Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical technology relics that the Frank Sharp Private museum has accumulated over the years .

Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.


Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:

- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........

..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !
-----------------------

©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of
Engineer Frank Sharp. NOTHING HERE IS FOR SALE !

Thursday, August 18, 2011

SANYO CEP2177T YEAR 1989.


































The SANYO CEP2177T is a 21 inches color screen DIGITAL television with 6 speaker sound system.

It has 60 programs with OSD and many features for a 21 Inches tellye including multistandard and CTI (DTI) Color transient improvement and teletext, furthermore even 2 AV SCART connectors and external louspeakers jacks and SHVS socket are present.


SANYO CEP2177T DIGITAL Colour television receiver or set , are known in which the majority of signal processing that takes place therein is carried out digitally. That is, a video or television signal is received in a conventional fashion using a known analog tuning circuit and then, following the tuning operation, the received analog television signal is converted into a digital signal and digitally processed before subsequently being converted back to an analog signal for display on a colour cathode ray tube.
In a conventional television receiver, all signals are analog-processed. Analog signal processing, however, has the problems at the video stage and thereafter. These problems stem from the general drawbacks of analog signal processing with regard to time-base operation, specifically, incomplete Y/C separation (which causes cross color and dot interference), various types of problems resulting in low picture quality, and low precision of synchronization. Furthermore, from the viewpoints of cost and ease of manufacturing the analog circuit, a hybrid configuration must be employed even if the main circuit comprises an IC. In addition to these disadvantages, many adjustments must be performed.

In order to solve the above problems, it is proposed to process all signals in a digital form from the video stage to the chrominance signal demodulation stage. In such a digital television receiver, various improvements in picture quality should result due to the advantages of digital signal processing.
Therefore digital television signal processing system introduced in 1984 by the Worldwide Semiconductor Group (Freiburg, West Germany) of International Telephone and Telegraph Corporation is described in an ITT Corporation publication titled "VLSI Digital TV System--DIGIT 2000." In that system color video signals, after being processed in digital (binary) form, are converted to analog form by means of digital-to-analog converters before being coupled to an image displaying kinescope. The analog color video signals are coupled to the kinescope via analog buffer amplifiers and video output kinescope driver amplifiers which provide video output signals at a high level suitable for driving intensity control electrodes of the kinescope.

The SANYO CEP2177T   Is a multistandard set and relates to a digital multistandard decoder for video signals and to a method for decoding video signals.
Colour video signals, so-called composite video, blanking and sync signals (CVBS) are essentially composed of a brightness signal or luminance component (Y), two colour difference signals or chrominance components (U, V or I, Q), vertical and horizontal sync signals (VS, HS) and a blanking signal (BL).
The different coding processes, e.g. NTSC, PAL and SECAM, introduced into the known colour television standards, differ in the nature of the chrominance transmission and in particular the different systems make use of different colour subcarrier frequencies and different line frequencies.
The following explanations relate to the PAL and NTSC systems, but correspondingly apply to video signals of other standards and non-standardized signals.
The colour subcarrier frequency (fsc) of a PAL system and a NTSC system is fsc(NTSC) = 3.58 MHz or fsc(PAL) = 4.43 MHz.
In addition, in PAL and NTSC systems the relationships of the colour subcarrier frequency (fsc) to the line frequency (fh) are given by fsc(NTSC) = 227.50 * fh or 4•fsc(NTSC) = 910 • fh fsc(PAL) = 283.75 * fh or 4•fsc(PAL) = 1135 • fh so that the phase of the colour subcarrier in the case of NTSC is changed by 180°/line and in PAL by 270°/line.
In the case of digital video signal processing and decoding the prior art fundamentally distinguishes between two system architectures. These are the burst-locked architecture and the line-locked architecture, i.e. systems which operate with sampling frequencies for the video signal, which are produced in phase-locked manner to the colour subcarrier frequency transmitted with the burst pulse or in phase-locked manner with the line frequency, respectively.

