Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical technology relics that the Frank Sharp Private museum has accumulated over the years .

Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.


Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:

- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........

..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !
-----------------------

©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of
Engineer Frank Sharp. NOTHING HERE IS FOR SALE !

Wednesday, May 23, 2012

ITT SCHAUB LORENZ STUDIO IDEAL COLOR 2805 OSCAR 16 YEAR 1976.












The ITT SCHAUB LORENZ STUDIO IDEAL COLOR 2805 OSCAR 16 is a 26 inches color television with 16 programs and a big ultrasonic remote control the IC-COMPUTER 16.

Was first model designed around 20AX SYSTEM CRT TUBE advertised HELIOCHROM for it's brillant picture.
The PHILIPS 20AX system was introduced in Europe in 1975 as the first self converging picture tube/deflection coil, combination for 110° degree deflection and screen sizes up to 26". The system is based on the automatic convergence principle discovered by Haantjes and Lubben of Philips Research Laboratory more than 20 years ago. It makes use of an in-line gun array in conjunction with a specially designed saddle type deflection coil. Residual small tolerance errors are compensated by a simple dynamic four-pole system. The tube is 2 cm shorter than conventional 110° Degree tubes and has a standard 36.5 mm neck in order to obtain good color selection. A slotted mask is used in combination with a stripe-structure screen. Picture sharpness is ensured by an astigmatic electron gun.
The set was introducing first time the TUNING SEARCH with Volta
ge synthesized AFC control.ITT Semiconductors have announced additions to their range of i.c.s for television receivers, mainly for use in the front end. First the company is offering an i.c. set for controlling TV tuners. It consists of two MOS i.c.s which provide all the data required for tuner control, such as tuning voltage, switching voltage for band selection (where applicable) and the a.f.c. signal. The set comprises the storage i.c. type SAA1020, which functions as a static shift register and has an extremely low current consumption, and the control i.c. type SAA1021, which performs the data processing duties. The low current consumption of the SAA1020 enables the channel data to remain stored for almost a year, even when the TV is switched off. Power is provided by a small 1.5V battery. This i.c. set also facilitates electronic station searching, with silent tuning. This method of station selection obviates the need for any mechnical tuning/storage devices (such as tuning potentio- meters). Also new is a 30 -channel ultrasonic transmitter/receiver combination, the SAA1024 and SAA1025. An altern- ative receiver circuit, the SAA1130, offers programme store as an additional facility. The latter can be used to drive the new SAA1008 character generator which enables the selected channel to be displayed on the screen.
Based aroun ITT Asic Semi digitized tuning control.

Led lamps sequence showing the tuning for each search and each program selected.

The set here shown is even featuring a HIFI SOUNDBOX for high Bass powerful sound and tone control.

AUDIO MODULE: The design of a suitable audio output system for a television receiver presents a delicate question : should the quality aimed at be the best possible in order to give full justice to the transmitted sound or should the quality be satisfactory for the majority of viewers and little else? The problem is not really one of cost if an extra few pounds could result in hi-fi performance there would be little argument about which way to proceed. Unfortunately however the conventional television receiver as a sound reproducer inevitably leaves a lot to be desired. Although a reasonably sized cabinet could be made in order to incorporate a loudspeaker enclosure of hi-fi dimensions a television set is not really suitable for levels of reproduction. The power considered necessary for hi-fi results is at least 8-10 watts: this would inevitably lead to microphony in a television set particularly in the shadowmask tube. There is little point therefore in striving towards the design of a perfect audio output stage, although provision should we feel be made to enable the audio signal to be extracted to drive an external hi-fi system. The drive level available for the audio module is about 23mV (as noted in part 4) and for reasonable reproduction we would like some 2.5 to 3 watts. Commercial receivers average around 2 watts at the time and this is probably a little too low to give a reasonable dynamic range for trahsients. To get 2.5-3W using discrete circuitry we would probably need a five transistor amplifier with coupling, bias, load and feedback components plus a specially designed printed circuit board and suitable heat sinks. The total cost would be higher. It was therefore decided to use an integrated circuit amplifier instead though selection is rather limited for the gain required.

