Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical Obsolete technology relics that the Frank Sharp Private museum has accumulated over the years .
Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.

Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:
- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........
..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !
-----------------------
©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of Engineer Frank Sharp. NOTHING HERE IS FOR SALE !
All posts are presented here for informative, historical and educative purposes as applicable within Fair Use.


Sunday, May 1, 2011

BRIONVEGA TESI 4T TVC 26 CHASSIS 509.01 INTERNAL VIEW.



















































































The BRIONVEGA CHASSIS 509.01 is developed and organized on 2 main sections and a central power supply unit.


Right side Panel Line + EHT and Frame deflection + E/W Correction,

Left side panel Signal Section Parts.


CRT Line Output Stage Operation Principle:

I'll examine the operation of the line output stage, whose basic job is to generate a sawtooth current in the line scan coils so that the beams are deflected horizontally across the picture tube's screen. The beams are deflected from the left-hand side to the right-hand side to give the forward line scan: this is followed by a rapid, blanked flyback to the left-hand side ready to trace out the next viewed line. Because of the way in which the flyback is achieved, the line output transformer generates various pulse voltages which are rectified to produce the e.h.t. required by the tube and other supplies. The line output stage is not just any sort of amplifier. The active device, almost always a transistor though valves, thyristors and gate -controlled switches have been used in the past, operates as a switch, the inductive components in the stage being mainly responsible for generating the sawtooth current waveform. Tuning is used to generate and control the flyback. The line drive waveform controls the output transistor's on/off switching and thus determines the timing of the cycle of operations, keeping them phase synchronised with the transmitted picture signal.
Basic Operation

