and it becomes more difficult to replace defective components as they are more closely spaced. The problem has become even more complicated with the increasing number of color television receivers in use. A color television receiver has a larger number of circuits of a higher degree of complexity than the black and white receiver and further a more highly trained serviceman is required to properly service the color television receiver.
Fortunately for the service problem to date, most failures occur in the vacuum tubes used in the television receivers. A faulty or inoperative vacuum tube is relatively easy to find and replace. However, where the television receiver malfunction is caused by the failure of other components, such as resistors, capacitors or inductors, it is harder to isolate the defective component and a higher degree of skill on the part of the serviceman is required.
Even with the great majority of the color television receiver malfunctions being of the "easy to find and repair" type proper servicing of color sets has been difficult to obtain due to the shortage of trained serviceman.
At the present time advances in the state of the semiconductor art have led to the increasing use of transistors in color television receivers. The receiver described in this application has only two tubes, the picture tube and the high voltage rectifier tube, all the other active components in the receiver being semiconductors.
One important characteristic of a semiconductor device is its extreme reliability in comparison with the vacuum tube. The number of transistor and integrated circuit failures in the television receiver will be very low in comparison with the failures of other components, the reverse of what is true in present day color television receivers. Thus most failures in future television receivers will be of the hard to service type and will require more highly qualified servicemen.
The primary symptoms of a television receiver malfunction are shown on the picture tube of the television receiver while the components causing the malfunction are located within the cabinet. Also many adjustments to the receiver require the serviceman to observe the screen. Thus the serviceman must use unsatisfactory mirror arrangements to remove the electronic chassis from the cabinet, usually a very difficult task. Further many components are "buried" in a maze of circuitry and other components so that they are difficult to remove and replace without damage to other components in the receiver.
Repairing a modern color television receiver often requires that the receiver be removed from the home and carried to a repair shop where it may remain for many weeks. This is an expensive undertaking since most receivers are bulky and heavy enough to require at least two persons to carry them. Further, two trips must be made to the home, one to pick up the receiver and one to deliver it. For these reasons, the cost of maintaining the color television receiver in operating condition often exceeds the initial cost of the receiver and is an important factor in determining whether a receiver will be purchased.
Therefore, the object of this invention is to provide a transistorized color television receiver in which the main electronic chassis is easily accessible for maintenance and adjustment. Another object of this invention is to provide a transistorized color television receiver in which the electronic circuits are divided into a plurality of modules with the modules easily removable for service and maintenance. The main electronic chassis is slidably mounted within the cabinet so that it may be withdrawn, in the same manner as a drawer, to expose the electronic circuitry therein for maintenance and adjustment from the rear closure panel after easy removal. Another aspect is the capability to be serviced at eventually the home of the owner.
PHILIPS 26CP2402/08R VELASQUEZ: Philips colour television. K12Z chassis.
Eurocolor Valvo A66-540X inline CRT, 30 AX-System.
The 30AX system, which Philips introduced in 1979, is an important landmark in the development of colour picture systems. With previous systems the assembly technician had to workthrough a large number of complicated setting-up procedures whenever he fitted a television picture tube with aset of coils for deflecting the electron beams. These procedures were necessary to ensure that the beams for the three colours would converge at thescreen for every deflection. They are no longer necessary with the 30AX system: for a given screen format any deflection unit can be combined with any tube to form a single 'dynamically convergent' unit. A colour-television receiver can thus be assembled from its components almost as easily as a monochrome receiver. The colour picture tube of the PHILIPS 30AX system displays a noticeably sharper picture over the entire screen surface. This will be particularly noticeable when data transmissions such as Viewdata and Teletext are displayed. This has been achieved by a reduction in the size of the beam spot by about 30%. Absence of coma and the retention of the 36.5 mm neck diameter have both contributed to increased picture sharpness. Coma has been eliminated by means of corrective field shapers embedded in the deflection coils which are sectionally wound saddle types. The new deflection unit has no rear flanges. enabling uniform self-convergence to be obtained for all screen sizes. without special corrections, adjustments, or tolerance compensations. Horizontal raster distortion is reduced and no vertical correction is required. One of the inventions in 30AX is an internal magnetic correction system which obviates static convergence and colour purity errors. This enables the usual multiple unit to be dispensed with. together with the need for its adjustment ! New techniques have been employed to achieve close tolerance construction of the glass envelope. In addition, the 30AX picture tube incorporates two features whereby it can be accurately adjusted during the last stages of manufacture. One is the internal magnetic correction system. The other is an array of bosses on the cone that establish a precise reference for the axial purity positioning of the deflection unit on the tube axis and for raster orientation. During its manufacture, each deflection unit is individually adjusted for optimum convergence. The coil carrier also incorporates reference bosses that co-operate with those on the cone of the tube. ' Since every picture tube and every deflection unit is individually pre-aligned, any deflection unit automatically matches with any picture tube of the appropriate size. The deflection unit has only to be pushed onto the neck of the tube unit it seats. Once the reference bosses are engaged, the combination is accurately aligned and requires no adjustment for convergence, colour purity or raster orientation. With no multiple unit and a flangeless deflection unit, there is more space in the receiver cabinet. Higher deflection sensitivity means that less current is consumed, and consequently less heat is produced. This increases the reliability of the TV receiver again. 30AX means simple assembly. Any picture tube is compatible with any deflection unit of the appropriate size and is automatically self-aligning as well as being self-convergent.
The well-known 20AX features of HI-Bri, Soft-Flash and Quick-vision are maintained in the new 30AX systern. In their work on the design of deflection coils in the last few years the developers have expanded the magnetic deflectionfields into 'multipoles', This approach has improved the understanding of the relations between coil and field and between field and deflection to such an extent that designing deflection units is now more like playing a difficult but fascinating game of chess than carrying out the obscure computing procedure once necessary.