Din jack connectors for Headphone and audio recorders are present.

The tube is a 20 AX TYPE and was featuring ITT VIDOM CHASSIS.

The set is build with a Modular chassis design because as modern television receivers become more complex the problem of repairing the receiver becomes more difficult. As the number of components used in the television receiver increases the susceptibility to breakdown increases and it becomes more difficult to replace defective components as they are more closely spaced. The problem has become even more complicated with the increasing number of color television receivers in use. A color television receiver has a larger number of circuits of a higher degree of complexity than the black and white receiver and further a more highly trained serviceman is required to properly service the color television receiver.
Fortunately for the service problem to date, most failures occur in the vacuum tubes used in the television receivers. A faulty or inoperative vacuum tube is relatively easy to find and replace. However, where the television receiver malfunction is caused by the failure of other components, such as resistors, capacitors or inductors, it is harder to isolate the defective component and a higher degree of skill on the part of the serviceman is required.
Even with the great majority of the color television receiver malfunctions being of the "easy to find and repair" type proper servicing of color sets has been difficult to obtain due to the shortage of trained serviceman.
At the present time advances in the state of the semiconductor art have led to the increasing use of transistors in color television receivers. The receiver described in this application has only two tubes, the picture tube and the high voltage rectifier tube, all the other active components in the receiver being semiconductors.
One important characteristic of a semiconductor device is its extreme reliability in comparison with the vacuum tube. The number of transistor and integrated circuit failures in the television receiver will be very low in comparison with the failures of other components, the reverse of what is true in present day color television receivers. Thus most failures in future television receivers will be of the hard to service type and will require more highly qualified servicemen.
The primary symptoms of a television receiver malfunction are shown on the picture tube of the television receiver while the components causing the malfunction are located within the cabinet. Also many adjustments to the receiver require the serviceman to observe the screen. Thus the serviceman must use unsatisfactory mirror arrangements to remove the electronic chassis from the cabinet, usually a very difficult task. Further many components are "buried" in a maze of circuitry and other components so that they are difficult to remove and replace without damage to other components in the receiver.
Repairing a modern color television receiver often requires that the receiver be removed from the home and carried to a repair shop where it may remain for many weeks. This is an expensive undertaking since most receivers are bulky and heavy enough to require at least two persons to carry them. Further, two trips must be made to the home, one to pick up the receiver and one to deliver it. For these reasons, the cost of maintaining the color television receiver in operating condition often exceeds the initial cost of the receiver and is an important factor in determining whether a receiver will be purchased.
Therefore, the object of this invention is to provide a transistorized color television receiver in which the main electronic chassis is easily accessible for maintenance and adjustment. Another object of this invention is to provide a transistorized color television receiver in which the electronic circuits are divided into a plurality of modules with the modules easily removable for service and maintenance. The main electronic chassis is slidably mounted within the cabinet so that it may be withdrawn, in the same manner as a drawer, to expose the electronic circuitry therein for maintenance and adjustment from the rear closure panel after easy removal. Another aspect is the capability to be serviced at eventually the home of the owner.
The set here shown and the tube are fabricated by SEL (standard elektrik Lorenz)

 In early 1974 the Chief Engineer at ITT's Hastings television factory called a meeting of a small group of his colour TV engineers. He told them that the company planned to market a fully solid-state chassis by Christmas of the following year to supersede the long popular CVC5- CVC9 series of hybrid chassis, and that it was their job to design it. The objectives laid down were not modest. The new chassis had to be ultra -reliable, easy to service, and simpler to make than its predecessor. Reliability headed the list because of the reports of the problems other setmakers had had when changing from hybrid to solid-state colour chassis. It was considered vitally important that the new chassis should be without reproach in this respect. TYPE OF TUBE The first point that had to be agreed upon was the type of tube to use. The previous chassis had been fitted with 90° delta -gun tubes and had established a reputation for above average picture quality. These tubes are difficult to converge and set up however. Worse, particularly from the viewpoint of rental organisations, is the need to readjust them for best results as the convergence circuits age. The c.r.t. selected for the new chassis was the PHILIPS 20AX 110°  -in -Line  tube which has the great advantage of being already semi converged and purified, requiring less adjustment throughout its life. It has been described in some detail in previous issues of this blog , so I won't go over the principles again here. Briefly, it's an in -line gun tube with a slotted shadowmask and vertical RGB phosphor stripes, and with a precision toroidal scanning yoke which is permanently fixed to the tube. The only slight problem with this arrangement is that the cut-off points of the three guns cannot be matched by the conventional technique of adjusting the first anode controls. So a slightly different technique is used - varying the d.c. levels at the three cathodes.


