Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical technology relics that the Frank Sharp Private museum has accumulated over the years .

Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.


Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:

- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........

..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !
-----------------------

©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of
Engineer Frank Sharp. NOTHING HERE IS FOR SALE !

Wednesday, August 22, 2012

SCHAUB LORENZ (ITT) 8838 I YEAR 1987.





The SCHAUB LORENZ (ITT) 8838 I is a 27 inches color television with CTI (color transient Improvement describe the color transient improvement (CTI) involving the detection and sharpening the edges in chrominance.) CTI Picture Improvements circuitry in which colour signal, e.g. the line-sequential colour difference signals (R-Y,B-Y), is processed by an edge steepening circuit e.g. a colour transient improver and/or a two-line delay line in which the colour signals from two lines are added. The delay line may be part of a drop-out compensation circuit in which the colour signal of line n is replaced by the signal present for line n-2. A CCD-line may be used as the two-line delay line, and an amplitude limiter included. ADVANTAGE - Increased picture sharpness and improved signal-to-noise ratio.The present invention relates to a circuit for enhancing chrominance transitions in real-time video reception.

In the past analog commercial TV transmission standards, the limited bandwidth of the transmitted chrominance (or chrominance difference) signals causes the received images to have perceptibly blurred colour transition edges. This is especially evident if the received image contains geometrical patterns, e.g. test-colour bars, and results in the loss of detail detectable in complex multicoloured fine patterns.

In order to improve the quality of the received images, it is necessary to provide the receiver end with circuits capable of restoring, as far as possible, the frequency components in the chrominance signals which have been filtered away by the requirements of the reduced transmission bandwidth: in this way, the temporal duration of the chrominance transition edges, and thus the spatial extent of the chrominance transitions on the TV screen, can be reduced, and the edge definition improved. Circuits of this type are called "Color Transient Improvement" ("CTI") or Chrominance Transition Enhancement circuits.

An important constraint on chrominance transition enhancement circuits is the need to ensure that the center of the chrominance transition is unaffected by the enhancement process, so that the center of the chrominance transition after the enhancement process is still aligned with the center of the associated transition in the luminance signal. Also, it is necessary to leave gradual transitions in time unaltered; preserve, and possibly enhance, fine patterns; prevent the introduction in the image of additional distortions; and ensure that the existing noise components are not accentuated.

