Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical technology relics that the Frank Sharp Private museum has accumulated over the years .

Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.


Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:

- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........

..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !
-----------------------

©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of
Engineer Frank Sharp. NOTHING HERE IS FOR SALE !

Thursday, July 7, 2011

MIVAR 28S1 STEREO TVD PIP YEAR 1996.










































The MIVAR 28S1 STEREO TVD PIP  is a 28 inches color television with stereo sound , with 39 programs and 99 channel PLL Synthesized tuning. The television tuning system here exposed employs a frequency synthesizer system for establishing the tuning of the receiver, featured with a Microcomputer driven synthesis system, coupled to a frequency lock controller chip such as a Philips TSA5511 / SIEMENS SDA3202. This tuner can tune television signals on VHF and UHF band. Recently, frequency synthesizers including a phase locked loop (PLL) have been suggested to accurately generate local oscillator signals at predetermined frequencies corresponding to the various channels which a viewer may select.
The system employed in the tv permits utilization of a frequency synthesizer tuning system which correctly tunes to a desired television station or channel even if the transmitted signals from that station are not precisely maintained at the proper frequencies even in combination of a fine tuning adjustable by the user.To enable operation of the receiver in a fringe area, where it may be desirable to intentionally mistune a channel slightly, manual fine tuning control logic circuitry is employed to disable the frequency offset logic circuit and to permit changing the count of the reversible counter by the viewer to manually fine tune the receiver as desired.
Accordingly, it is an object of this invention to provide an improved tuning system for a television receiver.
It is an additional object of this invention to provide an improved frequency synthesizer tuning system for a television receiver.


The set has an AV SCART SOCKET and headphones jack rear side located.

A SCART Connector (which stands for Syndicat des Constructeurs d'Appareils Radiorécepteurs et Téléviseurs) is a standard for connecting audio-visual equipment together. The official standard for SCART is CENELEC document number EN 50049-1. SCART is also known as Péritel (especially in France) and Euroconnector but the name SCART will be used exclusively herein. The standard defines a 21-pin connector (herein after a SCART connector) for carrying analog television signals. Various pieces of equipment may be connected by cables having a plug fitting the SCART connectors. Television apparatuses commonly include one or more SCART connectors.
Although a SCART connector is bidirectional, the present invention is concerned with the use of a SCART connector as an input connector for receiving signals into a television apparatus. A SCART connector can receive input television signals either in an RGB format in which the red, green and blue signals are received on Pins 15, 11 and 7, respectively, or alternatively in an S-Video format in which the luminance (Y) and chroma (C) signals are received on Pins 20 and 15. As a result of the common usage of Pin 15 in accordance with the SCART standard, a SCART connector cannot receive input television signals in an RGB format and in an S-Video format at the same time.
Consequently many commercially available television apparatuses include a separate SCART connectors each dedicated to receive input television signals in one of an RGB format and an S-Video format. This limits the functionality of the SCART connectors. In practical terms, the number of SCART connectors which can be provided on a television apparatus is limited by cost and space considerations. However, different users wish the input a wide range of different combinations of formats of television signals, depending on the equipment they personally own and use. However, the provision of SCART connectors dedicated to input television signals in one of an RGB format and an S-Video format limits the overall connectivity of the television apparatus. Furthermore, for many users the different RGB format and S-Video format are confusing. Some users may not understand or may mistake the format of a television signal being supplied on a given cable from a given piece of equipment. This can result in the supply of input television signals of an inappropriate format for the SCART connector concerned.
This kind of connector is todays obsoleted !

It's a quite rare set in this class of the market even with his fair price because it has a PIP (Picture in picture) feature allowing to display the 2 TV programs on screen selectable with remote and PIP square position change capability.