Now that the new Philips 30AX tube has put in an appearance, some details can be filled in. The new tube has been developed from the 20AX, which has been in production since 1974, but brings with it several important advances. First, no dynamic convergence, static convergence, purity or raster correction adjustments are necessary. Secondly the new yoke design gives improved deflection sensitivity, a straight NS raster, and reduced EW raster distortion. Due to the close mechanical tolerances and the inclusion of positioning bosses on the tube bowl, the tube and yoke can be aligned simply by being pushed together - any 30AX yoke will automatically match any 30AX tube of the appropriate size. Thirdly the newly designed electron gun gives a sharper spot, with greater focus uniformity over the screen area. An internal magnetic ring is used to give correct purity and static beam convergence, in place of the multipole unit used in previous in -line gun tube designs. This results in a strikingly compact assembly. The automatic yoke/tube alignment does away with the need for preset mechanical tilt and shift adjustments which, Philips point out, correct one error by introducing another. The new tube is being produced in the 26, 22 and 20in. screen sizes. The power consumption of a set fitted with the 30AX is typicaly 100W compared to 120W with the 20AX system, at 1.2mA beam current and with an e.h.t. of 25kV. This compares with 88W for a set fitted with a 90° narrow -neck tube and hybrid yoke, under the same conditions.
PHILIPS 26CP2402/08R VELASQUEZ :
Computer controlled tuning, VHF-UHF.
Channel Selection (CS) for 99 channels and Program (P) selection for 30 presets.
Clock (C) with 10 events, 7 days in advance.
Automatic contrast adjustment (APC).
RC5, also suitable for VCR's. AV connector (DIN-45 482). Audio connector for taperecorder (DIN-41 524).
Hifi speaker system with 10 cm diameter woofers, 5 cm diameter tweeters. 1 x 15 w sinus / 1 x 35 w music ampiflier.
It's an interesting fact that the cathode ray tube, which was amongst the very earliest thermionic devices, seems likely to be amongst the very last in everyday use. Receiving valves are largely things of the past, while timebase valves now belong in the service department. The development of the CRT continues apace however, and one cannot see any likelihood of its demise. Solid-state displays have been talked about, and demonstrated, but anything likely to compete on cost and performance grounds with the modern colour tube seems forever to be "at least ten years away". The early experiments with cathode-ray tubes were carried out in the last century. By the turn of the century, crude CRTs could be made. An early CRT, the Wehnelt hot cathode tube of 1905, is on display at the IBA's Television Gallery. By 1910, Alexander Campbell -Swinton had come to appreciate the possibilities of the CRT as a pick-up and display device for television, and put forward suggestions for such a TV system. It was a while however before the type of tube we know today appeared. The tubes of the 1910-30 era were gas focused devices (relying on residual gas to focus the beam), the vacuum pumps of the period producing only a poor vacuum. By the time of the start of the BBC's TV service in 1936 however the modern type of tube had arrived. It was a triode device with external focusing and a deflection angle of around 50°. The usual sizes were 9 and 12in., and the e.h.t. was about 5kV. Post-war developments during the 1950s saw some important innovations. The deflection angle went to 70°, then 90°, then 110°; multi -electrode gun assemblies with electrostatic focusing were introduced; the e.h.t rose to 20kV; improved phosphors became available; and the advent of the aluminised screen considerably improved the brightness and contrast (by reflecting all the phosphor light emission forwards) while overcoming the problem of ion bombardment. Meanwhile, colour had come. The principle of the shadowmask tube had been suggested in the 1930s, but development (by RCA) had to wait until proposals for an acceptable, practical colour broadcasting system were put forward. A regular colour service was started in the USA in 1954, and the receivers were fitted with 21in. shadowmask tubes. Early developments included the use of improved phosphors, but essentially the same tube confronted us with the advent of colour transmissions in Europe in 1967. As you all know, it had three guns mounted in a triangular formation, a dot-phosphor screen, a massive convergence system in two sections (radial and lateral), plus purity magnets and a large metal shield on which the degaussing coils hung. It also needed both NS and EW raster correction circuitry. The first versions in Europe had a deflection angle of 90° : when the 110° version came along in the early 1970s the convergence and raster correction circuitry required were even more complex, but the degaussing shield had disappeared inside the tube. At much the same time however the first major breakthrough in large screen tube design occurred (we put it that way because the innovating Sony Trinitron was at the time mainly a small screen tube) - the RCA PIL tube with its in -line guns, phosphor -striped screen, and slotted shadowmask. The design of the yoke to provide self -convergence in conjunction with the in -line gun arrangement meant that no dynamic convergence system was required, while some simple manufacturer preset magnets provided static convergence and purity correction. Sets using this tube first appeared in Europe in 1975, and meanwhile the PHILIPS 20AX system had come along. Over the last few years the pace of development has quickened to a striking extent. We've had quick warm-up cathodes, the hi-bri technology which increases the shadow mask's transparency, the contoured line screen, the super -arch mask, pigmented phosphors, soft flash to reduce flashover damage, redesigned focus arrangements, and increased use of an earlier development, the black -stripe screen. The latest generation of tubes require no NS raster correction circuitry, which is all part of a parallel development in yoke technology, while the need for EW correction is also in the process of being designed out. With the new Philips 30AX tube, the static convergence and purity system disappear inside the tube in the form of a small internal magnetic ring. It's all a long way from Wehnelt's hot -cathode tube of 1905. The latest colour tubes are compact and have all the various correction arrangements required built in. They are amazing feats of precision engineering, and a solid-state alternative seems as far away as ever. Is there any farther to go along this path? Well, single -gun colour tubes using the beam indexing principle are now understood to be a practical proposition for small screen tubes, so we can't be too sure.