It has 40 programs PLL synthesizer tuning sytem, remote, SCART socket, headphone jack and audio tone regulations.
The system employs a frequency synthesizer for tuning the receiver's local oscillator to a selected television channel. For fine tuning, the system employs a fine tuning key which doubles as a channel selection key. Actuation of this key places the system in a fine tuning mode, and a logic circuit responds to actuation of a channel-up or channel-down key for causing the receiver to be fine tuned in the selected direction. In the preferred embodiment, fine tuning and channel selection are controlled by the logic circuit so as to occur during the receiver's vertical interval to eliminate digital switching noise from the receiver's image. Television receivers of the type under consideration frequently include a frequency synthesizer for tuning the receiver's local oscillator to the nominal carrier frequency of a selected television channel. Generally, the frequency synthesizer compares the local oscillator frequency to a reference frequency associated with the selected channel, and then varies the local oscillator frequency until it equals the reference frequency. Presumably, the receiver will now be correctly tuned to the selected channel. A programmable frequency divider counter is connected between the output of a reference oscillator and a phase comparator to which the output of the local oscillator in the tuner also is applied. The phase comparator output provides a tuning voltage for controlling the tuning of the local oscillator. A microprocessor is used to control the count of the programmable frequency divider and initially to set a count corresponding to the selected channel in a counter connected between the output of the local oscillator and the phase comparator. The present invention resides in part on the recognition that a control system for a television receiver, including a microprocessor (also referred to as a micro-computer or micro-controller) and a serial data bus, for generating and distributing digital control signals for various sections of the television receiver, may also be used as an integral part of a digital AFT unit including a counter to control the counter and to evaluate the counts accumulated by the counter during a measurement period in order to evaluate the frequency of the IF picture carrier. More specifically, a preferred embodiment of the invention includes a microprocessor, a bi-directional serial data bus, and a counter.
A SCART Connector (which stands for Syndicat des Constructeurs d'Appareils Radiorécepteurs et Téléviseurs) is a standard for connecting audio-visual equipment together. The official standard for SCART is CENELEC document number EN 50049-1. SCART is also known as Péritel (especially in France) and Euroconnector but the name SCART will be used exclusively herein. The standard defines a 21-pin connector (herein after a SCART connector) for carrying analog television signals. Various pieces of equipment may be connected by cables having a plug fitting the SCART connectors. Television apparatuses commonly include one or more SCART connectors.
Although a SCART connector is bidirectional, the present invention is concerned with the use of a SCART connector as an input connector for receiving signals into a television apparatus. A SCART connector can receive input television signals either in an RGB format in which the red, green and blue signals are received on Pins 15, 11 and 7, respectively, or alternatively in an S-Video format in which the luminance (Y) and chroma (C) signals are received on Pins 20 and 15. As a result of the common usage of Pin 15 in accordance with the SCART standard, a SCART connector cannot receive input television signals in an RGB format and in an S-Video format at the same time.
Consequently many commercially available television apparatuses include a separate SCART connectors each dedicated to receive input television signals in one of an RGB format and an S-Video format. This limits the functionality of the SCART connectors. In practical terms, the number of SCART connectors which can be provided on a television apparatus is limited by cost and space considerations. However, different users wish the input a wide range of different combinations of formats of television signals, depending on the equipment they personally own and use. However, the provision of SCART connectors dedicated to input television signals in one of an RGB format and an S-Video format limits the overall connectivity of the television apparatus. Furthermore, for many users the different RGB format and S-Video format are confusing. Some users may not understand or may mistake the format of a television signal being supplied on a given cable from a given piece of equipment. This can result in the supply of input television signals of an inappropriate format for the SCART connector concerned.
This kind of connector is todays obsoleted !
The set has a Teletext feature comprising a receiver of teletext transmissions, under the form of a plurality of pages, inserted in the television signal, and divided into groups, for each of which an index page is available, comprising means for receiving and demodulating a television signal, furthermore decoding means for detecting the associated teletext signal and selection means for selecting a chosen page from those transmitted, and memory means for memorising at least one of the chosen teletext pages.
Receivers of teletext transmissions having the above mentioned characteristics are known.
The most recent of such receivers, those according to the TOP system (Table Of Pages, note the European patent application 0 264 565 or "Rundfunktechnische Mitteilungen", vol. 31, no. 2, 30 April 1987, Gerhard Eitz et al., "TOP-Ein Verfahren zur vereinfachten Anwahl von Fernsehtext-Tafeln durch den Zuschauer" for example) present numerous improvements for aiding the user to refer to the teletext, an operation famous for not being very user friendly for various reasons.
However also in such modern receivers, the Italian user that is consulting a Televideo page (a name in which RAI refers to teletext), for example belonging to the group "football", that being page N° 229, in order to return to the "football" index i.e. to page N°201, must depress three keys in succession 2, 0, 1; it is supposed that the user remembers the index number; otherwise it is necessary to return to the general index (100); from this point to the sports index (200) and finally to the Football group index (201).
The invention is based on the knowledge of the above inconvenience that represents a drawback in the actual teletext system.
The object of the invention is to allow the user to display the index page to which the chosen page belongs without a waiting interval.
It relates to a receiver of teletext transmissions, under the form of a plurality of pages, inserted in the television signal, and divided into groups, for each of which an index page is available, comprising means for receiving and demodulating a television signal, furthermore decoding means for detecting the associated teletext signal and selection means for selecting a chosen page from those transmitted, and memory means for memorising at least one of the chosen teletext pages; the characterising principle of the invention consists in the fact that the receiver comprises additional means for allowing the direct selection of the group index page to which the chosen page belongs.On the screen you will see at first teltext function call the  message "Automatic Multipage Process"

The set was featuring the COMPACT B2 chassis and first time A square screen S4 CRT TUBE (SEL).

These sets were everlasting types exception for the FBT trafo failing often but replaced with non original (HR-DIEMEN) had solved the problem.