The principal advantage of the present invention is a color television receiver is provided having a fully digital color demodulator wherein the luminance signal and the chrominance signals are separated and digitally processed prior to being converted to analog signals in that the all-digital signal processing largely eliminates the need for nonintegratable circuit elements, i.e., particularly coils and capacitors, and that the subcircuits can be preferably implemented using integrated insulated-gate field-effect transistor circuits, i.e., so-called MOS technology. This technology is better suited for implementing digital circuits than the so-called bipolar technology.

The  SANYO CEP2177T   is a multisound tv digital sound processing.
A SCART Connector (which stands for Syndicat des Constructeurs d'Appareils Radiorécepteurs et Téléviseurs) is a standard for connecting audio-visual equipment together. The official standard for SCART is CENELEC document number EN 50049-1. SCART is also known as Péritel (especially in France) and Euroconnector but the name SCART will be used exclusively herein. The standard defines a 21-pin connector (herein after a SCART connector) for carrying analog television signals. Various pieces of equipment may be connected by cables having a plug fitting the SCART connectors. Television apparatuses commonly include one or more SCART connectors.
Although a SCART connector is bidirectional, the present invention is concerned with the use of a SCART connector as an input connector for receiving signals into a television apparatus. A SCART connector can receive input television signals either in an RGB format in which the red, green and blue signals are received on Pins 15, 11 and 7, respectively, or alternatively in an S-Video format in which the luminance (Y) and chroma (C) signals are received on Pins 20 and 15. As a result of the common usage of Pin 15 in accordance with the SCART standard, a SCART connector cannot receive input television signals in an RGB format and in an S-Video format at the same time.
Consequently many commercially available television apparatuses include a separate SCART connectors each dedicated to receive input television signals in one of an RGB format and an S-Video format. This limits the functionality of the SCART connectors. In practical terms, the number of SCART connectors which can be provided on a television apparatus is limited by cost and space considerations. However, different users wish the input a wide range of different combinations of formats of television signals, depending on the equipment they personally own and use. However, the provision of SCART connectors dedicated to input television signals in one of an RGB format and an S-Video format limits the overall connectivity of the television apparatus. Furthermore, for many users the different RGB format and S-Video format are confusing. Some users may not understand or may mistake the format of a television signal being supplied on a given cable from a given piece of equipment. This can result in the supply of input television signals of an inappropriate format for the SCART connector concerned.
This kind of connector is todays obsoleted !


On Top of all it's based around the DIGIVISION ITT TECHNOLOGY which is quite particular for a small screen format offering therefore superb pictures toghether with super sound.

This high class Digital Television from Japanese SANYO was designed by GIUGIARO design.

(Needless to say that the set in 22 Years was never serviced and runs good, QUALITY RULES !)


(To see the Internal Chassis Just click on Older Post Button on bottom page, that's simple !)

SANYO Electric Co., Ltd. (San'yō Denki Kabushiki-gaisha) (TYO: 6764, Pink Sheets: SANYY) is a major electronics company and member of the Fortune 500 whose headquarters is located in Moriguchi, Osaka prefecture, Japan. Sanyo targets the middle of the market and has over 230 Subsidiaries and Affiliates.



On December 21, 2009, Panasonic completed a 400 billion yen ($4.5 billion) acquisition of a 50.2% stake in Sanyo, making Sanyo a subsidiary of Panasonic.

 In July 2010, Panasonic announced to acquire the remaining shares of Sanyo.


Corporate culture

Sanyo utilizes an extensive socialization process for new employees, so that they will be acclimatized to Sanyo's corporate culture.

New employees take a five-month course during which they eat together and share company-provided sleeping accommodation. They learn everything from basic job requirements to company expectations for personal grooming and the appropriate way in which to address their coworkers and superiors.

