THE TELEFUNKEN PALCOLOR 6868 Is an compact 22 inches color television with 16 programs and infrared remote.
First models series combining the TELEFUNKEN CHASSIS 712A with Tuning search system with Tuning Bar display system of led lamps in the searching box.
The tuning is performed via sequential electronic search manually AFC driven and with led lamps indicating tuning sequencing.
The tuning system also includes an automatic fine tuning (AFT) frequency discriminator for tuning the local oscillator to minimize any deviation between the frequency of an actual picture carrier and the nominal picture carrier frequency. If the receiver is coupled to a television distribution system which provides RF carriers having nonstandard frequencies arbitrarily near respective ones of the standard broadcast frequencies, when the phase locked loop has achieved lock at a nominal frequency, a mode control unit selectively couples the discriminator and a frequency drift control circuit to the local oscillator.
The general concept of Automatic Frequency Control (AFC) for television receivers is known in the art and has been adapted to radio receivers as well as to television receivers of both the monochrome and color variety. The general purpose of such a system is to assist the user in attaining proper fine-tuning of the receiver without requiring critical manual adjustment. The advantage of such a system is self-evident but its value to a color receiver is markedly increased due to the fact that improper tuning of a color receiver manifests itself in incorrect colors, or even a total lack of color, in the reproduced image. Typically, the AFC system is tuned to a reference or center frequency corresponding to the desired video IF frequency and so long as the tuning is reasonably close, within the response of the AFC system, an error voltage is developed to correct the tuning. If the user of the television receiver makes the fine-tuning adjustment while the AFC system is operative, he may adjust it to a point where the picture is acceptable but a substantial amount of AFC correction voltage is required. Thus, the receiver may be tuned at the limit of the "hold-in" range and would not give the proper "pull-in" performance when the channel selector is switched to the next channel. Accordingly, it is desirable to include an AFC defeat circuit for disabling the AFC system during manual fine-tuning. Heretofore, most AFC defeat circuits have required that the user of the television receiver defeat the AFC system by means of a manual switch. It is apparent, however, that the typical user of a television receiver may at times forget to flip the switch and hence the attendant problems are realized.
The set has even connectors for Audio recorders and jacks for headphones.
Tone controls are obtained manually.
Furthermore the chassis 712A was using the TELEFUNKEN A66-500X CRT TUBE and introducing first time a SWITCH MODE POWER SUPPLY instead of a Thyristor Servo Supply used in TELEFUNKEN CHASSIS 712; and the chassis here is isolated from mains.
Featuring a Switch mode Power supply combined with isolated ground chassis from mains.
Television receivers, which obtain operating power from an alternating current source producing any one of a plurality of RMS potentials within a predetermined range, have, traditionally, been provided with various regulation circuits in order to maintain relatively uniform performance of the television receiver within the predetermined range of RMS potentials. This type of circuit provides good regulation of all operating direct current potentials within the range of RMS potentials as well as isolation between the source of alternating current and the television receiver chassis. Switch mode power supply means, especially for a television receiver, having a working winding , a switching transistor , a back-coupling winding and a control switch on the primary side of a divided transformer, and also having rectifiers for the production of the drive voltages (U1, U2, U3) on the secondary side of the transformer , characterized by the following features : Connected to a winding there is a thyristor which is poled in the permitted direction for the voltage at the winding arising during the current conducting phase of the switching transistor. One of the drive voltages is applied to the control electrode of the thyristor with such magnitude that the thyristor remains blocked in the normal working state and fires on the occurrence of an inadmissible rise of the drive voltage.
It has a Transistorized horizontal deflection circuits made up of a horizontal switching or output transistor, a diode, one or more capacitors and a deflection winding. The output transistor, operating as a switch, is driven by a horizontal rate square wave signal and conducts during a portion of the horizontal trace interval. A diode, connected in parallel with the transistor, conducts during the remainder of the trace interval. A retrace capacitor and the deflection yoke winding are coupled in parallel across the transistor-diode combination. Energy is transferred into and out of the deflection winding via the diode and output transistor during the trace interval and via the retrace capacitor during the retrace interval.