Koninklijke Philips Electronics N.V. (Royal Philips Electronics Inc.), most commonly known as Philips, (Euronext: PHIA, NYSE: PHG) is a multinational Dutch electronics corporation.
Philips is one of the largest electronics companies in the world. In 2009, its sales were €23.18 billion. The company employs 115,924 people in more than 60 countries.
Philips is organized in a number of sectors: Philips Consumer Lifestyles (formerly Philips Consumer Electronics and Philips Domestic Appliances and Personal Care), Philips Lighting and Philips Healthcare (formerly Philips Medical Systems).
The company was founded in 1891 by Gerard Philips, a maternal cousin of Karl Marx, in Eindhoven, Netherlands. Its first products were light bulbs and other electro-technical equipment. Its first factory survives as a museum devoted to light sculpture. In the 1920s, the company started to manufacture other products, such as vacuum tubes (also known worldwide as 'valves'), In 1927 they acquired the British electronic valve manufacturers Mullard and in 1932 the German tube manufacturer Valvo, both of which became subsidiaries. In 1939 they introduced their electric razor, the Philishave (marketed in the USA using the Norelco brand name).
Philips was also instrumental in the revival of the Stirling engine.
As a chip maker, Philips Semiconductors was among the Worldwide Top 20 Semiconductor Sales Leaders.
In December 2005 Philips announced its intention to make the Semiconductor Division into a separate legal entity. This process of "disentanglement" was completed on 1 October 2006.
On 2 August 2006, Philips completed an agreement to sell a controlling 80.1% stake in Philips Semiconductors to a consortium of private equity investors consisting of Kohlberg Kravis Roberts & Co. (KKR), Silver Lake Partners and AlpInvest Partners. The sale completed a process, which began December 2005, with its decision to create a separate legal entity for Semiconductors and to pursue all strategic options. Six weeks before, ahead of its online dialogue, through a letter to 8,000 of Philips managers, it was announced that they were speeding up the transformation of Semiconductors into a stand-alone entity with majority ownership by a third party. It was stated then that "this is much more than just a transaction: it is probably the most significant milestone on a long journey of change for Philips and the beginning of a new chapter for everyone – especially those involved with Semiconductors".
In its more than 115 year history, this counts as a big step that is definitely changing the profile of the company. Philips was one of few companies that successfully made the transition from the electrical world of the 19th century into the electronic age, starting its semiconductor activity in 1953 and building it into a global top 10 player in its industry. As such, Semiconductors was at the heart of many innovations in Philips over the past 50 years.
Agreeing to start a process that would ultimately lead to the decision to sell the Semiconductor Division therefore was one of the toughest decisions that the Board of Management ever had to make.
On 21 August 2006, Bain Capital and Apax Partners announced that they had signed definitive commitments to join the expanded consortium headed by KKR that is to acquire the controlling stake in the Semiconductors Division.
On 1 September 2006, it was announced in Berlin that the name of the new semiconductor company founded by Philips is NXP Semiconductors.
Coinciding with the sale of the Semiconductor Division, Philips also announced that they would drop the word 'Electronics' from the company name, thus becoming simply Koninklijke Philips N.V. (Royal Philips N.V.).
In the early years of Philips &; Co., the representation of the company name took many forms: one was an emblem formed by the initial letters of Philips ; Co., and another was the word Philips printed on the glass of metal filament lamps.
One of the very first campaigns was launched in 1898 when Anton Philips used a range of postcards showing the Dutch national costumes as marketing tools. Each letter of the word Philips was printed in a row of light bulbs as at the top of every card. In the late 1920s, the Philips name began to take on the form that we recognize today.
The now familiar Philips waves and stars first appeared in 1926 on the packaging of miniwatt radio valves, as well as on the Philigraph, an early sound recording device. The waves symbolized radio waves, while the stars represented the ether of the evening sky through which the radio waves would travel.
In 1930 it was the first time that the four stars flanking the three waves were placed together in a circle. After that, the stars and waves started appearing on radios and gramophones, featuring this circle as part of their design. Gradually the use of the circle emblem was then extended to advertising materials and other products.
At this time Philips’ business activities were expanding rapidly and the company wanted to find a trademark that would uniquely represent Philips, but one that would also avoid legal problems with the owners of other well-known circular emblems. This wish resulted in the combination of the Philips circle and the wordmark within the shield emblem.
In 1938, the Philips shield made its first appearance. Although modified over the years, the basic design has remained constant ever since and, together with the wordmark, gives Philips the distinctive identity that is still embraced today.
The first steps of CRT production by Philips started in the thirties with the Deutsche Philips Electro-Spezial gesellschaft in Germany and the Philips NatLab (Physics laboratory) in Holland. After the introduction of television in Europe, just after WWII there was a growing demand of television sets and oscilloscope equipment. Philips in Holland was ambitious and started experimental television in 1948. Philips wanted to be the biggest on this market. From 1948 there was a small Philips production of television and oscilloscope tubes in the town of Eindhoven which soon developed in mass production. In 1976 a part of the Philips CRT production went to the town of Heerlen and produced its 500.000'th tube in 1986. In 1994 the company in Heerlen changed from Philips into CRT-Heerlen B.V. specialized in the production of small monochrome CRT's for the professional market and reached 1.000.000 produced tubes in 1996. In this stage the company was able to produce very complicated tubes like storage CRT's.
In 2001 the company merged into Professional Display Systems, PDS worked on LCD and Plasma technology but went bankrupt in 2009. The employees managed a start through as Cathode Ray Technology which now in 2012 has to close it's doors due to the lack of sales in a stressed market. Their main production was small CRT's for oscilloscope, radar and large medical use (X-ray displays). New experimental developments were small Electron Microscopy, 3D-TV displays, X-Ray purposes and Cathode Ray Lithography for wafer production. Unfortunately the time gap to develop these new products was too big.