Started in 1921 by Georg von Schaub as Schaub-Elektrizitätsgesellschaft and was located in the Charlottenburg district of Berlin, Germany, originally manufacturing various electric equipment but entered the radio receiver market in 1923. The name of the company was changed to G. Schaub Apparatebau Gesellschaft GmbH in 1925 but continued to use plain Schaub as it's trademark and it became one of the better known manufacturers of radios in central Europe. Moved to Pforzheim-Dillweissenstein in 1934 and was taken over by C. Lorenz in 1940 although the company operated mostly independently until the early 50's. Restarted production of loudspeakers and receivers in 1946 or as soon as the occupation forces allowed and sold consumer products initially as Schaub and as later as Schaub-Lorenz, all manufacture of Lorenz CE products was actually handed over to the company in 1950 due to the blockade of Berlin by the Soviet occupation forces, the Schaub company was finally merged with the rest of the C. Lorenz companies in 1958 although the name was used at the least partially up until the sale of the Lorenz consumer division to Nokia in 1988.



One side Note:
The advert says "ITT Technik der Welt" (ITT the world Technology) indeed the contribution given by these organizations toghether the products of them increased man's life quality on certains aspects, so no surprises if today quality is heavily lowered by chinese market and other society crap mixtures, because anyway at the end it's a man choice.


ITT Corporation (NYSE: ITT) is a global diversified manufacturing company with 2008 revenues of $11.7 billion. ITT participates in global markets including water and fluids management, defense and security, and motion and flow control. Forbes.com named ITT Corporation to its list of "America's Best Managed Companies" for 2008, and awarded the company the top spot in the conglomerates category.

,ITT's water business is the world's largest supplier of pumps and systems to transport, treat and control water, and other fluids. The company's defense electronics and services business is one of the ten largest US defense contractors providing defense and security systems, advanced technologies and operational services for military and civilian customers. ITT's motion and flow control business manufactures specialty components for aerospace, transportation and industrial markets.

In 2008, ITT was named to the Dow Jones Sustainability World Index (DJSI World) for the tenth time in recognition of the company's economic, environmental and social performance. ITT is one of the few companies to be included on the list every year since its inception in 1999.

The company was founded in 1920 as International Telephone & Telegraph. During the 1960s and 1970s, under the leadership of its CEO Harold Geneen the company rose to prominence as the archetypal conglomerate, deriving its growth from hundreds of acquisitions in diversified industries. ITT divested its telecommunications assets in 1986, and in 1995 spun off its non-manufacturing divisions, later to be purchased by Starwood Hotels & Resorts Worldwide.

In 1996, the company became ITT Industries, Inc., but changed its name back to ITT Corporation in 2006.



History

ITT was formed in 1920, created from the Puerto Rico Telephone Company co-founded by Sosthenes Behn.[1] Its first major expansion was in 1923 when it consolidated the Spanish Telecoms market into what is now Telefónica.[2] From 1922 to 1925 it purchased a number of European telephone companies. In 1925 it purchased the Bell Telephone Manufacturing Company of Brussels, Belgium, which was formerly affiliated with AT&T, and manufactured rotary system switching equipment. In the 1930s, ITT grew through purchasing German electronic companies Standard Elektrizitaetsgesellschaft (SEG) and Mix & Genest, both of which were internationally active companies. Its only serious rival was the Theodore Gary & Company conglomerate, which operated a subsidiary, Associated Telephone and Telegraph, with manufacturing plants in Europe.

In the United States, ITT acquired the various companies of the Mackay Companies in 1928 through a specially organized subsidiary corporation, Postal Telegraph & Cable. These companies included the Commercial Cable Company, the Commercial Pacific Cable Company, Postal Telegraph, and the Federal Telegraph Company.





International telecommunications

International telecommunications manufacturing subsidiaries included STC in Australia and Britain, SEL in Germany, BTM in Belgium, and CGCT and LMT in France. Alec Reeves invented Pulse-code modulation (PCM), upon which future digital voice communication was based. These companies manufactured equipment according to ITT designs including the (1960s) Pentaconta crossbar switch and (1970s) Metaconta D, L and 10c Stored Program Control exchanges, mostly for sale to their respective national telephone administrations. This equipment was also produced under license in Poznań (Poland), and in Yugoslavia, and elsewhere. ITT was the largest owner of the LM Ericsson company in Sweden but sold out in 1960.




1989 breakup

In 1989 ITT sold its international telecommunications product businesses to Alcatel, now Alcatel-Lucent. ITT Kellogg was also part of the 1989 sale to Alcatel. The company was then sold to private investors in the U.S. and went by the name Cortelco Kellogg. Today the company is known as Cortelco (Corinth Telecommunications Corporation, named for Corinth, MS headquarters). ITT Educational Services, Inc. (ESI) was spun off through an IPO in 1994, with ITT as an 83% shareholder. ITT merged its long distance division with Metromedia Long Distance, creating Metromedia-ITT. Metromedia-ITT would eventually be acquired by Long Distance Discount Services, Inc. (LDDS) in 1993. LDDS would later change its name to Worldcom in 1995.