In some television receivers, the collector of the horizontal output transistor is coupled to the B+ power supply through the primary windings of the high voltage transformer.
The set is build with a Modular chassis design because as modern television receivers become more complex the problem of repairing the receiver becomes more difficult. As the number of components used in the television receiver increases the susceptibility to breakdown increases and it becomes more difficult to replace defective components as they are more closely spaced. The problem has become even more complicated with the increasing number of color television receivers in use. A color television receiver has a larger number of circuits of a higher degree of complexity than the black and white receiver and further a more highly trained serviceman is required to properly service the color television receiver.
Fortunately for the service problem to date, most failures occur in the vacuum tubes used in the television receivers. A faulty or inoperative vacuum tube is relatively easy to find and replace. However, where the television receiver malfunction is caused by the failure of other components, such as resistors, capacitors or inductors, it is harder to isolate the defective component and a higher degree of skill on the part of the serviceman is required.
Even with the great majority of the color television receiver malfunctions being of the "easy to find and repair" type proper servicing of color sets has been difficult to obtain due to the shortage of trained serviceman.
At the present time advances in the state of the semiconductor art have led to the increasing use of transistors in color television receivers. The receiver described in this application has only two tubes, the picture tube and the high voltage rectifier tube, all the other active components in the receiver being semiconductors.
One important characteristic of a semiconductor device is its extreme reliability in comparison with the vacuum tube. The number of transistor and integrated circuit failures in the television receiver will be very low in comparison with the failures of other components, the reverse of what is true in present day color television receivers. Thus most failures in future television receivers will be of the hard to service type and will require more highly qualified servicemen.
The primary symptoms of a television receiver malfunction are shown on the picture tube of the television receiver while the components causing the malfunction are located within the cabinet. Also many adjustments to the receiver require the serviceman to observe the screen. Thus the serviceman must use unsatisfactory mirror arrangements to remove the electronic chassis from the cabinet, usually a very difficult task. Further many components are "buried" in a maze of circuitry and other components so that they are difficult to remove and replace without damage to other components in the receiver.
Repairing a modern color television receiver often requires that the receiver be removed from the home and carried to a repair shop where it may remain for many weeks. This is an expensive undertaking since most receivers are bulky and heavy enough to require at least two persons to carry them. Further, two trips must be made to the home, one to pick up the receiver and one to deliver it. For these reasons, the cost of maintaining the color television receiver in operating condition often exceeds the initial cost of the receiver and is an important factor in determining whether a receiver will be purchased.
Therefore, the object of this invention is to provide a transistorized color television receiver in which the main electronic chassis is easily accessible for maintenance and adjustment. Another object of this invention is to provide a transistorized color television receiver in which the electronic circuits are divided into a plurality of modules with the modules easily removable for service and maintenance. The main electronic chassis is slidably mounted within the cabinet so that it may be withdrawn, in the same manner as a drawer, to expose the electronic circuitry therein for maintenance and adjustment from the rear closure panel after easy removal. Another aspect is the capability to be serviced at eventually the home of the owner.
Both CHASSIS ARE FEATURING DYNAMIC FOCUSING.
In any television picture tube the beam length is relatively longer at the edges of the screen than at the centre. Thus the sharpness of the picture at the edges is much worse than at the centre. The effect is barely noticeable with a 90° c.r.t., but is much more noticeable with a 110° c.r.t. used with the conventional focusing arrangement.
To overcome this effect a few of the more sophisticated receivers, such as this Telefunken chassis, employ a dynamic focusing circuit which automatically compensates for the loss of sharpness at the edges of the screen by varying the focus voltage in proportion to beam length. This is done by superimposing an additional parabolic voltage waveform, at line frequency, on to the conventionally derived focus voltage.
All transistor color VHF/UHF TV receiver powered from AC net 220V/50Hz.Woodencabinet.
