Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical technology relics that the Frank Sharp Private museum has accumulated over the years .

Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.


Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:

- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........

..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !
-----------------------

©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of
Engineer Frank Sharp. NOTHING HERE IS FOR SALE !

Monday, July 16, 2012

EMERSON COLOR 26 VALIANT 12 YEAR 1976.






The EMERSON COLOR 26 VALIANT 12 is first EMERSON / DUMONT Tv set featuring the PHILIPS 20AX CRT instead of Delta gun Crt's based TUBE of early models series.The PHILIPS 20AX system was introduced in Europe as the first self converging picture tube/deflection coil, combination for 110° degree deflection and screen sizes up to 26". The system is based on the automatic convergence principle discovered by Haantjes and Lubben of Philips Research Laboratory more than 20 years ago. It makes use of an in-line gun array in conjunction with a specially designed saddle type deflection coil. Residual small tolerance errors are compensated by a simple dynamic four-pole system. The tube is 2 cm shorter than conventional 110° Degree tubes and has a standard 36.5 mm neck in order to obtain good color selection. A slotted mask is used in combination with a stripe-structure screen. Picture sharpness is ensured by an astigmatic electron gun.
The new tube, to be known as the 20AX, has been developed by PHILIPS in conjunction with the parent Philips / Mullard organisation and will be produced by several Philips subsidiary companies on the Continent as well as by PHILIPS in the UK. PHILIPS envisage quantity production of the tube by 1976, mainly for export at first, with large-scale production for UK set - makers starting in 1977. The tube has been developed as "probably the final phase in the design of the 110° shadowmask tube". Its main features are the use of three guns mounted horizontally in line, the use of a shadow - mask with slots instead of circular holes, and a screen with the phosphors deposited in vertical stripes instead of as a pattern of dot triads. It seems therefore that the days of the present delta gun shadowmask tube are now numbered, though considerable production will have to continue for many years to provide replacement tubes for the millions of colour sets already in use. So far as the viewer is concerned however it is important to appreciate the time scale involved (see above) and the reasons for the development of the new tube. There is nothing wrong with the type of shadow - mask tube we have known since the beginning of colour TV: it is able to provide superb pictures. But in its 110° form it does require rather a lot of scan/convergence correction circuitry. If this can be reduced by means of an alternative approach
as with the 20AX tube  considerable benefits in set production and servicing will be obtained. This has been the aim behind the development of the new tube, and the demonstration tube we have seen operating with its associated deflection yoke and circuitry gave a picture every bit as good as we have come to expect from the present "conventional" approach to colour tube design. There are now four colour tubes with in -line guns, the Sony Trinitron (the first to come along), the RCA /Mazda PIL tube, the Toshiba RIS tube and now the PHILIPS 20AX. It is interesting to compare them. The Trinitron is a 90° narrow neck (29mm) tube. It differs from the others in using an aperture grill (slits from top to bottom) instead of a mask behind the screen to shadow the beams and a tube face which is substantially flat in the vertical plane. On the domestic market it is used exclusively in Sony sets and certainly represented a break through in simplifying the convergence circuitry and setting up adjustments required. The Toshiba RIS (rectangular flare, in-line guns, slotted shadowmask) tube has now turned up in the UK in the recently introduced 18in. Sharp Model C1831H. Its most distinctive feature is the rectangu- lar instead of conical tube flare and the rectangular semi -toroidal scanning yoke which is used with this. It is a 110° thick neck (36mm) tube. The convergence arrangements are fairly simple. The most interesting comparisons however are between the PI tube and the 20AX. The first is a 90° tube of the narrow neck variety and features a toroidal yoke which is cemented to the tube- thus if either is faulty the entire tube/yoke assembly must be replaced. The great advantage is that no dynamic convergence adjustments or circuitry are required. It is at present limited to sizes up to 20in. and the designers say that it is not intended as a successor to the standard shadowmask tube above this size. Its depth compares with 110° tubes because of the simplified gun structure used. The PHILIPS 20AX tube differs from it in several respects. First it is basically a 110° tube which can be produced in a whole range of sizes production of 18, 22 and 26in. versions is proposed so that set  makers can use it with a single chassis for models of various sizes. Secondly it uses saddlewound deflection coils which are separate from though accurately aligned with the tube. And thirdly it is a thick neck tube. Unlike the PI tube in which all the gun electrodes except the cathodes are common to all guns the electrodes of each gun in the 20AX are separately available at the base. This means that in addition to RGB drive to the cathodes the grids are available for blanking and beam limiting and the first anodes for background control setting in the normal manner. In fact PHILIPS emphasised that the new tube is entirely compatible with existing colour set techniques  though the whole convergence system is greatly simplified. The basic idea behind these in line gun, slotted mask tubes is that by mounting the guns horizontally in line the convergence errors are confined to the horizontal plane and by applying an astigmatic deflection field these errors are cancelled. This means that a fair amount of cunning in the design of the deflection yoke is required. A saddlewound yoke is more efficient than a toroidal yoke since the deflection fields are totally enclosed.