ITT Corporation (NYSE: ITT) is a global diversified manufacturing company with 2008 revenues of $11.7 billion. ITT participates in global markets including water and fluids management, defense and security, and motion and flow control. Forbes.com named ITT Corporation to its list of "America's Best Managed Companies" for 2008, and awarded the company the top spot in the conglomerates category.

ITT's water business is the world's largest supplier of pumps and systems to transport, treat and control water, and other fluids. The company's defense electronics and services business is one of the ten largest US defense contractors providing defense and security systems, advanced technologies and operational services for military and civilian customers. ITT's motion and flow control business manufactures specialty components for aerospace, transportation and industrial markets.

In 2008, ITT was named to the Dow Jones Sustainability World Index (DJSI World) for the tenth time in recognition of the company's economic, environmental and social performance. ITT is one of the few companies to be included on the list every year since its inception in 1999.

The company was founded in 1920 as International Telephone & Telegraph. During the 1960s and 1970s, under the leadership of its CEO Harold Geneen the company rose to prominence as the archetypal conglomerate, deriving its growth from hundreds of acquisitions in diversified industries. ITT divested its telecommunications assets in 1986, and in 1995 spun off its non-manufacturing divisions, later to be purchased by Starwood Hotels & Resorts Worldwide.

In 1996, the company became ITT Industries, Inc., but changed its name back to ITT Corporation in 2006.



History

ITT was formed in 1920, created from the Puerto Rico Telephone Company co-founded by Sosthenes Behn.[1] Its first major expansion was in 1923 when it consolidated the Spanish Telecoms market into what is now Telefónica.[2] From 1922 to 1925 it purchased a number of European telephone companies. In 1925 it purchased the Bell Telephone Manufacturing Company of Brussels, Belgium, which was formerly affiliated with AT&T, and manufactured rotary system switching equipment. In the 1930s, ITT grew through purchasing German electronic companies Standard Elektrizitaetsgesellschaft (SEG) and Mix & Genest, both of which were internationally active companies. Its only serious rival was the Theodore Gary & Company conglomerate, which operated a subsidiary, Associated Telephone and Telegraph, with manufacturing plants in Europe.

In the United States, ITT acquired the various companies of the Mackay Companies in 1928 through a specially organized subsidiary corporation, Postal Telegraph & Cable. These companies included the Commercial Cable Company, the Commercial Pacific Cable Company, Postal Telegraph, and the Federal Telegraph Company.





International telecommunications

International telecommunications manufacturing subsidiaries included STC in Australia and Britain, SEL in Germany, BTM in Belgium, and CGCT and LMT in France. Alec Reeves invented Pulse-code modulation (PCM), upon which future digital voice communication was based. These companies manufactured equipment according to ITT designs including the (1960s) Pentaconta crossbar switch and (1970s) Metaconta D, L and 10c Stored Program Control exchanges, mostly for sale to their respective national telephone administrations. This equipment was also produced under license in Poznań (Poland), and in Yugoslavia, and elsewhere. ITT was the largest owner of the LM Ericsson company in Sweden but sold out in 1960.