A LOOK TO THE FUTURE:
Dr. Walter Bruch of Telefunken inventor of the PAL colour system, speaking to the Royal Television Society in London in 1972 has predicted the end of monochrome television after 1980. Dr. Bruch believes that in ten years' time colour will have taken over completely. Like many others Dr. Bruch does not see an early end to the shadowmask tube and believes it will be 20-30 years before a flat solid-state display device will be a practical alternative. Dr. Bruch predicts that most TV set circuitry will be packed into a couple of i.c.s well before then.
In brief:
Telefunken (WAS) is a German radio and television apparatus company, founded in 1903, in Berlin, as a joint venture of two large companies, Siemens & Halske (S & H) and the Allgemeine Elektricitäts-Gesellschaft (General Electricity Company).
The name "Telefunken" appears in:
* the product brand name "Telefunken";
* AEG subsidiary as Telefunken GmbH in 1955;
* AEG subsidiary as Telefunken AG in 1963;
* company merged as AEG-Telefunken (1967–1985);
* the company "Telefunken USA" (2001). Now Telefunken Elektroakustik (2009)
* the company "Telefunken semiconductor GmbH & Co KG" Heilbronn Germany (2009).
* the company "Telefunken Lighting technologies S,L" (2009)
The company Telefunken USA[1] was incorporated in early 2001 to provide restoration services and build reproductions of vintage Telefunken microphones.
Around the turn of the 20th century, two groups of German researchers worked on the development of techniques for wireless communication. The one group at AEG, led by Adolf Slaby and Georg Graf von Arco, developed systems for the German navy; the other one, under Karl Ferdinand Braun, at Siemens, for the German army.
When a dispute concerning patents arose between the two companies, Kaiser Wilhelm II decided that the two companies were to be joined, creating on 27 May 1903 the company Gesellschaft für drahtlose Telegraphie System Telefunken ("The Company for Wireless Telegraphy Ltd."), and the disputed patents and techniques were invested in it. This was then renamed on 17 April 1923 as Telefunken, The Company for Wireless Telegraphy. Telefunken was the company's telegraph address. The first technical director of Telefunken was George Graf von Arco.
Starting in 1923, Telefunken built broadcast transmitters and radio sets.
In 1928, Telefunken made history by designing the V-41 amplifier for the German Radio Network. This was the very first two stage, "Hi-Fi" amplifier which began a chapter in recording history. Over time, Telefunken perfected their designs and in 1950 the V-72 amplifier was born. The TAB (a manufacturing subcontractor to Telefunken) V-72 soon became popular with other radio stations and recording facilities and would eventually come to help define the sound of most European recordings. The V-72S was the only type of amplifier found in the legendary REDD-37 console used by the Beatles at Abbey Road Studios on every recording prior to Rubber Soul. Today the V-72 is still the most sought after example of Telefunken's design and over 50 years later continues to be the benchmark by which all other tube based microphone preamplifiers are measured. In 1932, record players were added to the product line.
In 1941 Siemens transferred its Telefunken shares to AEG as part of the agreements known as the "Telefunken settlement", and AEG thus became the sole owner and continued to lead Telefunken as a subsidiary (starting in 1955 as "Telefunken GmbH" and from 1963 as "Telefunken AG").
During the Second World War Telefunken was a supplier of vacuum tubes, transmitters and radio relay systems, and developed radar facilities and directional finders, aiding extensively to the German air defense against British-American Aerial Bombing. During the war, manufacturing plants were shifted to and developed in West Germany or relocated. Thus, Telefunken, under AEG, turned into the smaller subsidiary, with the three divisions realigning and data processing technology, elements as well as broadcast, television and phono. Telefunken had substantial successes in these markets during the time of self-sufficiency and also later in the AEG company. Telefunken was also the originator of the FM radio broadcast system. Telefunken, through the subsidiary company Teldec (a joint venture with Decca Records), was for many decades one of the largest German record companies, until Teldec was sold to WEA in 1988.