 In comparison to current 110° PHILIPS tubes the 20AX requires much the same horizontal deflection power but about twice the vertical deflection power (which can be obtained without trouble from modern semiconductor devices). The use of a separate yoke with a tube of this type means that some dynamic convergence controls are still necessary, in order to match the assemblies. PHILIPS refer to these as "tolerance adjustments" rather than "dynamic convergence controls". About seven are required at present though further work is being done on this and by the time sets with the new tube appear we can expect some reduction. A single pincushion transductor is required instead of the two needed with 110° shadowmask tubes of the present variety. In comparison the PIL  tube requires no dynamic convergence adjustments, only some simple tube neck magnets for static setting up. It is a little less efficient however because of the type of yoke employed. Whatever else happens there is no doubt that the vast majority of colour tubes fitted to TVC sets come 1977 will be of the in line gun, slotted mask, vertical phosphor stripe variety. Two further points made by PHILIPS at their demonstration : first, this type of tube requires less degaussing so that there are worthwhile savings in the amount of copper required for the degaussing coils: secondly their new tube, and in fact all PHILIPS monochrome tubes and shortly their colour tubes as well, will incorporate "instant on" guns which come into operation about  five seconds after the set is switched on instead of the 30 seconds or more taken by present tubes. This instant on feature is based on a new heater/cathode assembly in which the use of mica insulators has been avoided. 
Meanwhile we understand that in addition to RCA and, in the UK, Mazda, ITT and Videocolor SA are to produce PIL tubes. Whilst congratulations all round was appropriate on the successful development of these  tubes it does seem a pity that was about to enter for the first time an era of non compatible colour c.r.t.s.

It has 12 programs keyboard selected with soft touch mechanical switch called "Feather Touch" for his "light weight pushing buttons" and search tuning channels is performed with potentiometers.

