It's a modular chassis and it's easy to service.
Many units employed in this chassis are the same used in Emerson Color chassis types, particularly the IF stages and the synchronization circuit which is based on ITT TBA920.
TBA920 line oscillator combination
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiWCz1rFw_FfTSkzqtHxfTDyV5mLeAlAnRSckeT7kZkhM88Tp77lAEd4dpbtV6VX_Zbzwdvw3XApX0qMatECJt2U9MBQKW_nWU6BDFw9neZU5EZ-1Tq3DKw887CCsQiEt1W7kI-2RJCGIV7/s320/tba920_ds.jpg)
DESCRIPTION
The line oscillator combination TBA920 is a monolithic
integrated circuit intended for the horizontal deflection of the black and white
and colour TV sets
picture tube.
FEATURES:
SYNC-PULSE SEPARATION
OPTIONAL NOISE INVERSION
GENERATION OF A LINE FREQUENCY VOL-
TAGE BY MEANS OF AN OSCILLATOR
PHASE COMPARISON BETWEEN SYNC-
PULSE AND THE OSCILLATOR WAVEFORM
PHASE COMPARISON BETWEEN THE OS-
CILLATOR WAVEFORM AND THE MIDDLE OF
THE LINE FLY-BACK PULSE
AUTOMATIC SWITCHING OF THE VARIABLE
TRANSCONDUCTANCE AND THE VARIABLE
TIME CONSTANT TO ACHIEVE NOISE SUP-
PRESSION AND, BY SWITCHING OFF, POS-
SIBILITY OF TAPE-VIDEO-REGISTERED RE-
PRODUCTION
SHAPING AND AMPLIFICATION OF THE OS-
CILLATOR WAVEFORM TO OBTAIN PULSES
FOR THE CONTROL OF DRIVING STAGES IN
HORIZONTAL, DEFLECTION CIRCUITS
USING EITHER TRANSISTORS OR THYRISTORS.
Note the EHT selenium rectifier which is a Specially designed selenium rectifiers were once widely used as
EHT rectifiers in television sets and photocopiers. A layer of selenium was applied to a sheet of soft iron foil, and thousands of tiny discs (typically 2mm diameter) were punched out of this and assembled as "stacks" inside ceramic tubes. Rectifiers capable of supplyi
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiV2Zg0QBpEFmetpG770Qepbi3ylMNqzK08vn917-QRmKZkWC4e_WCqfJUAcK68u439nRzeQYD-zmrj4lK0utSeCQMS-oNjVG-gA52cZqX9ofkAM1N2kB10bLi3uBE66_mGm2IhS3YsJOaL/s320/IMG_3300.jpg)
ng tens of thousands of volts could be made this way. Their internal resistance was extremely high, but most EHT applications only required a few hundred microamps at most, so this was not normally an issue. With the development of inexpensive high voltage silicon rectifiers, this technology has fallen into disuse.
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi432b5bF9OBlUq_0m4mzuztuOx4jR19cGYb22SD65P9qMci2axifSJFR64SbKmQu1q1Q2bwLBUHlY0jxJep5vakO9YTMkug-KakL-14sxcW2j-9X88bOmFWH6eG8_jc42X190DJvBONSc/s320/BW-PORTABLE-PSU-EX__TVMS.jpg)
Power
Supply: The examples chosen are taken from manufacturers' circuit
diagrams and are usually simplified to emphasise the fundamental nature
of the circuit. For each example the particular transistor properties
that are exploited to achieve the desired performance are made clear. As
a rough and ready classification the circuits are arranged in order of
frequency: this part is devoted to circuits used at zero frequency,
field frequency and audio frequencies. Series Regulator Circuit Portable
television receivers are designed to operate from batteries (usually
12V car batteries) and from the a.c. mains. The receiver usually has an
11V supply line, and circuitry is required to ensure that the supply
line is at this voltage whether the power source is a battery or the
mains. The supply line also needs to have good regulation, i.e. a low
output resistance, to ensure that the voltage remains constant in spite
of variations in the mean current taken by some of the stages in the
receiver. Fig. 1 shows a typical circuit of the power -supply
arrangements. The mains transformer and bridge rectifier are designed to
deliver about 16V. The battery can be assumed to give just over 12V.
Both feed the regulator circuit Trl, Tr2, Tr3, which gives an 11V output
and can be regarded as a three -stage direct -coupled amplifier. The
first stage Tr 1 is required to give an output current proportional to
the difference between two voltages, one being a constant voltage
derived from the voltage reference diode D I (which is biased via R3
from the stabilised supply). The second voltage is obtained from a
preset potential divider connected across the output of the unit, and is
therefore a sample of the output voltage. In effect therefore Tr 1
compares the output voltage of the unit with a fixed voltage and gives
an output current proportional to the difference between them. Clearly a
field-effect transistor could do this, but the low input resistance of a
bipolar transistor is no disadvantage and it can give a current output
many times that of a field-effect transistor and is generally preferred
therefore. The output current of the first stage is amplified by the two
subsequent stages and then becomes the output current of the unit.
Clearly therefore Tr2 and Tr3 should be current amplifiers and they
normally take the form of emitter followers or common emitter stages
(which have the same current gain). By adjusting the preset control we
can alter the fraction of the output voltage' applied to the first stage
and can thus set the output voltage of the unit at any desired value
within a certain range. By making assumptions about the current gain of
the transistors we can calculate the degree of regulation obtainable.
For example, suppose the gain of Tr2 and Tr3 in cascade is 1,000, and
that the current output demanded from the unit changes by 0.1A (for
example due to the disconnection of part of the load). The corresponding
change in Tr l's collector current is 0.1mA and, if the standing
collector current of Tr 1 is 1mA, then its mutual conductance is
approximately 4OmA/V and the base voltage must change by 2.5mV to bring
about the required change in collector current. If the preset potential
divider feeds one half of the output voltage to Tr l's base, then the
change in output voltage must be 5mV. Thus an 0.1A change in output
current brings about only 5mV change in output voltage: this represents
an output resistance of only 0.0552.
No comments:
Post a Comment
The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.
Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!
The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.
Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.
Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.
Your choice.........Live or DIE.
That indeed is where your liberty lies.
Note: Only a member of this blog may post a comment.