In 1959, Telefunken established a modern semiconductor works in Heilbronn, where in April 1960 production began. The works was expanded several times, and in 1970 a new 6-storey building was built at the northern edge of the area. At the beginning of the 1970s it housed approximately 2,500 employees.
In 1967, Telefunken was merged with AEG, which was then renamed to AEG-Telefunken. During this era, Walter Bruch developed the PAL color television for the company, in use by most countries outside the Americas today (i.e. United Kingdom - PAL-I), and by Brazil (PAL-M) and Argentina (PAL-N) in South America.
The mainframe computer TR 4 was developed at Telefunken in Backnang, and the TR 440 model was developed at Telefunken in Konstanz. They were in use at many German university computing centres from the 1970s to around 1985. The development and manufacture of large computers was separated in 1974 to the Konstanz Computer Company (CGK). The production of mini- and process computers was integrated into the automatic control engineering division of AEG. When AEG was bought by Daimler in 1985, "Telefunken" was dropped from the company name.
In 2005, Telefunken Sender Systeme Berlin changed its name to Transradio SenderSysteme Berlin AG. The name "Transradio" dates back to 1918, when Transradio was founded as a subsidiary of Telefunken. A year later, in 1919, Transradio made history by introducing duplex transmission. Transradio has specialized in research, development and design of modern AM, VHF/FM and DRM broadcasting systems.
In August 2006, it acquired the Turkish company Profilo Telra, one of the largest European manufacturers of TV-devices, with Telefunken GmbH granting a license for the Telefunken trademark rights and producing televisions under that name. In 2000, Toni Roger Fishman acquired The Diamond Shaped Logo & The Telefunken Brand Name for use in North America. The company "Telefunken USA" [2] was incorporated in early 2001 to provide restoration services and build reproductions of vintage Telefunken microphones. In 2003, Telefunken USA won a TEC Award for Studio Microphone Technology for their exact reproduction of the original Ela M 250 / 251 Microphone system. Telefunken USA has since received several TEC Awards nominations for the following microphone systems: the Telefunken USA M12 or C12 (originally developed by AKG), the R-F-T M16 MkII, and the AK47. The Historic Telefunken Ela M251 microphone system entered the MIX foundation's Hall of fame in 2006. In 2008, Telefunken USA won a second TEC Award for its new Ela M 260 microphone.
As a result of a conference held in Frankfurt in May 2009, Telefunken USA has been renamed Telefunken Elektroakustik ("Electrical Acoustics") Division of Telefunken and awarded the exclusive rights to manufacture a wide variety of professional audio products and vacuum tubes bearing the Telefunken Trade Mark, in over 27 countries worldwide. Telefunken Elektroakustik now uses the Telefunken trademark for Professional Audio Equipment & Component Based Electronics, such as Capacitors, Transformers, Vacuum Tubes in North America, South America, Europe, Asia and Australia.
It is ironic that in the years since the introduction of PAL, Telefunken – the company that invented PAL – disappeared from the market after they were bought in the 1980s by the French company Thomson – a former SECAM protagonist.
There is further irony in the fact that even as the majority of European and Asian TV viewers benefit on a daily basis from their PAL standard TV pictures, the worldwide transition from analog to digital TV spells the end of this color standard as well as many other TV transmission standards.
What we have known as PAL, SECAM, or NTSC is now increasingly known as simply digital RGB or Y, Cr, and Cb color component signals encoded in a DVB (Digital Video Broadcasting) signal or one of its many variants such as DVB-T, DVT-S, DVB-C, DVB-H, or similar ones like your ATSC.
In the future, all this may in turn disappear into an abstract IP (Internet Protocol) packet, which would make traditional distribution channels obsolete. For example, major areas in Germany, and all of Austria may terminate their analog transmissions, replacing them with DVB-T or DVB-S only.