- Horizontal Beam Deflection  and high voltage generating circuits realized with Thyristors circuits.
The massive demand for colour television receivers in Europe/Germany in the 70's  brought about an influx of sets from the continent. Many of these use the thin -neck (29mm) type of 110° shadowmask tube and the Philips 20AX CRT Tube, plus the already Delta Gun CRT . 
Scanning of these tubes is accomplished by means of a toroidally wound deflection yoke (conventional 90° and thick -neck 110° tubes operate with saddle -wound deflection coils). The inductance of a toroidal yoke is very much less than that of a saddle -wound yoke, thus higher scan currents are required. The deflection current necessary for the line scan is about 12A peak -to -peak. This could be provided by a transistor line output stage but a current step-up transformer, which is bulky and both difficult and costly to manufacture, would be required. 
An entirely different approach, pioneered by RCA in America and developed by them and by ITT (SEL) in Germany, is the thyristor line output stage. In this system the scanning current is provided via two thyristors and two switching diodes which due to their characteristics can supply the deflection yoke without a step-up transformer (a small transformer is still required to obtain the input voltage pulse for the e.h.t. tripler). The purpose of this article is to explain the basic operation of such circuits. The thyristor line output circuit offers high reliability since all switching occurs at zero current level. C.R.T. flashovers, which can produce high current surges (up to 60A), have no detrimental effects on the switching diodes or thyristors since the forward voltage drop across these devices is small and the duration of the current pulses short. If a surge limiting resistor is pro- vided in the tube's final anode circuit the peak voltages produced by flashovers seldom exceed the normal repetitive circuit voltages by more than 50-100V. This is well within the device ratings.  It's a very good system to use where the line scan coils require large peak currents with only a moderate flyback voltage  an intrinsic characteristic of toroidally wound deflection coils. The basic thyristor line output stage arrangement used in all these chassis is shown in Fig. 1
it was originally devised by RCA. Many sets fitted with 110°, narrow -neck delta -gun tubes used a thyristor line output stage - for example those in the Grundig and Saba ranges and the Finlux Peacock , Indesit, Siemens, Salora, Metz, Nordmende, Blaupunkt, ITT, Seleco, REX, Mivar, Emerson, Brionvega, Loewe, Galaxi, Stern, Zanussi, Wega, Philco. The circuit continued to find favour in earlier chassis designed for use with in -line gun tubes, examples being found in the Grundig and Korting ranges - also,  Indesit, Siemens, Salora, Metz, Nordmende, Blaupunkt, ITT, Seleco, REX, Mivar, Emerson, Brionvega, Loewe, Galaxi, Stern, Zanussi, Wega, Philco the Rediffusion Mk. III chassis. Deflection currents of up to 13A peak -to -peak are commonly encountered with 110° tubes, with a flyback voltage of only some 600V peak  to peak. The total energy requirement is of the order of 6mJ, which is 50 per cent higher than modern 110° tubes of the 30AX and S4 variety with their saddle -wound line scan coils.   The only problem with this type of circuit is the large amount of energy that shuttles back and forth at line frequency. This places a heavy stress on certain components. Circuit losses produce quite high temperatures, which are concentrated at certain points, in particular the commutating combi coil. This leads to deterioration of the soldered joints around the coil, a common cause of failure. This can have a cumulative effect, a high resistance joint increasing the local heating until the joint becomes well and truly dry -a classic symptom with some Grundig / Emerson sets. The wound components themselves can be a source of trouble, due to losses - particularly the combi coil and the regulating transductor. Later chassis are less prone to this sort of thing, partly because of the use of later generation, higher efficiency yokes but mainly due to more generous and better design of the wound components. The ideal dielectric for use in the tuning capacitors is polypropylene (either metalised or film). It's a truly won- derful dielectric - very stable, with very small losses, and capable of operation at high frequencies and elevated temperatures. It's also nowadays reasonably inexpensive. Unfortunately many earlier chassis of this type used polyester capacitors, and it's no surprise that they were inclined to give up. When replacing the tuning capacitors in a thyristor line output stage it's essential to use polypropylene types -a good range of axial components with values ranging from 0.001µF to 047µF is available from RS Components, enabling even non-standard values to be made up from an appropriate combination. Using polypropylene capacitors in place of polyester ones will not only ensure capacitor reliability but will also lower the stress on other components by reducing the circuit losses (and hence power consumption).
       Numerous circuit designs for completely transistorized television receivers either have been incorporated in commercially available receivers or have been described in detail in various technical publications. One of the most troublesome areas in such transistor receivers, from the point of View of reliability and economy, lies in the horizontal deflection circuits.
       As an attempt to avoid the voltage and current limitations of transistor deflection circuits, a number of circuits have been proposed utilizing the silicon controlled rectifier (SCR), a semiconductor device capable of handling substantially higher currents and voltages than transistors.
       The circuit utilizes two bi-directionally conductive switching means which serve respectively as trace and commutating switches. Particularly, each of the switching means comprises the parallel combination of a silicon controlled rectifier (SCR) and a diode. The commutating switch is triggered on shortly before the desired beginning of retrace and, in conjunction with a resonant commutating circuit having an inductor and two capacitors, serves to turn off the trace switch to initiate retrace. The commutating circuit is also arranged to turn oft the commutating SCR before the end of retrace. 


The chassis runs discretely warm with 180 - 200Watt power supply.


A display showing program number is present and all commands are locally manual performed, similar other model set was featured with ultrasonic remote system.