1989 breakup

In 1989 ITT sold its international telecommunications product businesses to Alcatel, now Alcatel-Lucent. ITT Kellogg was also part of the 1989 sale to Alcatel. The company was then sold to private investors in the U.S. and went by the name Cortelco Kellogg. Today the company is known as Cortelco (Corinth Telecommunications Corporation, named for Corinth, MS headquarters). ITT Educational Services, Inc. (ESI) was spun off through an IPO in 1994, with ITT as an 83% shareholder. ITT merged its long distance division with Metromedia Long Distance, creating Metromedia-ITT. Metromedia-ITT would eventually be acquired by Long Distance Discount Services, Inc. (LDDS) in 1993. LDDS would later change its name to Worldcom in 1995.

In 1995, ITT Corporation split into 3 separate public companies:

* ITT Corp. — In 1997, ITT Corp. completed a merger with Starwood Hotels & Resorts Worldwide, selling off its non-hotel and resorts business. By 1999, ITT completely divested from ITT/ESI; however, the schools still operate as ITT Technical Institute using the ITT name under license.[1] Also in 1999, ITT Corp. dropped the ITT name in favor of Starwood.[7]
* ITT Hartford (insurance) — Today ITT Hartford is still a major insurance company although it has dropped the ITT from its name altogether. The company is now known as The Hartford Financial Services Group, Inc.
* ITT Industries — ITT operated under this name until 2006 and is a major manufacturing and defense contractor business.
o On July 1, 2006, ITT Industries changed its name to ITT Corporation as a result of its shareholders vote on May 9, 2006.




Purchase of International Motion Control (IMC)

An agreement was reached on June 26, 2007 for ITT to acquire privately held International Motion Control (IMC) for $395 million. The deal was closed and finalized in September 2007. An announcement was made September 14, 2010, to close the Cleveland site.
Purchase of EDO

An agreement was reached September 18, 2007 for ITT to buy EDO Corporation for $1.7 billion.[12] After EDO shareholders' approval, the deal was closed and finalized on December 20, 2007.


Purchase of Laing

On April 16, 2009, ITT announced it has signed a definitive agreement to acquire Laing GmbH of Germany, a privately held leading producer of energy-efficient circulator pumps primarily used in residential and commercial plumbing and heating, ventilating and air conditioning (HVAC) systems.


2011 breakup

On January 12, 2011, ITT announced a transformation to separate the company into 3, stand-alone, publicly-traded, and independent companies.


The International Telephone and Telegraph Company was founded in 1920 by Colonel Sosthenes Behn. Early takeovers formed the company into a worldwide leading conglomerate for telephone technology and other communication technologies - a role that was further supported by the company's expansion during World War II.
After the war ITT expanded in other trades such as automobile technology, satellite communication, liquid technologies, and even the hotel business with the takeover of Sheraton Hotels in the year 1968.
In 1979 the company started to sell off some of its wide spread fields of action. A process that reached its peak in 1995 with the split into three separate listed companies - ITT Industries, ITT Hartford Group and ITT Destinations. ITT Destinations, a service provider in the hospitality industry was later sold to Starwood Hotels & Resorts. The ITT Hartford Group, a subsidiary in the insurance industry was separated as Hartford Financial Services.
Today ITT Corp. is a worldwide operating enterprise with a turnover of 9 bln US$ in the year 2007 and leading positions in its four main areas of operations. Around 40.000 people are employed worldwide. The company is seated in White Plains, New York.
ITT is the worldwide leading supplier of pumps, systems, and services for the control and treatment of water and other liquids. The company is a main supplier of high-end military defense systems and offers its technical and operational services to a wide range of government agencies. Further, ITT produces plugs, switches, and wirings which are being used in telecommunications, computers, aviation, industrial applications, and networks. ITT is also a manufacturer of industrial components which are being used in transportation, construction, and aviation.
ITT's history in consumer electronics reaches back far into the year 1930 when ITT became a major shareholder in the company "Mix & Genest AG" which was founded in 1879 by Wilhelm Mix and Werner Gerest, as well as the company "C. Lorenz AG" which was founded in 1880 by Carl Lorenz. These two companies had their main fields of business in radio technology, whereas the "C. Lorenz AG" positioned itself with the takeover of the "G. Schaub Apparatebau-Gesellschaft mbH" in 1940 in the development and manufacturing of radio broadcast receivers. From 1950 on all products were manufactured by Schaub in the city of Pforzheim; in 1952 the model range of both companies was merged and the distribution of Lorenz radios was integrated in the company Schaub. From 1955 on all products were distributed under the brand name "Schaub-Lorenz". In 1958 the companies "Standard Elektrik AG" and "C. Lorenz AG" were merged into the "Standard Elektrik Lorenz AG" (SEL). From 1979 on this field of business was named "Audio-Video-Elektronik" and belonged to ITT; the products - such as television sets, radios, car radios, cassette recorders, world receivers, and speaker boxes - were being distributed under the brand name "ITT Schaub-Lorenz". In 1987 ITT established together with the French "Companie Générale d'Électricité" the European group of companies named "Alcatel n.v.", where the consumer electronics branch was sold to Nokia in early 1988. With that, Schaub-Lorenz, as well as the TV manufacturer Graetz, which was taken over by SEL in 1961, belonged to Nokia. From then on Nokia distributed consumer electronics products, such as television sets, video recorders, and amplifiers under the brand name "ITT Nokia". Nokia, however, soon quit the distribution of consumer electronics and focused on the manufacturing of mobile phones...