We will find out whether the 55th anniversary of PAL in 2018 will generate much of a resonance, if all analog TV transmissions – whether terrestrial, satellite, or cable – have been brought to an end.
1903 – 1922
TWO ARCH RIVALS. ONE INNOVATIVE COMPANY
At the beginning of the last century, two rival research groups were working in the field of
wireless telegraphy. The Slaby-Arco group was represented by the radio-telegraphy department
of AEG, founded in 1899. The other as the Braun-Siemens group, represented by a company
called Gesellschaft für drahtlose Telegraphie, System Prof. Braun und Siemens & Halske
GmbH. Under the advice of Emporer Wilhelm II, the two groups merged to form the
Gesellschaft für drahtlose Telegraphie mbH company on May 27, 1903. And the rest is history.
A TELEFUNKEN FIRST
The very first Telefunken customers were the German Army and the Imperial Navy.
Telefunken was proud to deliver the first two transmitters for the new coastal radio station, Norddeich
Radio, in November 1905. In October 1906, the expansion of a much larger Nauen station was
completed with a range of 300 km and HF output of 10 kW. Welcome to the power of
Telefunken.
MEET DR. TELEFUNKEN
Dr. Georg Graf Von Arco was the first Technical Director and Managing Director of the
Gesellschaft für drahtlose Telegraphie mbH in 1903. He was also the holder of more than one
hundred patents. Among other inventions, he initiated the high-frequency mechanical
transmitter and the wavemeter. Necessity is the mother of invention. Or in this case, German
inventions.
1923 – 1936
TELEFUNKEN GOES COMMERCIAL
On April 17, 1904, the company changed its name to "Telefunken, Gesellschaft für drahtlose
Telegraphie", and on July 26, 1932 Telefunkenplatte GmbH officially began its commercial
activity with registered capital of 100,000 Reichsmarks.
The station in the Telefunken building, Tempelhofer Ufer 9 in Berlin, began broadcasting
concerts regularly two and a half months before the official start of the "Deutsche
Rundfunkverkehr". The world tour of the Graf Zeppelin airship in 1929 got off the ground by
using Telefunken transmitters, receivers and directional equipment exclusively.
Also, on October 31, 1928, during the 5th Grand German Radio Exhibition in Berlin, Telefunken
presented a television set with the Karolus-Telefunken system, a scanning process of film
images through a Mechau projector with a Nipkow disk, in public for the first time.
MEET TELEFUNKEN’S MAD SCIENTISTS
Dr. Hans Bredow is considered to be the "Father of Broadcasting". He was employed at
Telefunken from 1904 to 1919 as a Project Manager, and later as Managing Director.
Prof. Dr. Walter Bruch developed the very first electronic television camera, with which he
participated in the live broadcast of the Olympic Summer Games in Berlin in 1936. He also
earned international fame by inventing the PAL color television system. He joined Telefunken's
Television and Physical Research Department in 1935.
These two innovators thought out of the “TV box” and helped shape and make Telefunken what
it is today.
WELCOME TO RADIO TELEFUNKEN
The German radio station in Zeesen near Königswusterhausen (8 kW shortwave transmitter) was built by Telefunken and was officially placed in service on August 28, 1929. The Mühlacker radio station (60 kW output) was handed over on December 20, 1930. Telefunken is now in, and on, the air.
TELEFUNKEN GOES FOR THE GOLD, SILVER AND BRONZE
In 1935, Telefunken equipped the Olympic Stadium, the Maifeld and the Dietrich-Eckhardt
Stage with electrical-acoustic equipment for the Olympics. On August 1, 1936 at the XI Olympic
Summer Games in Berlin, an electronic television camera, known as the Ikonoskop, was used
for the first time for a direct transmission. Again, another Telefunken first. And second. And third
1936- 1954
NOW PLAYING ON CHANNEL TELEFUNKEN
The first fully electronic television studio equipped by Telefunken for the Deutsche Reichspost
was opened with a live broadcast in August 1938. The 500 kW long wave transmitter in
Herzberg, also known as the most powerful German broadcast transmitter, was supplied by
Telefunken and began to operate on May 19, 1939.