This Emerson TV was fabricated by Giovanni Borghi Italian Industrialist

The set is build with a Modular chassis design because as modern television receivers become more complex the problem of repairing the receiver becomes more difficult. As the number of components used in the television receiver increases the susceptibility to breakdown increases and it becomes more difficult to replace defective components as they are more closely spaced. The problem has become even more complicated with the increasing number of color television receivers in use. A color television receiver has a larger number of circuits of a higher degree of complexity than the black and white receiver and further a more highly trained serviceman is required to properly service the color television receiver.
Fortunately for the service problem to date, most failures occur in the vacuum tubes used in the television receivers. A faulty or inoperative vacuum tube is relatively easy to find and replace. However, where the television receiver malfunction is caused by the failure of other components, such as resistors, capacitors or inductors, it is harder to isolate the defective component and a higher degree of skill on the part of the serviceman is required.
Even with the great majority of the color television receiver malfunctions being of the "easy to find and repair" type proper servicing of color sets has been difficult to obtain due to the shortage of trained serviceman.
At the present time advances in the state of the semiconductor art have led to the increasing use of transistors in color television receivers. The receiver described in this application has only two tubes, the picture tube and the high voltage rectifier tube, all the other active components in the receiver being semiconductors.
One important characteristic of a semiconductor device is its extreme reliability in comparison with the vacuum tube. The number of transistor and integrated circuit failures in the television receiver will be very low in comparison with the failures of other components, the reverse of what is true in present day color television receivers. Thus most failures in future television receivers will be of the hard to service type and will require more highly qualified servicemen.
The primary symptoms of a television receiver malfunction are shown on the picture tube of the television receiver while the components causing the malfunction are located within the cabinet. Also many adjustments to the receiver require the serviceman to observe the screen. Thus the serviceman must use unsatisfactory mirror arrangements to remove the electronic chassis from the cabinet, usually a very difficult task. Further many components are "buried" in a maze of circuitry and other components so that they are difficult to remove and replace without damage to other components in the receiver.
Repairing a modern color television receiver often requires that the receiver be removed from the home and carried to a repair shop where it may remain for many weeks. This is an expensive undertaking since most receivers are bulky and heavy enough to require at least two persons to carry them. Further, two trips must be made to the home, one to pick up the receiver and one to deliver it. For these reasons, the cost of maintaining the color television receiver in operating condition often exceeds the initial cost of the receiver and is an important factor in determining whether a receiver will be purchased.
Therefore, the object of this invention is to provide a transistorized color television receiver in which the main electronic chassis is easily accessible for maintenance and adjustment. Another object of this invention is to provide a transistorized color television receiver in which the electronic circuits are divided into a plurality of modules with the modules easily removable for service and maintenance. The main electronic chassis is slidably mounted within the cabinet so that it may be withdrawn, in the same manner as a drawer, to expose the electronic circuitry therein for maintenance and adjustment from the rear closure panel after easy removal. Another aspect is the capability to be serviced at eventually the home of the owner.
(To see the Internal Chassis Just click on Older Post Button on bottom page, that's simple !)



The Original Italian brand conglomerate was formed by IGNIS (Main) FIDES and ALGOR  (All dead).

The Ignis was a manufacturer of home appliances. Currently is a trademark owned by the US multinational Whirlpool Corporation.

The milanese entrepreneur Giovanni Borghi founded in 1946 in Comerio (VA) the SIRI S.p.A., acronym for Refrigerant Industry Company Ignis. The term Ignis, which will be the brand name comes from the Latin and means "flame", and in fact, the company began its activities by building electric hobs.

During the 1950s the company grew in terms of productivity, and extend it to gas cookers, irons, electrical water heaters and refrigerators, the latter also products for third parties with some brands such as Atlantic, Fiat, Philco, Phonola and RadioMarelli. At the same time created other establishments, Gavirate, Naples and Cassinetta di Biandronno.

The company, in the 1960s and 1970s continued its expansion by creating settlements in Siena and Trento, and also abroad, two in Spain and one in Greece. He also started the production of washing machines, dishwashers and microwaves. Commercially Ignis was one of the leading companies in the domestic market of home appliances in 1960, holding a market share of 38%.

In 1970, 50% of the share capital of the company was taken over by Philips, which acquired full control in 1972.

Ignis was in those years, after the Zanussi, the second national manufacturer of household appliances, and in 1973 its factories were more than 10000 employees only in Italy.

With the change of ownership at the Dutch multinational company, he also changed the corporate name of the company that became IRE S.p.A (Industrie Riunite Eurodomestici).

In 1988, IRE-Ignis became a joint venture between Philips and Whirlpool, which entered the capital with 53% of the shares, becoming the majority shareholder.


The American company in 1991, acquired the whole of the Ignis, which became Italy s.r.l, Whirlpool and Whirlpool Europe later, and since then is a part of the group, which produced household appliances in the Italian plants, still active (NOT FOR TELEVISIONS !!)


 IGNIS, GIOVANNI BORGHI HISTORY.

 Investing in the industrial development of artisan villages
in Varese, Italy, Giovanni Borghi builds a factory for 200
employees to manufacture not only ovens and cooktops, but
also an appliance previously unknown in Italy: the refrigerator.
Ignis workers produce appliances for third-party companies
like Fiat, Atlantic, Philco, Emerson and Philips. Borghi builds
the “Villages of Ignis,” with affordable one- and two-family
houses (Borghi Villages), as well as a pool and sports center
in Comerio, Italy, and a hostel vvith recreational facilities for
young workers in Cassinetta, Italy, all intended to promote a
comfortable, healthy lifestyle.

  The Milan industrialist Giovanni Borghi founded the IGNIS brand of household appliances.  His factories would turn out one appliance every eight seconds, and make billions selling them to Italy's exploding middle class.   Borghi was famous for his early support of cycling, and his yellow IGNIS jerseyed squadra won more than a few great races in the late fifties and early sixties.