Fig. 1 shows in most basic form the main elements in the line output stage, the active device (transistor) being shown as a switch. When the switch is closed, capacitor C and diode D are shorted out and the 150V supply is connected across coil L. Now it's a basic law of inductance that when a d.c. voltage is connected across a coil the current flowing through the coil builds up linearly from zero. Fig. 2(a) shows this as a positive -going ramp that starts at time t 1 , when the switch is closed. After about 26psec (t2), roughly the time required to deflect the beams from screen centre flows via the large -value capacitor CR, charging the tuning capacitor C with the result that the voltage at its 'upper' plate (the one connected to the coil) rises to a relatively high positive value. When all the energy in coil L has been transferred to capacitor C (time t3) the latter begins to discharge, passing the energy back the other way to L via CR which, as far as the circuit's a.c. operation is concerned, can be regarded as a short-circuit. At time t4 the capacitor has discharged, having transferred the energy back to the coil. This to-and-fro interchange of energy between L and C, which from the a.c. point of view are in parallel (CR representing a short-circuit), is the normal action of a tuned/resonant/oscillatory circuit. The resonant frequency is determined by the values of L and C. These are selected so that when time t4 is reached, i.e. after a half cycle of oscillation, the sawtooth current has passed through zero to a negative point on the ramp and the beams have been deflected to the left-hand side of the screen ready for the next active line scan. To complete the oscillatory cycle (the normal resonant circuit action) the voltage at the upper plate of capacitor C would have to move negatively with respect to chassis. It can't do so because of the presence of diode D, which is called the efficiency diode - we'll explain that in a minute. When the voltage at the cathode of D tries to swing negatively it conducts, i.e. switches on, providing a discharge path for the coil. Once again because of the inductance in the circuit there's a gradual, linear current discharge, the enegery being returned to the supply's reservoir capacitor CR. During this discharge, the beams are deflected back towards the centre of the screen (times t4 to t5). At this point the magnetic flux (energy) in L has been dissipated. C is still in its discharged state, being shorted out by diode D. So at time t5, with the beams at screen centre (zero deflection), the switch has to be closed so that the cycle of operation can be repeated. The action of diode D has, with the inductance in the circuit, provided half the scan power while in the process returning the energy (minus inevitable circuit losses) to the reservoir capacitor. No wonder it's called the efficiency diode. It's important to note that the beam flyback period t2 to t4 is governed by the time -constant of L and C, consisting of one half cycle of oscillation. To achieve a flyback time of 12μsec the duration of one cycle needs to be 24μsec: so the resonant frequency of L and C works out at 41.67kHz. Fig. 3 illustrates the four phases in the operation of the line output stage. Now the voltage developed across an inductor is propor- tional to the rate of change of the current flowing through it. Thus the voltage across L is relatively low during the forward scan period but correspondingly high during the flyback, when the current flow is faster because of the circuit resonance. The voltage developed at the positive plate of capacitor C is shown in Fig. 2(b), typically peaking at 1,200V. Both the line output transistor and the efficiency diode must be capable of withstanding this high reverse voltage. As we've seen, the circuit action is highly efficient as the energy stored in L is returned to the supply during the first half of the forward scan: indeed with 'perfect' components there would be no net demand on the power supply at all! In practice because of the resistance of the inductor and the losses in the diode, switch and capacitor the circuit takes out a little more than it puts back, while the practice of loading the transformer with rectifier circuits to provide power for other sections of the set increases the stage's current demand. To make up for these losses, the line output transistor is switched on slightly before instead of at the centre of the forward scan. In a practical circuit L is the primary winding of the line output transformer and the deflection coils are connected across it via a d.c. blocking capacitor, CB, as shown in Fig. 4. This coupling capacitor also provides scan -correction (often referred to as S -correction). Why is this required? If a linear deflection current was used to control the scanning with a relatively flat -faced picture tube the sides of the picture would be stretched out in comparison with the centre section. Hence S -correction: the value of the coupling capacitor is chosen so that it resonantes with the inductance of the scan coils at about 5kHz. This has the effect of adding a sinewave component to the sawtooth current, as shown in Fig. 5. Thus the deflection power is tailored to suit the length of the beam paths as the screen is scanned, correcting the horizontal linearity of the display. At the line scanning frequency the scan coils behave as an almost perfect inductor, but their small d.c. resistance is in series with the fixed voltage that should be present across the coil. It has the effect of introducing an asymmetric sensitivity loss during the forward scan. To counteract it a further component is added in series with the scan coils - an inductor with a saturable magnetic core, biased by a permanent magnet so that its inductance falls as the scan current increases. The voltage drop across this inductor, which is known as the linearity coil, varies in the opposite sense to that produced by the resistance of the coils, thus providing an equal -but -opposite cancellation effect. In some TV sets the permanent magnet can be adjusted to trim the linearity correction, though many modern sets use components with such tight tolerances that a sealed linearity -correction coil can be used. With some very small -screen sets the horizontal non -linearity effect is small enough to be ignored.

Practical Line Output Stage
Fig. 6 shows a relatively simple line output stage circuit used with a 90° -deflection tube. Tr5 is the line output transistor, which incorporates the efficiency diode in the same package. The primary winding of the line output trans- former T4 is the section between pins 2 and 10, C95 being the flyback tuning capacitor. Scan coil coupling and S - correction are provided by C94, the line linearity coil L14 being connected in series on the chassis side of the scan current path. L14 is damped by R110 to prevent it ringing when the line flyback pulse occurs - the effect of an undamped linearity coil is velocity modulation of the beams at the beginning of their sweeps, showing up as black -and - white vertical striations at the left-hand side of the screen. C92 is the reservoir capacitor, the h.t. feed being via 8105. 8106 and R109 feed pulses to the second phase -locked loop (APC2) in the sync chip - we dealt with this in last month's instalment. A second pulse feed from the same point goes to the colour decoder chip to provide line blanking, burst gating and PAL switch drive - this particular set doesn't use the sandcastle pulse approach.