IT’S NOT A MERGER. IT’S A POWERHOUSE
On September 24, 1941, AEG took over the 50% of Telefunken shares owned by Siemens &
Halske AG valued at 20 million Reichsmarks. Thus, Telefunken became a 100% subsidiary of
AEG. In exchange, Siemens & Halske AG received the shares of Eisenbahn-Signalwerken,
Klangfilmgesellschaft mbH and Deutsche Betriebsgesellschaft für drahtlose Telegraphie
(DEBEG) owned by AEG. Strength in numbers, indeed.
POST WWII
The reconstruction after the World War II posed a particularly difficult challenge to Telefunken.
All production facilities and equipment were destroyed, disassembled or confiscated and many
valuable experts were scattered around the world. Rebuilding began in West Germany and
Berlin in 1945, and the production of tubes and transmitters was resumed the same year. But
growth was on the way.
THE TELEFUNKEN COME BACK
In 1953 Telefunken already comprised six plants and five sales offices in Berlin, Ulm,
Frankfurt/Main and Hanover again.The range of products consisted of long-range
communications systems, radio and television transmitters, marine radios, commercial
receivers, directional and navigation systems, radar devices, deci and UHF directional radio
connections, mobile radio systems, portable radio systems, HF heat generators, measuring
equipment, electro-acoustical systems, music centers, record players, transmitter tubes, radio
tubes, special tubes and quartz crystals. As you can see, Telefunken was relentless and has
come a long way.
PROF. DR. DR. WILHELM T. RUNGE THE FIRST
Prof. Dr. Dr. Wilhelm T. Runge (1895-1987) performed trailblazing work in radio and radar
technology and played a significant role in the development of microwave in Germany. He was
especially renowned internationally in the field of high-frequency technology. As well as for
having a few, very important titles before his name.
1955 – 1962
AS TELEFUNKEN GROWS, SO DOES ITS NET WORTH
The name of the company was changed to Telefunken GmbH on January 4, 1955. Due to the
expanded business activities of Telefunken, AEG increased the capital of the company to DM
100 million in 1958.
THE FIRST GERMAN STEREO STUDIO. BROUGHT TO YOU BY TELEFUNKEN
The Sender Freies Berlin (SFB) station ordered the first German stereo studio in 1961. The
harbor radar system, supplied by Telefunken, was officially placed for service in Hamburg
Harbor in August 1962, while the first German transistor receiver (six transistors) was produced
in a test series in 1956. Prof. Dr. Walter Bruch filed the fundamental PAL "time decoder" patent
on December 31, 1962. It was the first German stereo studio of its kind, and Telefunken sought
to it that there was nothing else quite like it.
1963-1978
WHAT’S IN A NAME?
Telefunken GmbH became Telefunken AG on July 5, 1963. On June 23, 1966, the General
Shareholder Meeting of AEG passed a resolution to integrate Telefunken AG into Allgemeine
Elektrizitäts-Gesellschaft. Based on an operating lease agreement, the business activities of
Telefunken were transferred to AEG effective January 1, 1967, and were continued under the
combined name AEG-Telefunken. In March 1968, AEG-Telefunken developed a new mediumrange
radar system (Type SER-LL), which was able to detect targets at an altitude of 24,000
meters at a distance of 280 kilometers. Telefunken expands on land, as well as in the air.
TAPE RECORDERS WORTH MILLIONS
AEG-Telefunken delivered the two-millionth tape recorder, a Magnetophon 204 TS, on August
5, 1969. The ten-millionth black-and-white television picture tube was produced in Ulm on
January 27, 1970. The numbers are astounding. As is Telefunken.AEG-Telefunken delivered the
two-millionth tape recorder, a Magnetophon 204 TS, on August 5, 1969. The ten-millionth
black-and-white television picture tube was produced in Ulm on January 27, 1970. The
numbers are astounding. As is Telefunken.