28 of September 2012, Cathode Ray Technology (the Netherlands), the last Cathode Ray Tube factory in Europe closed. Ironically the company never experienced so much publicity as now, all of the media brought the news in Holland about the closure. In fact this means the end of mass production 115 years after Ferdinand Braun his invention. The rapid introduction and acceptation of LCD and Plasma displays was responsible for a drastic decrease in sales. Despite the replacement market for the next couple of years in the industrial, medical and avionics sector.
The numbers are small and the last few CRT producers worldwide are in heavy competition.
Gerard Philips:
Gerard Leonard Frederik Philips (October 9, 1858, in Zaltbommel – January 27, 1942, in The Hague, Netherlands) was a Dutch industrialist, co-founder (with his father Frederik Philips) of the Philips Company as a family business in 1891. Gerard and his younger brother Anton Philips changed the business to a corporation by founding in 1912 the NV Philips' Gloeilampenfabrieken. As the first CEO of the Philips corporation, Gerard laid with Anton the base for the later Philips multinational.
Early life and education
Gerard was the first son of Benjamin Frederik David Philips (1 December 1830 – 12 June 1900) and Maria Heyligers (1836 – 1921). His father was active in the tobacco business and a banker at Zaltbommel in the Netherlands; he was a first cousin of Karl Marx.
Career
Gerard Philips became interested in electronics and engineering. Frederik was the financier for Gerard's purchase of the old factory building in Eindhoven where he established the first factory in 1891. They operated the Philips Company as a family business for more than a decade.
Marriage and family
On March 19, 1896 Philips married Johanna van der Willigen (30 September 1862 – 1942). They had no children.
Gerard was an uncle of Frits Philips, whom he and his brother brought into the business. Later they brought in his brother's grandson, Franz Otten.
Gerard and his brother Anton supported education and social programs in Eindhoven, including the Philips Sport Vereniging (Philips Sports Association), which they founded. From it the professional football (soccer) department developed into the independent Philips Sport Vereniging N.V.
Anton Philips:
Anton Frederik Philips (March 14, 1874, Zaltbommel, Gelderland – October 7, 1951, Eindhoven) co-founded Royal Philips Electronics N.V. in 1912 with his older brother Gerard Philips in Eindhoven, the Netherlands. He served as CEO of the company from 1922 to 1939.
Early life and education
Anton was born to Maria Heyligers (1836 – 1921) and Benjamin Frederik David Philips (December 1, 1830 – June 12, 1900). His father was active in the tobacco business and a banker at Zaltbommel in the Netherlands. (He was a first cousin to Karl Marx.) Anton's brother Gerard was 16 years older.
Career
In May 1891 the father Frederik was the financier and, with his son Gerard Philips, co-founder of the Philips Company as a family business. In 1912 Anton joined the firm, which they named Royal Philips Electronics N.V.
During World War I, Anton Philips managed to increase sales by taking advantage of a boycott of German goods in several countries. He provided the markets with alternative products.
Anton (and his brother Gerard) are remembered as being civic-minded. In Eindhoven they supported education and social programs and facilities, such as the soccer department of the Philips Sports Association as the best-known example.
Anton Philips brought his son Frits Philips and grandson Franz Otten into the company in their times. Anton took the young Franz Otten with him and other family members to escape the Netherlands just before the Nazi Occupation during World War II; they went to the United States. They returned after the war.
His son Frits Philips chose to stay and manage the company during the occupation; he survived several months at the concentration camp of Vught after his workers went on strike. He saved the lives of 382 Jews by claiming them as indispensable to his factory, and thus helped them evade Nazi roundups and deportation to concentration camps.
Philips died in Eindhoven in 1951.
Marriage and family
Philips married Anne Henriëtte Elisabeth Maria de Jongh (Amersfoort, May 30, 1878 – Eindhoven, March 7, 1970). They had the following children:
* Anna Elisabeth Cornelia Philips (June 19, 1899 – ?), married in 1925 to Pieter Franciscus Sylvester Otten (1895 – 1969), and had:
o Diek Otten
o Franz Otten (b. c. 1928 - d. 1967), manager in the Dutch electronics company Philips
* Frederik Jacques Philips (1905-2005)
* Henriëtte Anna Philips (Eindhoven, October 26, 1906 – ?), married firstly to A. Knappert (d. 1932), without issue; married secondly to G. Jonkheer Sandberg (d. September 5, 1935), without issue; and married thirdly in New York City, New York, on September 29, 1938 to Jonkheer Gerrit van Riemsdijk (Aerdenhout, January 10, 1911 – Eindhoven, November 8, 2005). They had the following children:
o ..., Jonkheerin Gerrit van Riemsdijk (b. Waalre, October 2, 1939), married at Waalre on February 17, 1968 to Johannes Jasper Tuijt (b. Atjeh, Koeta Radja, March 10, 1930), son of Jacobus Tuijt and wife Hedwig Jager, without issue
o ..., Jonkheerin Gerrit van Riemsdijk (b. Waalre, April 3, 1946), married firstly at Calvados, Falaise, on June 6, 1974 to Martinus Jan Petrus Vermooten (Utrecht, September 16, 1939 – Falaise, August 29, 1978), son of Martinus Vermooten and wife Anna Pieternella Hendrika Kwantes, without issue; married secondly in Paris on December 12, 1981 to Jean Yves Louis Bedos (Calvados, Rémy, January 9, 1947 – Calvados, Lisieux, October 5, 1982), son of Georges Charles Bedos and wife Henriette Louise Piel, without issue; and married thirdly at Manche, Sartilly, on September 21, 1985 to Arnaud Evain (b. Ardennes, Sedan, July 7, 1952), son of Jean Claude Evain and wife Flore Halleux, without issue
o ..., Jonkheerin Gerrit van Riemsdijk (b. Waalre, September 4, 1948), married at Waalre, October 28, 1972 to Elie Johan François van Dissel (b. Eindhoven, October 9, 1948), son of Willem Pieter
(To see the Internal Chassis Just click on Older Post Button on bottom page, that's simple !)