Borghi was aggressive, flamboyant and flashy.  And he took care of his stars - famously buying Spanish sprinter Miguel Poblet a Lancia convertible after his Milan San Remo win.   On top of his 25 million lire per year salary.  

Giovanni Borghi, was an Italian industrialist pioneer in the field of domestic appliances, returned from a trip in the USA with a real
illumination: refrigerators insulated with Polyurethane foam were much more
efficient and capacious than those hand-filled with mineral wood.
His refrigerators Group, Ignis, developed internally this technology and the
related equipment, a suitable alternative to the imported foam dispensers, which
were difficult to get, fix and maintain, stimulating an industrial supply of
similar machines.  

 And in 1959 Borghi signed the man most of Italy thought would be the man to replace Fausto Coppi:  1956 Olympic, 1958 Giro d'Italia and World Champion  Ercole Baldini.  He lured Baldini away from Legnano with a contract so fat many said it only served to asurre that il treno di Forli.. would...well...get a little too fat himself!  He was never quite as hungry once he went to IGNIS.

Borghi kept control of IGNIS in the family.  In the paternalistic Italian industrial model - like Ferrari, Maserati or Campagnolo.   He later turned the reins over to his son, who in turn finally sold the company to Dutch conglomerate, Philips.

 
When Philips decided to get into the major household appliances
market, its procedure was to buy increasing quantities of these goods from the Italian firm, Ignis, then at the height of its prosperity.
Once it became the principal client of the manufacturer, it took over supplying the latter by purchasing 50 percent of its capital. It took over the firm completely in 1972, to the satisfaction of the founder of Ignis, Giovanni Borghi.

In 1988, IRE-Ignis became a joint venture between Philips and Whirlpool, which entered the capital with 53% of the shares, becoming the majority shareholder.

The American company in 1991, acquired the whole of the Ignis, which became Italy s.r.l, Whirlpool and Whirlpool Europe later, and since then is a part of the group, which produced household appliances in the Italian plants, still active
BORGHI DIED IN 1975.
 
Borghi is still remembered in Italia.   RAI even aired TV miniseries about his life this past year, "Mister Ignis". 

R.I.P.  ITALY..............

Emerson Radio Corp., founded in 1948, is one of the nation’s largest volume consumer electronics distributors with a recognized trademark in continuous use since 1912. It continues to be one of the oldest and well-respected names in the consumer electronics industry.


The Company engages in the design and marketing of audio and video products tailored to meet consumer preferences of the local market, particularly in the case of International markets. The breadth of products offered encompass televisions, Digital Versatile Disc (DVD) players and video cassette recorders (VCR's), audio accessories, microwave ovens, home theater, high end audio products, office products, mobile stereo and wireless products.


The Company distributes its products primarily through mass merchants, discount retailers, and specialty catalogers and, to a lesser degree, the Internet. The Company utilizes an extensive distributor network to facilitate its international presence and further leverages the Emerson brand globally through various licensing agreements. Its core business consists primarily of the distribution and sale of various low to moderately priced product categories.



History
1915–1920

Emerson Radio Corp. was incorporated in 1915 as Emerson Phonograph Co. (NAICS: 421620 Consumer Electronics Wholesaling), based in New York City, by an early recording engineer and executive, Victor Hugo Emerson, who was at one time employed by Columbia Records. The first factories were opened in Chicago and Boston, in 1920. In December of that year, the company fell victim to the unanticipated sales slump for phonograph music that accompanied the post-World War I recession and the growth of commercial radio. It went from the self-claimed third largest record manufacturer into receivership.
1921–1940

In 1922 Emerson Phonograph Co. passed into the hands of Benjamin Abrams and Rudolph Kanarak. Abrams, a phonograph and record salesman, along with his two brothers, ran the company and renamed it Emerson Radio & Phonograph Corp in 1924 after entering the radio business. The company's record interests were subsequently sold. Although Emerson introduced the first radio-phonograph combination sold in the United States, the company remained in obscurity until 1932, when, during the Great Depression, it introduced the "peewee" radio (see "Historical Products" below).
1941–1950

Emerson Radio & Phonograph converted to military production for World War II in 1942, when it held one-sixth of the U.S. radio market. In 1943, it became a public corporation, when it offered over 40 percent of its stock to the public for $12 a share. In 1947, among its first post-war products, Emerson offered a television set with a 10-inch tube.
 Although its ending retail price was nearly equal to a month's salary for the average working American, it put Emerson at the lower end of the market. However, between fiscal 1948 and 1950, the high demand for television allowed Emerson to more than double its sales. Its net income reached a record of $6.5 million in fiscal 1950, with sales of $74.2 million.
1951–1960

In 1953 Emerson Radio and Phonograph purchased Quiet Heet Corp., which entered the company into air conditioning. Although radio represented only 15 percent of Emerson's revenue by 1954, the company credited itself as creating the firsts of the clock radio, self-powered radio, and transistorized pocket radio; production of tape recorders began in 1955.