In 1995, ITT Corporation split into 3 separate public companies:

* ITT Corp. — In 1997, ITT Corp. completed a merger with Starwood Hotels & Resorts Worldwide, selling off its non-hotel and resorts business. By 1999, ITT completely divested from ITT/ESI; however, the schools still operate as ITT Technical Institute using the ITT name under license.[1] Also in 1999, ITT Corp. dropped the ITT name in favor of Starwood.[7]
* ITT Hartford (insurance) — Today ITT Hartford is still a major insurance company although it has dropped the ITT from its name altogether. The company is now known as The Hartford Financial Services Group, Inc.
* ITT Industries — ITT operated under this name until 2006 and is a major manufacturing and defense contractor business.
o On July 1, 2006, ITT Industries changed its name to ITT Corporation as a result of its shareholders vote on May 9, 2006.


Purchase of International Motion Control (IMC)

An agreement was reached on June 26, 2007 for ITT to acquire privately held International Motion Control (IMC) for $395 million. The deal was closed and finalized in September 2007. An announcement was made September 14, 2010, to close the Cleveland site.
Purchase of EDO

An agreement was reached September 18, 2007 for ITT to buy EDO Corporation for $1.7 billion.[12] After EDO shareholders' approval, the deal was closed and finalized on December 20, 2007.


Purchase of Laing

On April 16, 2009, ITT announced it has signed a definitive agreement to acquire Laing GmbH of Germany, a privately held leading producer of energy-efficient circulator pumps primarily used in residential and commercial plumbing and heating, ventilating and air conditioning (HVAC) systems.


2011 breakup

On January 12, 2011, ITT announced a transformation to separate the company into 3, stand-alone, publicly-traded, and independent companies.


HISTORY OF Standard Elektrik Lorenz AG IN GERMAN:

Die Standard Elektrik Lorenz AG (heute Alcatel-Lucent Deutschland AG) ist ein Unternehmen der Nachrichtentechnik (früherer Slogan: SEL – Die ganze Nachrichtentechnik) mit Hauptsitz in Stuttgart. Zur Nachrichtentechnik zählen auch Informations- und Kommunikationstechnik, Telekommunikationstechnik (SEL war für die Röchelschaltung bekannt) und früher Fernmeldetechnik oder Schwachstromtechnik. Einen weiteren Geschäftsbereich hatte das Unternehmen in der Bahnsicherungstechnik, so wurden für die Deutsche Bundesbahn Relaisstellwerke und elektronische Stellwerke mit den dazugehörigen Außenanlagen (Signale, Gleisfreimeldeanlagen, Weichenantriebe) sowie die Linienzugbeeinflussung entwickelt und gebaut, welche auch bei ausländischen Bahnen Abnehmer fanden. Der Bereich gehört seit 2007 als Thales Transportation Systems GmbH (seit 02.2011 vorher Thales Rail Signalling Solutions GmbH) zum Thales-Konzern. Die bereits 1998 ausgegliederten Bereiche Alcatel Air Navigation Systems und SEL Verteidigungssysteme sind ebenfalls heute in Thales Deutschland beheimatet.[1]
Fernseher Illustraphon 743 von 1957
„Goldsuper Stereo 20“ (1961)
Das Flaggschiff der erfolgreichen Schaub-Lorenz Kofferradios der sechziger Jahre: Touring 70 Universal
Erster Digitalfernseher der Welt (1983)

Bis 1987 gehörte SEL zusammen mit anderen auf dem Sektor Telekommunikation in anderen Ländern tätigen Schwesterfirmen zum US-amerikanischen Mischkonzern International Telephone and Telegraph (ITT). ITT verkaufte die Aktien-Mehrheit an den ITT-Telekommunikationsfirmen an die französische Compagnie Générale d’Electricité (CGE), die nach der Zusammenfassung mit den eigenen Telekommunikationsaktivitäten daraus die Alcatel N.V. bildete.