HISTORY OF Standard Elektrik Lorenz AG IN GERMAN:

Die Standard Elektrik Lorenz AG (heute Alcatel-Lucent Deutschland AG) ist ein Unternehmen der Nachrichtentechnik (früherer Slogan: SEL – Die ganze Nachrichtentechnik) mit Hauptsitz in Stuttgart. Zur Nachrichtentechnik zählen auch Informations- und Kommunikationstechnik, Telekommunikationstechnik (SEL war für die Röchelschaltung bekannt) und früher Fernmeldetechnik oder Schwachstromtechnik. Einen weiteren Geschäftsbereich hatte das Unternehmen in der Bahnsicherungstechnik, so wurden für die Deutsche Bundesbahn Relaisstellwerke und elektronische Stellwerke mit den dazugehörigen Außenanlagen (Signale, Gleisfreimeldeanlagen, Weichenantriebe) sowie die Linienzugbeeinflussung entwickelt und gebaut, welche auch bei ausländischen Bahnen Abnehmer fanden. Der Bereich gehört seit 2007 als Thales Transportation Systems GmbH (seit 02.2011 vorher Thales Rail Signalling Solutions GmbH) zum Thales-Konzern. Die bereits 1998 ausgegliederten Bereiche Alcatel Air Navigation Systems und SEL Verteidigungssysteme sind ebenfalls heute in Thales Deutschland beheimatet.[1]
Fernseher Illustraphon 743 von 1957
„Goldsuper Stereo 20“ (1961)
Das Flaggschiff der erfolgreichen Schaub-Lorenz Kofferradios der sechziger Jahre: Touring 70 Universal
Erster Digitalfernseher der Welt (1983)

Bis 1987 gehörte SEL zusammen mit anderen auf dem Sektor Telekommunikation in anderen Ländern tätigen Schwesterfirmen zum US-amerikanischen Mischkonzern International Telephone and Telegraph (ITT). ITT verkaufte die Aktien-Mehrheit an den ITT-Telekommunikationsfirmen an die französische Compagnie Générale d’Electricité (CGE), die nach der Zusammenfassung mit den eigenen Telekommunikationsaktivitäten daraus die Alcatel N.V. bildete.

Die Standard Elektrik Lorenz AG wurde 1993 in Alcatel SEL AG umbenannt. Die Aktienmehrheit liegt mit über 99 % bei der Alcatel. Mit der Fusion von Alcatel und Lucent zu Alcatel-Lucent am 1. Dezember 2006 und der Neu-Firmierung beider Unternehmen in Deutschland zur Alcatel-Lucent Deutschland AG entfiel der Zusatz SEL.