ECONOMIC SLOWDOWN
There was a worldwide economic slowdown in the wake of the oil crisis in 1974. The
competition in consumer electronics sector also became more difficult due to Japanese
suppliers. The only profitable divisions of the company at this time were telecommunications
and traffic technology. But Telefunken, as usual, was known for their resilience.
1979- 1983
THE NAME GAME CONTINUES
The name of the overall company was changed to AEG-Telefunken Aktiengesellschaft on June
21, 1979. The "Aktiengesellschaft" [stock corporation] suffix was necessary due to a new law in
the European Community. In 1979, AEG-Telefunken supplied the complete telecommunications
and high-voltage equipment for the International Congress Center (ICC) Berlin, valued at DM 50
million. In January 1983 the company received an order for simulation systems for electronic
battle simulation for training Tornado crews of the German Luftwaffe and Navy. The total value
was at DM 37 million. The net worth: priceless.
TOUGH TIMES FOR TELEFUNKEN
Court composition proceedings were opened against the assets of AEG-Telefunken AG by the
District Court in Frankfurt / Main on October 31, 1982.
The District Court Frankfurt / Main confirmed the composition of AEG-Telefunken AG in
accordance with the petition filed and closed the proceedings on September 19, 1984.
Even during this difficult financial situation, AEG-Telefunken continued its business and founded
AEG-Telefunken Nachrichtentechnik GmbH (ATN), in Backnang, Germany, together with
Bosch, Mannesmann and Allianz Versicherungs-AG in 1981, as well as Telefunken electronic
GmbH (TEG) in the field of electronic components (semiconductors) together with United
Technologies Corporation (UTC), USA in 1982.
On July 1, 1992, AEG-Telefunken and Deutsche Aerospace (Dasa) founded Telefunken
Microelektronic GmbH (TEMIC), into which Telefunken Elektronic GmbH was integrated among
others. But Telefunken was determined to prevail.
A FINAL, BUT NOT LAST, TURN
Effective March 31, 1983, the French group Thomson-Brandt S.A. took over 75 percent of the
AEG-Telefunken shares in Telefunken Fernseh und Rundfunk GmbH, Hanover, Germany,
including its German and foreign subsidiaries. The remaining 25 percent were supposed to
follow on January 31, 1984. Daimler-Benz AG entered the company in autumn of 1985 and
decided in Autumn 1995 to dissolve the legal entity and transferred the remaining assets to
EHG Electroholding GmbH. Thus, the history of the company was over. But not that of its
brands.
A historical overview is offered by the company archive of AEG-Telefunken in the "Deutsches
Technikmusem Berlin", Trebbiner Str. 9, 10963 Berlin.
1984 – 2004
INNOVATION YESTERDAY. TODAY. AND TOMORROW
Currently, the Telefunken brand and name rights lie with Telefunken Licenses GmbH,
Frankfurt/Main, Germany. This company is one hundred percent subsidiary of EHG
Elektroholding GmbH, Frankfurt/Main.
EHG, on the other hand, is the legal successor of AEG Aktiengesellschaft. The licensor is
Licentia Patent-Verwaltungs GmbH, Frankfurt/Main, Germany. A differentiation is made
between brand licensing agreements, name use agreements and combined agreements. And
third-party use always requires the written approval of the licensor.
In 2003, Telefunken can look back at one-hundred years of brand history. In the past,
Telefunken was associated with significant technical developments and enjoyed the reputation
of a successful German company.
The Telefunken brand is registered in the official trademark registries of 118 countries. It
continues to be used under a variety of licensing agreements.
These are the topics that can be found in the commemorative volume "Telefunken After 100
Years - The Legacy of a Global German Brand."
Whether discovered on this website or in book, these topics should not only focus attention on
the past, but also simultaneously highlight the beginning of a strong Telefunken brand. Simply
put, it’s not just about where we’ve been. But also where we’re going.