Emerson Radio and Phonograph paid $6 million to purchase the consumer products division of DuMont Laboratories in 1958.[4] With this acquisition, a higher-priced line of television sets, phonographs and high-fidelity and stereo instruments, along with the DuMont trademark was added to Emerson's products. Unfortunately, by this time, almost every U.S. household that wanted a TV set already had one, and many customers who were in need of another set were waiting for color television instead of buying a replacement. Sales fell from $87.4 million in fiscal 1955 to $73.9 million in fiscal 1956, when the company earned a paltry $84,852.

A cost-cutting campaign by Abrams rebounded net income which reached $2.7 million in fiscal 1959 on sales of $67.4 million. In fiscal 1964 (Emerson's last full year of independent operation) it earned $2.1 million on sales of $68.2 million.

1961–1980

In 1965 the company acquired the Pilot Radio Corp. from Jerrold Corp. Its line of Quiet Kool air conditioners became a separate National Union Electric division. Later in 1965 Emerson Radio and Phonograph was purchased for approximately $62 million in cash and stock by National Union Electric Corp., a diversified manufacturer. This company continued to produce radios, television sets and phonographs distributed under the Emerson and DuMont names and hi-fi equipment under the Pilot name.

Between 1967 and 1971 the National Union Electric division lost about $27 million due to too little volume to cover costs. The division contracted out the manufacturing of television sets and some other home entertainment products to Admiral Corp., and laid-off 1,800 employees. In addition to importing some of its home entertainment products from the Far East, Emerson continued to be responsible for design, engineering, and marketing.

In late 1972 National Union Electric announced that Emerson was discontinuing distribution of television sets and other home entertainment products. In 1973 Emerson sold its license for marketing products under the Emerson name to Major Electronics Corp. Founded in 1948 by Melvin Lane and incorporated in 1956, this Brooklyn-based company originally made children's phonographs.
The company later diversified into the production and sale of a broad line of low-priced home entertainment products that included stereos, radios, and clock radios. In 1971 Major also began importing low-cost radios. By 1975 the company was only manufacturing portable phonographs. In 1976 the company moved its headquarters to Secaucus, New Jersey, and changed its name to Emerson Radio Corp. in 1977.

Sales rose from $11.5 million in fiscal 1975 to $49.2 million in fiscal 1978, the year in which phonographs, radios, tape recoders and players, compact stereos, digital clock radios, and other low to medium-priced electronic equipment was being imported, assembled, and marketed, primarily under the Emerson name. Approximately 60 percent of its components were being imported from the Far East and 20 percent from each Great Britain and domestically, and assembled in either Secaucus or Sun Valley, California.

In 1979, Emerson began selling Heart Aid, after purchasing a large portion of Cardiac Resuscitator Corp., a near-bankrupt company. Emerson spent heavily to develop and produce both an improved Implantable cardioverter-defibrillator and a pacemaker. In addition, the company took an 18 percent share in a developer of Computerized Axial Tomographic (CAT) scanners. Because this line of products never made money, Emerson disposed of its holdings in them between 1987-88.

Emerson Radio dropped its last U.S.-made product, the phonograph line, in 1980 because it became unprofitable due to rising labor costs. Despite harsh competition, Emerson Radio raised its sales and earnings in fiscal 1980 to $81.9 million and $1.6 million, respectively. Their plan was to have their suppliers (mainly in Taiwan and South Korea) to imitate Sony and Panasonic audio/video products and then sell them at a lower price.
1981–1990

Sales soared from $94.8 million in fiscal 1983 to $181.6 million in fiscal 1984, when net income came to $9.1 million[8] because of the company's reintroduction of television sets in 1983. Emerson purchased sets from Goldstar Electric Co. (AKA LG Electronics), a South Korean company, but sold them at a higher price point.

In 1984, Emerson signed a 10-year contract with Orion Electric to produce a line of VCRs to its existing product lineup.

In 1985 a compact disc player and microwave oven were introduced causing sales to once again double in fiscal 1985 to $357.5 million, and net income rose to $13.3 million. TV sets and VCR's accounted for two-thirds of sales that year.
Later that year, Emerson Radio moved its headquarters to North Bergen, New Jersey, and acquired H. H. Scott, Inc., a company that manufactured high-fidelity audio and visual equipment. Products were sold under the Scott name until 1991, the year the line was discontinued.