A comment...........of a 1996 reality ..................
Philips, which seems to be a perennial walking wounded case. The company had appeared to be on the mend after a worldwide cost- cutting programme which was started five years ago when Jan Timmer took over as chairman.
But, following a sharp profits fall, with the company's first quarterly loss since 1992, a further shake up is being undertaken.
The difficulty is that the company operates in a mature market, in which prices are falling at an annual rate of six per cent. Manufacturers are competing by cutting costs to gain a larger share of static demand. It's not a situation in which any firm that does its own manufacturing can achieve much. Philips' latest plan involves an overall loss of 6,000 jobs in its consumer electronics business, with far greater reliance placed on a group of external suppliers which are referred to as "a cluster of dedicated subcontractors".
This is an approach that was pioneered many years ago by major Japanese manufacturers. Rather than make everything yourself, you rely on subcontractors who, in return, rely on you for their main source of work. It is hardly a cosy arrangement: the whole point seems to be that the major fain can exert pressure on its subcontractors, thereby - in theory - achieving optimum efficiency and cost-effectiveness. What happens when lower and lower prices are demanded for subcontracted work is not made clear.
The whole edifice could collapse. However that might be, this is the course on which Philips has now embarked. The company is also to carry out distribution, sales and marketing on a regional rather than a national basis, and has said that it will not support Grundig's losses after this year.
But Philips' chief financial officer Dudley Eustace has said that it has "no intention of abandoning the television and audio business". One has to assume that the subcontracting will also be done on an international basis, as major Japanese firms have had to do. There is a sense of déjà vu about this, though one wishes Philips well - it is still one of the major contributors to research and development in our industry.
Toshiba, which has also just appointed a new top man, Taizo Nishimoro, provides an interesting contrast. Mr Nishimoro thinks that the western emphasis on sales and marketing rather than engineering is the way to go. So the whole industry seems to be moving full circle. Taizo Nishimoro has become the first non engineering president of Toshiba. Where the company cannot compete effectively on its own, he intends to seek international alliances or go for closures. He put it as follows. "The technology and the businesses we are engaged in are getting more complex.
In these circumstances, if we try to do everything ourselves we are making a mistake." Here's how Minoru Makihara, who became head of Mitsubishi Corporation four years ago, sees it. "Technologies are now moving so fast that it is impossible for the top manager to know all the details.
Companies are now looking for generalists who can understand broad changes, delegate and provide leadership." Corporate change indeed amongst our oriental colleagues. Major firms the world over are facing similar problems and having to adopt similar policies.
In a mature market such as consumer electronics, you have to rely on marketing to squeeze the last little bit of advantage from such developments as Dolby sound and other added value features. The consumer electronics industry has been hoping that the digital video disc would come to its aid and get sales and profits moving ahead.The DVD was due to be released in Sept 1996 , but we are unlikely to hear much more about it yet awhile. There's no problem with the technology: the difficulty is with licensing and software. There is obviously no point in launching it without adequate software support. But the movie companies, which control most of the required supply of software, are concerned that a recordable version of the disc, due in a couple of years' time, would be a gift to pirates worldwide. Concessions have been made by the electronics industry, in particular that different disc formats should be used in different parts of the world. But a curious problem has arisen.
The other main use of the DVD is as a ROM in computer systems. For this application flexible copying facilities are a major requirement. But the movie companies are unwilling to agree to this. At present the situation is deadlocked and the great hope of an autumn launch, all important for sales, has had to be postponed. Next year maybe? It's a great pity, since the DVD has much to offer.
There's a lot of sad news on the retail side as well. Colorvision has been placed in administrative receivership in 1996 , with a threat to 800 jobs at its 76 stores, while the Rumbelows shops that were taken over by computer retailer Escom have suffered a similar fate. The receivers have closed down the UK chain with the loss of 850 jobs at some 150 stores. Nothing seems to be going right just now.
R.I.P EUROPE....................
Publications:
A. Heerding: The origin of the Dutch incandescent lamp industry. (Vol. 1 of The history of N.V. Philips gloeilampenfabriek). Cambridge, Cambridge University Press, 1986. ISBN 0-521-32169-7A. Heerding: A company of many parts. (Vol. 2 of The history of N.V. Philips' gloeilampenfabrieken). Cambridge, Cambridge University Press, 1988. ISBN 0-521-32170-0
I.J. Blanken: The development of N.V. Philips' Gloeilampenfabrieken into a major electrical group. Zaltbommel, European Library, 1999. (Vol. 3 of The history of Philips Electronics N.V.). ISBN 90-288-1439-6
I.J. Blanken: Under German rule. Zaltbommel, European Library, 1999. (Vol. 4 of The history of Philips Electronics N.V). ISBN 90-288-1440-X
References:
"Philips Annual Report 2018". Philips Results. 27 February 2019. Retrieved 6 March 2019."Philips Greenpeace International". Greenpeace International. Archived from the original on 31 October 2010. Retrieved 7 January 2011.
"Philips Annual Report 2018 - Compare the previous 5 years". Philips Results. 27 February 2019. Retrieved 6 March 2019.