Secondary Supplies

So much for the generation and control of the sawtooth scanning current. The rest of the components in this circuit are used to harness the energy in the transformer to provide power supplies for other sections of the receiver. The winding between pins 4 and 8 pulse energises the picture tube's heaters at 6.3V r.m.s. The other supplies make use of the transformer as the heart of a d.c.-to-d.c. converter system, by means of secondary windings that provide pulse feeds to diode/capacitor rectifier circuits. Small -value (0.680) resistors in the 25V and 200V supplies provide surge limiting and protection (by going open -circuit) in the event of a short-circuit in one of these supplies. The most significant supply is obtained from the diode - split winding that starts at pin 9. Although not shown in full detail it consists of several 'cells', each of which consists of an electrically isolated secondary winding, a built-in high - voltage rectifier diode and, as the reservoir capacitor, the carefully contrived capacitance that's present between adjacent, highly -insulated winding layers. These cells are connected in series to form a voltage -multiplier system capable of providing an e.h.t. supply for the tube's final anode of typically 24kV - it may be as high as 30kV in some designs. There's a built-in surge limiter resistor at the output end of the chain of cells. An important part of the e.h.t. multiplier system is the final reservoir capacitor that split chain provides about 8kV to a built-in potential -divider chain that contains two presets: the one at the top provides the supply for the tube's focus electrode while the one near the bottom provides its first anode supply of about 800V. The bottom of the diode -split chain (pin 9) is returned to chassis via a diode/capacitor/resistor network (not shown here). The voltage developed across this network is proportional to the total beam current, since this flows from the tube's cathodes via the e.h.t. connector and the diode -split chain to chassis. Above a certain threshold the voltage at pin 9 reduces the picture brightness and/or contrast via the colour decoder/matrixing chip, limiting the beam current and hence the dissipation in the tube's shadowmask to safe levels. The winding between pins 10 and 7 of the transformer produces 50-70V pulses that sit on the h.t. voltage present at pin 10. When rectified by D23 and C100 a 200V supply is provided for the RGB output stages that drive the tube's cathodes. Secondary winding 4-6 feeds D24 and C99 which provide a 25V supply for the field timebase. In some designs supplies for the audio output stage and the signal sections of the receiver are also obtained from the line output transformer: in this particular chassis they are obtained from the chopper transformer in the power supply instead. Incidentally there have been one or two designs, the Ferguson/philco TX10 chassis being a well-known example, where the e.h.t. is also obtained from the chopper transformer, the line output transformer then acting mainly as a load for the line output transistor. In earlier designs a separate diode - capacitor multiplier unit (tripler) was fed from a single line output transformer overwiding to provide the e.h.t.

Scan Rectification

The e.h.t., focus and 200V supplies derived from the transformer are relatively lightly loaded, i.e. no great current demand is placed on them. They can therefore be obtained by rectifying the pulses present during the flyback period (time t2 -t4 in Fig. 2), which is about twenty per cent of the scan cycle. Where the current demand is greater, e.g. in a supply for the field timebase or an audio output stage, the phasing of the relevant transformer winding is often arranged so that the rectifier diode conducts during the scan rather than the flyback period. Although the voltage available is much lower, it's present for a longer period (about eighty per cent of the scan/duty cycle). As a result the output regulation is much better. The relatively high peak reverse voltage has to be taken into account in the rectifier diode's specification.

EHT Regulation

The internal impedance of a diode -split e.h.t. supply is typically about 1MOhm. Thus with a total beam current of lmA, present when a bright picture is being displayed on a 22in. picture tube, the e.h.t. voltage will drop by about 1kV or five per cent. The result of this is some ballooning, i.e. increase in picture size. Compensation can be provided by reducing the line scanning power. Careful choice of the value of the resistor that feeds the line output transformer - R105 in Fig. 6 - gives automatic compensation in the horizontal direction, while deriving the supply for the field output stage from the line output transformer tends to cancel out the ballooning in the vertical plane. Various 'anti -breathing' arrangements are used in TV receiver design. Most operate via the diode -modulator circuit we'll come to shortly. With any line output stage circuit the picture width and e.h.t. voltage depend on the stage's h.t. supply, so this must be well regulated and set up correctly. In the circuit shown in Fig. 6 the h.t. voltage has to be 119V with a 20in. tube and 145V with a 22in. tube.