2004 – 2009
TELEFUNKEN TODAY
Since December 2007, the trademark-right TELEFUNKEN rests with TELEFUNKEN Holding
AG, Frankfurt. Currently, TELEFUNKEN is the owner of more than 20,000 patents and active in over 130 countries around the globe.
Today, TELEFUNKEN stands for innovation and progress in the ever-changing world of
information and communications technology and is strictly focused on consumer quality – from
design concept to execution. And because of its strong heritage and long-standing tradition,
Telefunken has a high brand-awareness and a clear positioning in the field of premium
products.
Some References:
- M. Friedewald: Telefunken und der deutsche Schiffsfunk 1903–1914. In: Zeitschrift für Unternehmensgeschichte 46. Nr. 1, 2001, S. 27–57
- M. Fuchs: Georg von Arco (1869–1940) – Ingenieur, Pazifist, Technischer Direktor von Telefunken. Eine Erfinderbiographie. Verlag für Geschichte der Naturwissenschaften und der Technik, Berlin & München: Diepholz 2003
- L. U. Scholl: Marconi versus Telefunken: Drahtlose Telegraphie und ihre Bedeutung für die Schiffahrt. In: G. Bayerl, W. Weber (ed.): Sozialgeschichte der Technik. Ulrich Troitzsche zum 60. Geburtstag. Waxmann, Münster 1997 (Cottbuser Studien zur Geschichte von Technik, Arbeit und Umwelt, 7)
- Telefunken Sendertechnik GmbH: 90 Jahre Telefunken. Berlin 1993
- Erdmann Thiele (ed.): Telefunken nach 100 Jahren – Das Erbe einer deutschen Weltmarke. Nicolaische Verlagsbuchhandlung, Berlin 2003, ISBN 3-87584-961-2
Einzelnachweise:
Schreibweise mit c siehe: - AEG-Teilschuldverschreibung von 1962Marke „Telefunken“ in der Registerauskunft des Deutschen Patent- und Markenamtes (DPMA)
E. Thiele (Hrsg.): Telefunken nach 100 Jahren: Das Erbe einer deutschen Weltmarke. Nicolai, Berlin 2003, S. 19
Kurt Kracheel: Flugführungssysteme (Die Deutsche Luftfahrt, Band 20). Bernard&Graefe Verlag, Bonn 1993, ISBN 3-7637-6105-5, S. 119.
Operette 50W UKW. In: radiomuseum.org. Abgerufen am 28. Januar 2016.
Autosuper IA 50. In: radiomuseum.org. Abgerufen am 28. Januar 2016.
Farbfernseh-Tischempfänger PALcolor 708T. In: radiomuseum.org. Abgerufen am 28. Januar 2016.
Mini Partner 101. In: radiomuseum.org. Abgerufen am 28. Januar 2016.
Olympia-Partner. In: radiomuseum.org. Abgerufen am 28. Januar 2016.
Magnetophon 3000 hifi. In: radiomuseum.org. Abgerufen am 28. Januar 2016.
Fernseh-Tischempfänger FE8T. In: radiomuseum.org. Abgerufen am 28. Januar 2016.
Israelischer Konzern Elbit Systems eröffnet Büro in Berlin. In: bundeswehr-journal. 13. April 2018, abgerufen am 18. Januar 2019.
Telefunken Semiconductors Heilbronn: Die Lichter sind für immer aus, swr.de, 27. Februar 2015
LDL Berlin: Geschäftshaus Mehringdamm 32 & 34
LDL Berlin: AEG-Glühlampenfabrik
LDL Berlin: AEG-Telefunken-Gerätewerk
Telefunkenwerk Clikeelle. vergessene-orte.blogspot.com
Ludwig Leisentritt: Die historische Entwicklung von Zeil am Main, hbrech.tripod.com
No comments:
Post a Comment
The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.
Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!
The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.
Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.
Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.
Your choice.........Live or DIE.
That indeed is where your liberty lies.
Note: Only a member of this blog may post a comment.