The 2nd program in PIP is that coming from the SCART socket on rear side.
Picture in Picture (PiP) is a feature of some television receivers and similar devices. One program (channel) is displayed on the full TV screen at the same time as one or more other programs are displayed in inset windows. Sound is usually from the main program only.
Picture in Picture requires two independent tuners or signal sources to supply the large and the small picture. Two-tuner PiP TVs have a second tuner built in, but a single-tuner PiP TV requires an external signal source, which may be an external tuner, VCR, DVD player, or a cable box. Picture in Picture is often used to watch one program while waiting for another to start, or advertisements to finish.
PIP  picture-in-picture (PIP or pix-in-pix) feature; in a digital television system having a picture-in-picture (PIP or pix-in-pix) feature, two images from possibly unrelated sources are displayed simultaneously on the TV screen as a single composite image. The composite image includes a small picture (defined by an auxiliary video signal, for example, from a VCR) displayed as an inset within a large main picture (defined by a primary video signal, for example, from the TV antenna). The output signal of one tuner or of other TV signal sources in the base band are digitized and stored in a part of a memory. After automatic switching over to another TV-channel, this new signal is stored in another part of the memory and so on. The whole memory is then read out continuously and produces the displayed multipicture on the screen.
More specifically, the present invention pertains to a television receiver with a multipicture display.
In a television receiver with multipicture display a single video signal can be reproduced simultaneously in two or more subareas, or two or more different video signals can each be reproduced in associated subareas. Each of the subareas can display either a reduced-size picture or a part of the picture supplied by a video-signal source. A digital signal-processing circuit converts the signals from the video-signal source to picture data consisting of luminance and color data for each picture element. A random-access memory (RAM) holds the picture data of the entire screen. A control unit controls the writing of the picture data into an area of the RAM depending on the number of video signals to be reproduced and the line-by-line readout, with only selected lines being transferred from the video-signal source into the associated memory area. A digital-to-analg converted which is furnished with the picture data read from the RAM delivers the analog red, green, and blue signals.
A television receiver of this kind is described in a printed publication by Intermetall Semiconductors ITT, "VMC Video Memory Controller", August 1985.
That television receiver circuit uses random-access memories (RAMs). For the multipicture display, the screen is divided into up to nine equal-sized subareas which each contain a part of a picture of normal size or a complete picture of reduced size. In that mode, successively produced "snapshots" of up to nine different video signals can be displayed simultaneously. The switching of the video signals takes place manually.
Offenlegungsschrift DE No. 24 13 839 A1 describes a circuit for a television receiver with a facility for simultaneously reproducing two or more programs. In a part of the picture of the directly received main program, the secondary program, received with a single switchable tuner, is stored in a memory with a reduced number of lines and is called up line by line when the electron beam of the picture tube sweeps across the predetermined part of the picture. The disadvantage of this method lies in horizontal grating-like interference in the main picture which results from the fact that lines of the main picture are missing at regular intervals when the tuner has been switched to the secondary program, and which can only be incompletely compensated.
Accordingly, the problem to be solved by the invention is to provide a circuit of the above kind with which the grating-like interference caused during reproduction using the above-described single-tuner switching method is eliminated.
The output signal of one tuner or of other TV signal sources in the base band are digitize and stored in part of a memory. After automatic switching over to another TV-channel, this new signal is stored in another part of the memory and so on.
The whole memory is then read out continuously and produces the multi-picture display on the screen. Another advantage consists in the fact that, for the construction of the whole screen picture, all picture data are withdrawn from the RAM, so that the usual picture-improvement techniques can be applied. By fast readout from the memory rows, the displayed picture is freed from both line flicker and background flicker.
By changing the sampling rates of the different video-signal sources, it is readily possible to monitor the latter, nearly up to the still picture. In an arrangement in accordance with the invention digital picture processing and digital storage are used thereby permitting the circuit to process analog or digital signals,from video signal sources.

History of  PIP:

Adding a picture into an existing picture was done long before affordable PiP was available on consumer products. The first PiP was seen on the televised coverage of the 1976 Montreal Olympics where a Quantel digital framestore device was used to insert a close-up picture of the Olympic flame during the opening ceremony. In 1980, NEC introduced its "Popvision" television (CV-20T74P)  in Japan with a rudimentary picture-aside-picture feature: a separate 6" (15 cm) CRT and tuner complemented the set's main 20" (50 cm) screen. It was pricey: its ¥298,000 MSRP was equal to about $1,200 (at $1 = ¥250 ), and $1,200 in 1980 had the approximate buying power of $3,000 in 2007.
An early consumer implementation of Picture-In-Picture was the Multivision set-top box; it was not a commercial success. Later PiP became available as a feature of advanced television receivers !!

It has even teletext feature.

Was featuring for first and last time the use of the PHILIPS TDA8390 A one-chip PAL colour decode.

The MIVAR S1 model series was featuring even another chassis version with the use of the PHILIPS TDA8361A but without PIP Feature.

It's made by MIVAR an Italian Brand no more active!!!!!


These set were offering great features and extreme simplicity toghether and even combined with reliability and durability.
(Basically all what today you won't see anymore !)



In 1982 and in previous times MIVAR society name was Radio VAR then converted definitely to MIVAR.

This here in collection is indeed a MiVar since is produced in 1996.

In ancient times MIVAR was even a radios constructor, then the interest dropped to only television manufacturing.


It's made by MIVAR an Italian Brand still active.


These set were offering great features and extreme simplicity toghether with compactness and combined with reliability and durability.
(Basically all what today you won't see anymore !)


MIVAR is a Factory site in the near of Milan (italy) in a Industrial city conglomerate called Abbiate Grasso.

Founded in 1945 by Mr. Carlo Vichi class of 1923, The activity started in 1945 - in Milano, Via Ugo Tommei 5 street with fabrication of little radio apparates.













HISTORY OF MIVAR.

1945 - Milan, Via Ugo Tommei 5: Begin the activity
assembling small radios.


1950 - Via Curtatone 12: developed with the construction of more direct major radio components fabricants.

1956 - 13 Street Strigelli: industrial production is manily targeted to first radio devices with frequency modulation (FM).

1958 - Via P. 30 Jordanians: TV become a reality, the industries is doubling his ACTIVITY, always in Milan, we build the first "real" plant with 400 employees.

1963 - Abbiategrasso, Via Dante 45: in the wake of decentralization and the rampant success of the television, building a facility that will become important in place 800 employees occupying between 1968-70.

1990 - Abbiategrasso Canal towpath: aware of the physiological importance that television plays in society? Modern, rich expertise and resources, we began construction of a factory area of ​​120,000 m? which covered 30.00o , for the viabilit with parking spaces and 60,000 park trees.

In origin the factory was brand named as Radio Var and indeed the tellye here in collection is internally marked as Radio VAR. After 1985 they were marked rightly MIVAR.
Today's activity is oriented in virtual production of LCD crap but with very low market penetration due to "unfair" asian competitors presence.








(You call it global
market, I call it WORLD DESTRUCTION combined toghether with mass Afro Immigration).

Anyway
Obsolete Technology Tellye will show even this model as a Time machine which looses nothing of the good tellyes ! ! !













No comments:

Post a Comment

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.