In 1986 Emerson began importing and marketing compact refrigerators and Hi-Fi stereo VHS VCRs. Camcorders, telephones, and answering machines were added to its product line in fiscal 1988. In 1990 personal computers and facsimile machines were added for a major roll-out to more than 500 Wal-Mart stores.
In 1992 sales reached a peak of $891.4 million, unfortunately, net income was a lowly $10.4 million.

Emerson's addition of personal computers ended up being a catastrophe for the company—a $150 million loss. That coupled with the recession that began in 1990 brought the company's total loss to $37.5 million in the last nine months of the year. Shares of stock fell as low as $2, compared to the high of $12.75 in 1987. Several shareholder suited charging some Emerson directors and officials with breach of fiduciary duty and self-dealing. Emerson also fell into technical default on its long-term debt of $55.4 million at the end of the year.
1991–2000

Fidenas Investment Ltd., a Swiss firm based in the Bahamas, began purchasing shares of Emerson Radio stock in 1989. It held a 20 percent stake (more than that held by Stephen and William Lane) by 1992, when they began a takeover attempt. The Lane brothers were seeking to restructure $180 million in debt, but ended up conceded defeat in June 1992.Unfortunately, Emerson's financial situation worsened, and in fiscal 1993 the company incurred a loss of $56 million on sales of $741.4 million. When the company filed for bankruptcy in October 1993, Emerson had been in default on $223 million in debt for the previous two years.[13]

In 1994, the company emerged from bankruptcy pursuant to a plan of reorganization and with $75 million in financing arranged by Fidenas, which had assumed a 90 percent stake in Emerson. It then issued 30 million shares, some of which were claimed by creditors. Legal battles ensued and continued until mid-August 2001.

In early 1995, in an effort to cut costs, Emerson Radio licensed the manufacture of certain video products under the Emerson and G Clef trademarks for a three-year period to Otake Trading Co. Ltd. The company also licensed the sale of these products in the United States and Canada for the same period to Wal-Mart Stores, Inc. As a result, Emerson's net sales fell from $654.7 million in fiscal 1995 to $245.7 million in fiscal 1996, with the licensing agreement only providing about $4 million a year in royalty income.

Also in 1995, Emerson Radio entered the home theater and car audio fields, and the $900-million-a-year home and personal security market with a carbon monoxide detector. The company planned to eventually lend its name to burglar alarms, motion detectors, personal alarms, smoke detectors, and safety lights, however, the company left this field in fiscal 1997. Additionally, Emerson announced it would license the Emerson name to more than 250 audio and video accessories made by Jasco Products Co., an Oklahoma firm selling cables, remote controls, and appliance cleaning devices.

The company took a 27 percent stake in Sport Supply Group, Inc., the largest direct-mail distributor of sporting goods equipment and supplies to the U.S. institutional market, for $11.5 million, in late 1996.

Subsequent to a net income of $7.4 million in fiscal 1995, Emerson dropped into the red again the following three years. They lost $13.4 million, $24 million, and $1.4 million in fiscal 1996, 1997, and 1998, respectively, with net revenues of $245.7 million, $178.7 million, and $162.7 million.

Emerson Radio Corp. announced in November 1998 that it had entered into an exclusive agreement with Team Products International, Inc. of Boonton, N.J., a distributor of audio, video and other consumer electronic product accessories in the United States and Canada. They would promote the sale of a wide variety of Emerson branded consumer electronic products and accessories.

The owner of Fidenas's, Geoffrey P. Jurick, had assumed the position of Chief Executive Officer (CEO) of the company in 1992 and in 1998 he added the titles of President and Chairman of the Board. In December 1998 he held 60 percent of Emerson's common stock, during which time Kenneth S. Grossman, a private investor, along with Oaktree Capital Management, a Los Angeles-based investment firm that held a smaller stake in Emerson Radio, proposed to buy Jurick's holdings in the company for more than $14.6 million, but the offer was rejected as "inadequate." Emerson announced in August 1999 that it planned to sell to Oaktree for $28.9 million.

On the day the licensing agreement with Otake expired, Emerson replaced the company with Daewoo Electronics Co. Ltd., which entered into a four-year agreement with Emerson to manufacture and sell television and video products bearing the Emerson and G Clef trademark to U.S. retailers. In 1999, Emerson also signed five-year license and supply agreements with Cargil International covering the Caribbean and Central and South American markets, along with WW Mexicana for certain consumer products to be sold in Mexico. They also had a licensing agreement with Telesound Electronics for telephones, answering machines, and caller ID products in the United States and Canada.