Die Standard Elektrik Lorenz AG wurde 1993 in Alcatel SEL AG umbenannt. Die Aktienmehrheit liegt mit über 99 % bei der Alcatel. Mit der Fusion von Alcatel und Lucent zu Alcatel-Lucent am 1. Dezember 2006 und der Neu-Firmierung beider Unternehmen in Deutschland zur Alcatel-Lucent Deutschland AG entfiel der Zusatz SEL.


Geschichte

Die beiden Stammfirmen des Unternehmens, die Mix & Genest AG und die Telegraphenbauanstalt von C. Lorenz, wurden 1879 bzw. 1880 gegründet. Das erste Patent von Mix & Genest datiert von 1883, das erste Patent von C. Lorenz ist aus dem Jahr 1902.

Das Unternehmen Mix & Genest war wesentlicher Teil der Standard Elektrizitäts-Gesellschaft (SEG), in die auch die Süddeutsche Apparatefabrik (SAF), die 1875 von F. Heller als "Friedrich Heller, Fabrik Elektrotechnischer Apparate" gegründet wurde, integriert wurde. Der technische Schwerpunkt von Mix & Genest bzw. SEG sowie der C. Lorenz AG war der klassischen Fernmelde- bzw. Funktechnik zuzuordnen. Die C. Lorenz AG baute in den 1920er und 1930er Jahren Großsender für den neu gegründeten Rundfunk.

1930 übernahm die International Telephone and Telegraph Company (ITT) die Aktienmehrheit der Mix & Genest AG und der C. Lorenz AG. [2]

Die C. Lorenz AG positionierte sich mit der Übernahme der G. Schaub Apparatebau-Gesellschaft mbH im Jahr 1940 in der Entwicklung und Herstellung von Rundfunkempfängern. Ab dem Jahr 1950 wurden alle Geräte bei Schaub in Pforzheim gefertigt. 1952 wurde das Typenprogramm beider Unternehmen verschmolzen und der Lorenz-Radio-Vertrieb in die Firma Schaub integriert. Ab 1955 wurden die Geräte unter dem Namen Schaub-Lorenz vertrieben.

1956 wurde das Unternehmen SEG in Standard Elektrik AG umbenannt. Ebenfalls 1956 wurde ein Kabelwerk gegründet. Wesentlicher Motor für das 1957 gegründete Informatikwerk war Karl Steinbuch, der von 1948–1958 dem Unternehmen, zuletzt als Technischer Direktor und Leiter der Zentralen Forschung, angehörte.

1958 erfolgte die Vereinigung der Standard Elektrik AG mit der C. Lorenz AG zur Standard Elektrik Lorenz AG (SEL).

Die Standard Elektrik Lorenz AG übernahm 1961 die Graetz KG. Die Firmenteile Schaub-Lorenz und Graetz waren zusammen mit einem Bildröhrenwerk Bestandteil der Unternehmensgruppe Audio Video der SEL AG, die 1979 als Audio-Video-Elektronik in die ITT ausgegliedert wurde. Die Produkte, die unter anderem Fernsehgeräte, Radios, Autoradios, Kassettenrecorder, Weltempfänger und Lautsprecherboxen umfassen, wurden fortan unter dem Namen ITT Schaub-Lorenz vertrieben.[2]

Versuche, auf dem neuen Gebiet der Raumfahrt-Elektronik Fuß zu fassen, waren auf folgende Produkte beschränkt:

* AZUR: Telemetrie/Telekommandogeräte
* Spacelab: Datenerfassung/Kommandoterminal.

SEL entwickelte zu Beginn der 1970er Jahre das Präzisionsanflugverfahren SETAC. Dieser Unternehmensbereich wurde im Jahre 1987 von der finnischen Firma Nokia übernommen.

1976 hatte SEL ein Grundkapital von 357 Mio. DM bei 33.000 Beschäftigten und einem Umsatz von 2,6 Mrd. DM.

1983 stellte SEL auf der Internationalen Funkausstellung Berlin 1983 mit dem ITT Digivision den weltweit ersten Fernseher mit digitaler Signalverarbeitung vor.

2003 wurden die Markenrechte am Namen Schaub Lorenz an die italienische General Trading SpA verkauft. Die neugegründete Schaub Lorenz International GmbH vertreibt seitdem unter dem alten Markennamen Schaub-Lorenz importierte Konsumelektronik aus dem unteren Preisbereich.





No comments:

Post a Comment

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.