"Annual Report 2014". Philips. Retrieved 19 August 2012.
https://www.industryweek.com/global-economy/philips-drops-electronics-name-strategy-switch
"Börse Frankfurt (Frankfurt Stock Exchange): Stock market quotes, charts and news". Boerse-frankfurt.de. Retrieved 7 April 2018.
"Philips Museum". Philips-museum.com. Retrieved 30 December 2016.
C.M. Hargreaves (1991). The Philips Stirling Engine. Elsevier Science. ISBN 0-444-88463-7. pp.28–30
Philips Technical Review Vol.9 No.4 page 97 (1947)
C.M. Hargreaves (1991), Fig. 3
C.M. Hargreaves (1991), p.61
C.M. Hargreaves (1991), p.77
"Philips Electronics NV | Dutch manufacturer". Encyclopedia Britannica.
"BBC - WW2 People's War - Operation Oyster, Part 1". Bbc.co.uk. Retrieved 30 December 2016.
Everitt, Chris; Middlebrook, Martin (2 April 2014). "The Bomber Command War Diaries: An Operational Reference Book". Pen and Sword. Retrieved 30 December 2016 – via Google Books.
Bruce, Mr A I. "30th March 1943 WWII Timeline". Wehrmacht-history.com. Archived from the original on 12 February 2017. Retrieved 30 December 2016.
"Frits Philips celebrates 100th birthday". Philips. 15 April 2005. Retrieved 10 January 2015.
The Encyclopedia of the Righteous Among the Nations: Rescuers of Jews during the Holocaust: The Netherlands, Jerusalem: Yad Vashem, 2004, pp. 596–597
"PHILIPS Light Tower Complex - The Netherlands", Reynaers-solutions.com, Reynaers Aluminium, archived from the original on 20 January 2012, retrieved 12 September 2011
"Waarom stopt Philips met zelf televisies maken?". de Volkskrant. 18 April 2011. Retrieved 18 April 2011.
"BFI – Film & TV Database – The Philips Time Machine (1977)". The British Film Institute Web Database. Retrieved 16 February 2010.
Snow, Blake (5 May 2007). "The 10 Worst-Selling Consoles of All Time". GamePro.com. Archived from the original on 8 May 2007. Retrieved 1 November 2016.
https://www.trouw.nl/home/philips-gaat-aan-naam-eindelijk-het-woord-koninklijke-toevoegen~a0329b2a/
"Philips Completes Acquisition Agilent Technologies' Healthcare Solutions Group". Thefreelibrary.com. Retrieved 6 January 2017.
"Philips electronics to buy lifeline to expand in consumer health". Wsj.com. Retrieved 7 April 2018.
"Philips to Acquire Healthcare Informatics Company XIMIS Inc. to Strengthen Presence in the Healthcare Information Technology Market". Finanznachrichten.de. Retrieved 7 April 2018.
"News center - Philips". Arquivo.pt. Archived from the original on 16 May 2016. Retrieved 7 April 2018.
"Philips completes acquisition of US-based VISICU". Newscenter.philips.com. 21 February 2008. Retrieved 24 November 2012.
NRC Handelsblad, 4 September 2010 Het nieuwe Philips wordt blij van een iPad-hoesje/The new Philips becomes happy from an iPad cover, Dutch original:" 'We zijn geen high-tech bedrijf meer, het gaat erom dat de technologieën introduceren die breed gedragen worden door de consument', zegt Valk [..] Consumer Lifestyle is nu zodanig ingericht dat er geen jaren meer gewerkt wordt aan uitvindingen die weinig kans van slagen hebben. [..]De Philips staf windt er geen doekjes om dat het bedrijf niet altijd voorop loopt bij de technologische ontwikkelingen in consumentengoederen."
"Philips to merge Preethi biz in future". Moneycontrol.com. 5 September 2012. Retrieved 6 January 2017.
"Sectra news and press releases - Sectra and Philips sign large mammography modality acquisition deal". Sectra.com. Archived from the original on 22 April 2016. Retrieved 8 April 2016.
"Philips to cut 4,500 jobs". The Guardian. 17 October 2011.
"Philips Electronics cuts another 2,200 jobs". Bbc.co.uk. 11 September 2012. Retrieved 7 April 2018.
Lezhnev, Sasha; Alex Hellmuth (August 2012). "Taking Conflict Out of Consumer Gadgets: Company Rankings on Conflict Minerals 2012" (PDF). Enough Project. Retrieved 17 August 2012.
"Philips, LG Electronics, 4 others fined 1.47 billion Euros for EU cartel". The Economic Times. 5 December 2012. Retrieved 5 December 2012.
Van, Robert. (29 January 2013) Philips Exits Consumer Electronics - The Source - WSJ. Blogs.wsj.com. Retrieved on 2013-08-16.
"Philips to exit hi-fis and DVD players". BBC News. 29 January 2013. Retrieved 2 February 2013.
"Philips exits shrinking home entertainment business". Reuters. 29 January 2013. Retrieved 2 February 2013.
Philips to take legal action against Funai. Broadbandtvnews.com (25 October 2013). Retrieved on 2013-12-09.
Sterling, Toby; Mari Yamaguchi. "Philips Breaks off Deal With Funai". ABC News. Amsterdam. Associated Press. Archived from the original on 2 November 2013. Retrieved 22 June 2014.
"Philips announces decision by ICC International Court of Arbitration in Funai arbitration case". Philips Electronics. 2016-04-26. Retrieved 2016-07-23.
"Paradox Engineering and Philips Lighting working together on smart city solutions". startupticker.ch. Retrieved on September 2013.
"Koninklijke Philips Electronics N.V.: Name change" (PDF). eurex. 15 May 2013. Retrieved 10 July 2013.
"Philips unveils new brand direction centered around innovation and people". Newscenter.philips.com. Retrieved 20 November 2013.