Geschichte

Die beiden Stammfirmen des Unternehmens, die Mix & Genest AG und die Telegraphenbauanstalt von C. Lorenz, wurden 1879 bzw. 1880 gegründet. Das erste Patent von Mix & Genest datiert von 1883, das erste Patent von C. Lorenz ist aus dem Jahr 1902.

Das Unternehmen Mix & Genest war wesentlicher Teil der Standard Elektrizitäts-Gesellschaft (SEG), in die auch die Süddeutsche Apparatefabrik (SAF), die 1875 von F. Heller als "Friedrich Heller, Fabrik Elektrotechnischer Apparate" gegründet wurde, integriert wurde. Der technische Schwerpunkt von Mix & Genest bzw. SEG sowie der C. Lorenz AG war der klassischen Fernmelde- bzw. Funktechnik zuzuordnen. Die C. Lorenz AG baute in den 1920er und 1930er Jahren Großsender für den neu gegründeten Rundfunk.

1930 übernahm die International Telephone and Telegraph Company (ITT) die Aktienmehrheit der Mix & Genest AG und der C. Lorenz AG. [2]

Die C. Lorenz AG positionierte sich mit der Übernahme der G. Schaub Apparatebau-Gesellschaft mbH im Jahr 1940 in der Entwicklung und Herstellung von Rundfunkempfängern. Ab dem Jahr 1950 wurden alle Geräte bei Schaub in Pforzheim gefertigt. 1952 wurde das Typenprogramm beider Unternehmen verschmolzen und der Lorenz-Radio-Vertrieb in die Firma Schaub integriert. Ab 1955 wurden die Geräte unter dem Namen Schaub-Lorenz vertrieben.

1956 wurde das Unternehmen SEG in Standard Elektrik AG umbenannt. Ebenfalls 1956 wurde ein Kabelwerk gegründet. Wesentlicher Motor für das 1957 gegründete Informatikwerk war Karl Steinbuch, der von 1948–1958 dem Unternehmen, zuletzt als Technischer Direktor und Leiter der Zentralen Forschung, angehörte.

1958 erfolgte die Vereinigung der Standard Elektrik AG mit der C. Lorenz AG zur Standard Elektrik Lorenz AG (SEL).

Die Standard Elektrik Lorenz AG übernahm 1961 die Graetz KG. Die Firmenteile Schaub-Lorenz und Graetz waren zusammen mit einem Bildröhrenwerk Bestandteil der Unternehmensgruppe Audio Video der SEL AG, die 1979 als Audio-Video-Elektronik in die ITT ausgegliedert wurde. Die Produkte, die unter anderem Fernsehgeräte, Radios, Autoradios, Kassettenrecorder, Weltempfänger und Lautsprecherboxen umfassen, wurden fortan unter dem Namen ITT Schaub-Lorenz vertrieben.[2]

Versuche, auf dem neuen Gebiet der Raumfahrt-Elektronik Fuß zu fassen, waren auf folgende Produkte beschränkt:

* AZUR: Telemetrie/Telekommandogeräte
* Spacelab: Datenerfassung/Kommandoterminal.

SEL entwickelte zu Beginn der 1970er Jahre das Präzisionsanflugverfahren SETAC. Dieser Unternehmensbereich wurde im Jahre 1987 von der finnischen Firma Nokia übernommen.

1976 hatte SEL ein Grundkapital von 357 Mio. DM bei 33.000 Beschäftigten und einem Umsatz von 2,6 Mrd. DM.

1983 stellte SEL auf der Internationalen Funkausstellung Berlin 1983 mit dem ITT Digivision den weltweit ersten Fernseher mit digitaler Signalverarbeitung vor.[3]

2003 wurden die Markenrechte am Namen Schaub Lorenz an die italienische General Trading SpA verkauft. Die neugegründete Schaub Lorenz International GmbH vertreibt seitdem unter dem alten Markennamen Schaub-Lorenz importierte Konsumelektronik aus dem unteren Preisbereich.

R.I.P.    GERMANY.............

No comments:

Post a Comment

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.