History

Sanyo was founded when Toshio Iue (Iue Toshio, 1902–1969), the brother-in-law of Konosuke Matsushita and also a former Matsushita employee, was lent an unused Matsushita plant in 1947 and used it to make bicycle generator lamps. Sanyo was incorporated in 1950; in 1952 it made Japan's first plastic radio and in 1954 Japan's first pulsator-type washing machine.

 The company's name means three oceans in Japanese, referring to the founder's ambition to sell their products worldwide, across the Atlantic, Pacific and Indian oceans.


Technologically Sanyo has had good ties with Sony, supporting the Betamax video format from invention until the mid 1980s (the best selling video recorder in the UK in 1983 was the Sanyo VTC5000), and later being an early adopter of the highly successful Video8 camcorder format. More recently, though, Sanyo decided against supporting Sony's format, the Blu-ray Disc, and instead gave its backing to Toshiba's HD DVD. This was ultimately unsuccessful, however, as Sony's Blu-ray triumphed.


In North America, Sanyo manufactures CDMA cellular phones exclusively for Sprint-Nextel corporation's Sprint PCS brand in the United States, and for Bell Mobility in Canada.


The 2004 Chūetsu earthquake severely damaged Sanyo's semiconductor plant and as a result Sanyo recorded a huge financial loss for that year. The 2005 fiscal year financial results saw a 205 billion yen net income loss. The same year the company announced a restructuring plan called the Sanyo Evolution Project, launching a new corporate vision to make the corporation into an environmental company, plowing investment into strong products like rechargeable batteries, solar photovoltaics, air conditioning, hybrid car batteries and key consumer electronics such as the Xacti camera, projectors and mobile phones.

Sanyo's 3-year restructuring project


Sanyo posted signs of recovery after the announcement of positive operating income of 2.6 billion yen. Sanyo remains the world number one producer of rechargeable batteries. Recent product innovations in this area include the Eneloop Low self-discharge NiMH battery, a "hybrid" rechargeable NiMH (Nickel-metal hydride battery) which, unlike typical NiMH cells, can be used from-the-package without an initial recharge cycle and retain a charge significantly longer than batteries using standard NiMH battery design. The Eneloop line competes against similar products such as Rayovac's "Hybrid Rechargeable" line.


In December 2005 Sanyo had their new Super Sharp Technology patented.


In January 2006 Sanyo received a massive capital injection from Goldman Sachs, Sumitomo Mitsui Banking Corporation and Daiwa Securities which resulted in five members of the banks represented joining the nine-person Board of Directors.


On 24 November 2006, Sanyo announced heavy losses and job cuts.


Tomoyo Nonaka, a former NHK anchorwoman who was appointed Chairman of the company, stepped down in March 2007. The President, Toshimasa Iue, also stepped down in April of that year; Seiichiro Sano was appointed to head the company effective April 2007. In October 2007, Sanyo cancelled a 110 billion yen ($942 million) sale of its semiconducter business, blaming the global credit crisis for the decision and stating that after exploring its other options, it had decided to keep the business and develop it as part of its portfolio.


On April 1, 2008, they merged their cell phone division with Kyocera.


On November 2, 2008, Sanyo and Panasonic announced that they have agreed on the main points of a proposed buyout that would make Sanyo a subsidiary of Panasonic  and a formal announcement of the acquisition was made on Sanyo's web site on December 19, 2008.

They became a subsidiary of Panasonic on December 21, 2009.


On July 15, 2010 Sanyo agreed to sell its semiconductor operations to ON Semiconductor for $366 million to be completed before the end of 2010.

On July 29. 2010 Panasonic reached an agreement to acquire the remaining shares of Panasonic Electric Works and Sanyo shares for $9.4 billion.


By April 2012, parent company Panasonic plans to terminate the Sanyo brand, however it will be remain on some of the products where the Sanyo brand still hold value to consumers.

No comments:

Post a Comment

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.