Net income for Emerson was a meager $289,000 on net revenues of $158.7 million in fiscal 1999 with a long-term debt of $20.8 million at the end of the fiscal year. Nearly 84 percent of its merchandise that year was imported, primarily from China, Hong Kong, Malaysia, South Korea, and Thailand. Tonic Electronics (32 percent), Daewoo (22 percent), and Imarflex (12 percent) were its main suppliers. The company depended heavily on Wal-Mart Stores, which took about 52 percent of its goods in fiscal 1999, and Target Stores, Inc., which took about 24 percent.
2001–present

In 2001, Emerson exited the video electronics business (TVs, DVD players, VCRs) and handed 100% of the operations to Funai. Funai currently makes and markets Emerson consumer video products for Wal-Mart. In January 2003, Emerson announced it had entered into a letter of intent naming Sablian Group of Shandong, China the exclusive distributor of Emerson branded products through its subsidiary, Sanlian Household Electric Appliance Company (SHEAC).[20] The agreement contemplated the supply and distribution of Emerson originated product categories through SHEAC's 200 retail stores and maintenance service centers as well as its extensive BtoB and BtoC e-commerce network. Furthermore, Sanlian shall license the Emerson brand for additional product categories it finds suitable for China-wide distribution and cooperate with Emerson in the design, development and sourcing for such.



Historical products

In 1915, at the company's inception, Emerson's main product was the Universal Cut Records, capable of being played laterally or vertically. Music offered included a wide variety of popular, band, opera, classical, religious, and folk music. Also during their first years, Emerson offered one of the last of the external-horn phonographs, which sold for only $3.

The "peewee" radio was introduced December 1932. Measuring about 8½ inches long and 6¼ inches wide, approximately 60 percent of all radios sold between early December 1932 and late May 1933 were peewees, half of which were manufactured by Emerson. The Universal Compact line was priced from $17.95 to $32.50. Emerson led the production and sale of this class of radio until 1938, having by then sold more than a million.

In 1947 Emerson offered a television set with a 10-inch tube, which retailed for $375. It was among Emerson's first postwar products. They dropped the price to $269.50 by June 1948, when the newly developed television industry had sold 375,000 sets.

In 1953, Emerson Radio and Phonograph purchased Quiet Heet Corp., which entered the company into air conditioning.

Although radio represented only 15 percent of Emerson's revenue by 1954, the company credited itself as creating the first clock radio, self-powered radio, and transistorized pocket radio.

Production of tape recorders began in 1955.

When Emerson purchased Allen B. DuMont Laboratories, Inc. in 1958, a higher-priced line of television sets, phonographs and high-fidelity and stereo instruments, along with the DuMont trademark was added to Emerson's products.

In 1979, Emerson began selling Heart Aide, after purchasing a large portion of Cardiac Resuscitator Corp. The company spent heavily to develop and produce both an improved Implantable cardioverter-defibrillator and a pacemaker. In addition, the company took an 18 percent share in a developer of computerized axial tomographic (CAT) scanners. As this line of products never made money, Emerson disposed of its holdings in them between 1987-88.

Emerson manufactured the Arcadia 2001, the most well-known of the "Emerson Arcadia 2001" second-generation 8-bit game console variations. Although, considerably more powerful than the then-dominant Atari 2600, the Arcadia 2001 wasn't released until just before the more-advanced Atari 5200 and the ColecoVision, in mid-1982. It was successful in other countries, however, because Atari had exclusive rights to many games, it was nearly impossible for Emerson to market in the United States due to the lack of popular game titles.

In 1983, Emerson began selling re-branded Goldstar televisions at inflated prices for a substantial profit. The compact disc player and microwave oven were introduced in 1985 doubling sales. In 1986 Emerson began importing and marketing compact refrigerators. Camcorders, telephones, and answering machines were added to its product line in fiscal 1988. Personal computers and facsimile machines were added in 1990.

In 1995, Emerson Radio entered the home theater and car audio fields, and the $900-million-a-year home and personal security market with a carbon monoxide detector, however, they left this field in 1997. Also in 1995, Emerson announced it would license its name to more than 250 audio and video accessories made by Jasco Products Co., a firm selling cables, remote controls, and appliance cleaning devices.

Emerson began manufacturing and selling television and video products bearing the Emerson and G Clef trademark to U.S. retailers in 1999. They also had a licensing agreement with Telesound Electronics for telephones, answering machines, and caller ID products in the United States and Canada.

No comments:

Post a Comment

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.