"Dutch electronics giant Philips plans to split business". Bbc.com. Retrieved 23 September 2014.
Tartwijk, Maarten Van (31 March 2015). "Philips Sells Majority Stake in LED Components, Automotive Business". Wall Street Journal. Retrieved 30 December 2016.
Escritt, Thomas. "Philips expands in medical devices with $1.2 billion Volcano deal". Reuters.com. Retrieved 7 April 2018.
"Subscribe to read". Ft.com. Retrieved 30 December 2016.
"Philips lighting is now Signify". Signify. 2018-05-16. Retrieved 2018-07-10.
Whitaker, Tim (19 August 2005). "Analysis: Philips acquires controlling stake in Lumileds". www.ledsmagazine.com. Retrieved 2019-03-06.
"Philips announces 100% ownership of Lumileds". www.ledsmagazine.com. 1 January 2007. Retrieved 2019-03-06.
"Lumileds Officially an Independent Company as Funds Affiliated with Apollo Global Management and Philips Complete Transaction". Lumileds. Retrieved 2019-03-06.
"Interactive world maps". Annualreport2013.philips.com. Retrieved 30 December 2016.
Nieuwhof, Marc (15 November 2010). "IP.Philips.com". IP.Philips.com. Retrieved 27 January 2011.
"Archived copy". Archived from the original on 15 August 2016. Retrieved 11 July 2016.
"(Company profile – Philips Hong Kong)". Philips.com.hk. Retrieved 27 January 2011.
"珠海经济特区飞利浦家庭电器有限公司联系方式_信用报告_工商信息-启信宝". Qixin.com. Retrieved 7 April 2018.
Philips opens lighting center in China Automotive News Report – 1 May 2008
"Bangalore.philips.com". Bangalore.philips.com. Retrieved 24 November 2012.
"India's Most Trusted Brands 2014". Archived from the original on 2 May 2015.
"Philips Israel- Company Overview". Philips.co.il. Retrieved 1 May 2010.
"Philips Pakistan - Company Overview". Philips.com.pk. Retrieved 17 October 2011.
"Philips Deutschland - Philips". Philips.de. Retrieved 30 December 2016.
"Philips Portuguesa". Restosdecoleccao.blogspot.pt. Retrieved 7 April 2018.
"História Local - Philips". Philips.pt. Retrieved 30 December 2016.
"Google Maps". Google.pt. Retrieved 30 December 2016.
Portugal, Philips. "Philips Portugal manufacturer in P, radio technology from Po". Radiomuseum.org. Retrieved 30 December 2016.
"Artigos Project : Global Report Volume 20" (PDF). Pardalmonteiro.com. Archived from the original (PDF) on 3 March 2016. Retrieved 7 April 2018.
"Philips - Portugal". Philips.pt. Retrieved 30 December 2016.
"philips uk - Google Maps". Maps.google.co.uk. Retrieved 24 November 2012.
"Dutch firm Philips to move North American headquarters from Andover to Cambridge". The Boston Globe. Retrieved 7 April 2018.
"Philips Brasil Home Page". 30 December 1996. Archived from the original on 30 December 1996. Retrieved 7 April 2018.
John Biggs, Tech Crunch. "Welcome To The Future: Polymer Vision Demos SVGA Rollable Screen." 27 May 2011. Retrieved 27 May 2011.
Lewis, Gareth (15 July 2009). "50 jobs go at Polymer Vision". Southern Daily Echo. Retrieved 6 January 2016.
"Products & Solutions". Philips Healthcare. Retrieved 28 January 2012.
"LED 12.5W A19 Soft White 12.5W (60W) Dimmable A19". Energy-saving light bulbs. Philips.
"Indoor Luminaires". Philips Lighting. Retrieved 4 March 2016.
"Outdoor Luminaires". Philips Lighting. Retrieved 4 March 2016.
"Lamps". Philips Lighting. Retrieved 4 March 2016.
"Lighting Controls". Philips Lighting. Retrieved 27 June 2016.
"Digital projection lighting". Philips Lighting. Retrieved 27 June 2016.
"Horticulture". Philips Lighting. Retrieved 27 June 2016.
"Solar". Philips Lighting. Retrieved 27 June 2016.
"Lighting systems for office & industry". Philips Lighting. Retrieved 4 March 2016.
"Retail and hospitality systems". Philips Lighting. Retrieved 4 March 2016.
"Lighting systems: for public spaces". Philips Lighting. Retrieved 4 March 2016.
"Choose a bulb". Philips Lighting. Retrieved 27 June 2016.
"Choose a lamp". Philips Lighting. Retrieved 27 June 2016.
"Philips Hue homepage". Philips Lighting. Retrieved 27 June 2016.
"The 64 Slice CT Scanner". Web.archive.org. Archived from the original on 10 March 2016. Retrieved 30 December 2016.
"Philips Shield Wordmark Timeline" (JPG). Philips.com. Retrieved 7 April 2018.
"Platform for Accelerating the Circular Economy". Platform for Accelerating the Circular Economy. Retrieved 2019-04-02.
"https://www.philips.com/a-w/about/news/archive/standard/news/articles/2018/20180124-philips-spearheads-the-circular-economy-with-firm-2020-pledge.html". External link in
|title=
(help)
"History of the Ellen MacArthur Foundation". www.ellenmacarthurfoundation.org. Retrieved 2019-04-02.
"Ford tops Interbrand's forth annual ranking as the "greenest" brand in 2014". POPSOP. 13 August 2014. Retrieved 6 March 2019.
"Philips – Our Green Products". Philips. Retrieved 7 January 2011.
Margery Conner, EE Times. "$10M L Prize goes to Philips for 60W replacement LED bulb." 3 August 2011. Retrieved 5 August 2011.