Pincushion Distortion

The raster produced on an almost -flat faced picture tube by constant -amplitude scan currents has pincushion distortion at all four sides. This is because of the disparity between the image plane and the screen's profile -  . As a general rule the deflection yokes used with modern 90° tubes have built-in correction for both NS (vertical) and EW (horizontal) pincushion distortion while 110° tubes (generally above 22in. screen size) have in -yoke correction for NS distortion but cannot fully compensate for the pincushion effect at the sides of the screen. Thus with these the line scan current has to be amplitude -modulated by a parabolic waveform at field frequency as shown in Fig. 7. With present-day tube designs a modulation depth of about seven per cent is required. the peak -to -peak scan current being typically 4.1A at the top and bottom of the screen and 4.4A towards the centre of the screen, where the deflection power is greatest. Amplitude modulation of the line scan current can be achieved by including a saturable -reactance transformer in series with the scan coils, but this is expensive. You could put a suitably -shaped ripple on the supply to the line output stage, but the parabola would be superimposed on any secondary supplies derived from the line output transformer. The most widely used solution is to employ a diode -modu- lator circuit, since this gives full control of the raster shape and scan amplitude while providing a constant load current and flyback time.

The Diode Modulator
Fig. 8 shows the essence of a diode -modulator arrange- ment. The efficiency diode is split in two, DI and D2, which perform the same clamping action as before. The flyback tuning capacitor is also split in two, Cl and C2: the upper one tunes the transformer and scan coils (L1) as before while the lower one tunes a bridge coil, L2, via C4 to the same flyback frequency of about 42kHz. C3 is the scan coupling capacitor, which corresponds with CB in Fig. 4. Modulation is achieved by using transistor Tr2, whose conduction governs the scan width, to vary the load across C4. When Tr2 is off, the scan energy is shared between the the two series LC combinations C3/L1 and L2/C4. The charge on C3 and C4 is in the ratio of about 7:1, the scan current being reduced in proportion. When Tr2 is fully conductive, C4 is effectively shorted out and acquires no charge. Thus a greater proportion of the energy is present in C3/L1 and the scan current and picture width are increased. By varying the conduction of Tr2 during the forward scan in a parabolic manner, EW pincushion correction is achieved. The basic picture width can be controlled by varying Tr2's standing bias. Choke L3 and the large -value capacitor C5 filter the line -frequency energy so that it doesn't reach Tr2. And because both sections of the load (L 1/C1 and L2/C2) are individually tuned to the flyback frequency the flyback time, and hence the e.h.t. and the other line output transformer -derived supplies, remain constant over the field period despite the line scan current variation. There are several different versions of the diode -modu- lator arrangement. Some tube/yoke combinations have a scan -geometry characteristic such that when the line scan current is modulated by a simple parabolic waveform as described above the raster has inner pincushion distortion as shown in Fig. 9.
 Because of this. the EW-correction system also has to modulate the S -correction. Fig. 10 shows, in skeleton circuit form. how this can be done. There are two coupling/S-correction capacitors. C3 and C3A. C3 is the usual S -correction capacitor, but C3A has an increasing influence as the diode modulator begins to have maximum effect towards the centre of the screen. Critical choice of the value of C3A ensures that the inner curved verticals shown in Fig. 9 are straightened out to give a raster completely free from geometric distortion. Although all diode modulators work on the same basic principle, in some designs a transformer is used in place of the bridge coil to give better impedance matching and balance. Fig. 11 shows such an arrangement, used by Bang and Olufsen. The EW correction waveform is applied to transformer T6. whose winding 1-2 takes the place of L2 in Figs. 8 and 10. This circuit also provides inner -pincushion distortion correction as just described, the supplementary S - correction capacitor being C36.

Diode Modulator Drive


The parabolic EW drive waveform required is easily obtained by feeding the field -scan sawtooth waveform to a double integrator. By adding a sawtooth component the shape of the parabolic waveform can be tilted in either direction to give keystone -distortion correction if required - this is not generally necessary with modern tube/yoke designs. These EW correction characteristics are adjustable by preset resistors or, in the case of bus -programmable sets, remote control commands to the deflection processor. Very often the EW modulator is used to correct the previously mentioned picture breathing effect: this is done by feeding to the EW modulator's control circuit a voltage that's proportional to beam current. -


























No comments:

Post a Comment

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.

Note: Only a member of this blog may post a comment.