"DOE Announces Philips as First Winner of the L Prize Competition". US Department of Energy. Archived from the original on 6 August 2011. Retrieved 6 August 2011.
"Guide to Greener Electronics | Greenpeace International". Greenpeace.org. Retrieved 24 November 2012.
"Guide to Greener Electronics – Greenpeace International". Greenpeace International. Retrieved 14 November 2011.
Einzelnachweise:
Supervisory Board. In: philips.com
A Guide to Greener Electronics. In: greenpeace.org
[1] In: philips.com
[2] In: philips.com
Gibson-Insolvenz: Philips vergibt Lizenzrechte an TPV Technology. 25. Mai 2018, abgerufen am 6. April 2019 (deutsch).
Philips and TPV to enter global brand license agreement for audio and video products and accessories. Abgerufen am 6. April 2019 (englisch).
Our heritage - Company - About. Abgerufen am 6. April 2019 (englisch).
Instituut voor Nederlandse Geschiedenis: Biografie Gerard Leonard Frederik Philips (niederländisch), abgefragt am 28. August 2009
Unternehmensgeschichte von Philips in Deutschland. In: euroarchiveguide.org (englisch)
Philips 2501. In: radiomuseum.org. Abgerufen am 14. März 2016.
PerfectDraft | Anheuser-Busch InBev Deutschland. Abgerufen am 6. April 2019.
philips.de
Philips Forschung in Aachen schließt. In: Aachener Nachrichten, 5. Oktober 2009
Philips-Beschäftigte demonstrieren gegen Schließung. In: Aachener Nachrichten, 9. Oktober 2009
Philips Forscher suchen nach rettendem Strohhalm. In: Aachener Nachrichten, 9. Oktober 2009
heise online: Philips gliedert Fernsehsparte aus. Abgerufen am 6. April 2019.
heise online: TPV übernimmt Fernsehsparte von Philips. Abgerufen am 6. April 2019.
Das Unternehmen TP Vision startet heute mit der Vermarktung von Philips TVs. Abgerufen am 6. April 2019 (Schweizer Hochdeutsch).
Philips trennt sich von Unterhaltungselektronik. In: Ingenieur360.de. 22. Januar 2014, abgerufen am 6. April 2019 (deutsch).
Neue Philips-Strategie geht auf – Auch Sparprogramm macht sich bezahlt. In: ORF.at, 21. Oktober 2013
Koninklijke Philips Electronics N. V.: Namensänderung. (pdf; 17 kB) eurex, 15. Mai 2013, abgerufen am 9. Juli 2013.
Philips Unternehmensprofil. Philips Website, abgerufen am 9. Juli 2013.
Übernahme gescheitert… Philips Unterhaltungselektronik-Sparte geht nicht an Funai Electric. In: sempre-audio.at
Philips verkauft WOOX Innovations an Gibson Brands. In: philips.com
Philips: Verkauf von Lichtsparte wird abgesagt. (handelsblatt.com [abgerufen am 24. Mai 2018]).
Philips Lighting: Lichtsparte kommt an die Börse. (handelsblatt.com [abgerufen am 24. Mai 2018]).
Philips Lighting: Vollständige Trennung von Lichtsparte geht voran. (handelsblatt.com [abgerufen am 24. Mai 2018]).
Philips Lighting kündigt Änderung des Firmennamens in Signify unter Beibehaltung der Marke Philips für seine Produkte an. In: Philips. (philips.de [abgerufen am 24. Mai 2018]).
Philips Completes Acquisition of US-Based Color Kinetics, Further Strengthening Leading Position in LED Lighting Systems, Components and Technologies. In: finanznachrichten.de
Philips buys Canadian solid state lighting company TIR Systems for 49 mln eur. In: finanznachrichten.de
http://www.newscenter.philips.com/main/standard/about/news/press/archive/2006/article-15403.wpd
http://www.newscenter.philips.com/main/standard/about/news/press/20090727_coffee.wpd
http://www.newscenter.philips.com/main/standard/news/press/2011/20110124_acquisition_preethi.wpd
Philips Unternehmensprofil. Abgerufen am 24. Mai 2018.
Philips Firmenzentrale. Abgerufen am 24. Mai 2018.
Hamburger Abendblatt - Hamburg: Neuer Chef für Philips Deutschland ist ein Niederländer. (abendblatt.de [abgerufen am 24. Mai 2018]).
Philips eröffnet Health Innovation Port. Abgerufen am 24. Mai 2018.
Weltweit erster LCD-Fernseher im 21:9 Kinoformat. In: Heise.de, 13. Januar 2009
HUE 1st Review - Geniales LED Licht System! In: YouTube.com, 29. Oktober 2012
Bluetooth connected toothbrush. In: Philips.com. Abgerufen am 31. August 2017.
Philips Innovation. Abgerufen am 24. Mai 2018.
European Commision: European Union Contest for Young Scientists
Anzeige in: Der Spiegel, Heft 40, 1. Oktober 1973, S. 151 (online)
Karl Sabbagh: Young scientists compete in Europe. In: New Scientist, 10. Juni 1971, S. 639–640 (online bei Google Books)
Jetzt bewerben: Forschungsförderpreis Delir-Management von DIVI und Philips. In: Philips. (philips.de [abgerufen am 24. Mai 2018]).
Philips als Markenzeichen – der Ursprung der Bildmarke. In: philips.de
The design story of the new Philips shield. In: YouTube.com, 13. November 2013
Big Brother Awards 2006 – CD-Brenner überwacht Benutzer. In: Focus.de, 20. Oktober 2006
No comments:
Post a Comment
The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.
Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!
The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.
Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.
Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.
Your choice.........Live or DIE.
That indeed is where your liberty lies.
Note: Only a member of this blog may post a comment.