Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical Obsolete technology relics that the Frank Sharp Private museum has accumulated over the years .
Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.

Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:
- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........
..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !
-----------------------
©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of Engineer Frank Sharp. NOTHING HERE IS FOR SALE !
All posts are presented here for informative, historical and educative purposes as applicable within Fair Use.


Sunday, July 8, 2012

PHILIPS 26C568 GOYA (PHILIPS K11) YEAR 1976.























The PHILIPS 26C568 (PHILIPS K11) is a 26 inches color television with 16 programs preselection with a surently unusual program change and selection introduced first time for PHILIPS CHASSIS K11 and was Introducing the Inline PHILIPS 20AX CRT TUBE for first time.The PHILIPS 20AX system was introduced in Europe as the first self converging picture tube/deflection coil, combination for 110° degree deflection and screen sizes up to 26". The system is based on the automatic convergence principle discovered by Haantjes and Lubben of Philips Research Laboratory more than 20 years ago. It makes use of an in-line gun array in conjunction with a specially designed saddle type deflection coil. Residual small tolerance errors are compensated by a simple dynamic four-pole system. The tube is 2 cm shorter than conventional 110° Degree tubes and has a standard 36.5 mm neck in order to obtain good color selection. A slotted mask is used in combination with a stripe-structure screen. Picture sharpness is ensured by an astigmatic electron gun.

And for first time it was using a DST EHT + Line output transformer in the K11 chassis and relates to a high-voltage transformer, notably a line transformer for a television receiver, comprising a ferromagnetic core, a primary winding, an insulating layer, a secondary winding, a component holder, and a socket connector for the output of the high voltage to be generated, the secondary winding consisting of a number of winding layers wherebetween insulating layers are inserted, a transition from an end of a winding layer to a beginning of the subsequent winding layer being formed by a diode, all diodes constituting the transitions between the further winding layers being connected in the same rectifying sense.

This  idea of incorporating the e.h.t. rectifier into the line output transformer is not new , it was first patented in 1966 by E. K. Cole Ltd. of Southend. What is new is that the e.h.t. tripler itself has now been integrated into a new type of line output transformer. Extensive testing has indicated that the life expectancy of this unit is excellent.
The new transformer makes use of the interlayer capacitances between a number of secondary windings, thus eliminating the high voltage capacitors necessary in a conventionally constructed voltage tripler. This in itself
leads to greater inherent reliability since these high voltage capacitors are largely responsible for tripler failures. In practical designs, the primary winding and the auxiliary windings - which provide the 1.t., reference flyback pulses, h.t. for the video output stages, etc. - are located on one leg of the core, the secondary windings, with the e.h.t. rectifier diodes and a link winding, being on the other leg. The link winding is connected in parallel with the primary winding and serves to eliminate the high leakage inductance that would otherwise exist between the primary and the secondaries as they are on opposite legs of the core. Fig. 1 shows the circuit diagram of a basic d.s.t. Each of the secondaries has the same number of turns, so each secondary layer will have only a d.c. potential difference between each coil and no a.c. potential difference. This approach makes the interlayer insulation much easier. The diodes are connected as shown in Fig. 2, and a d.c. voltage is obtained whose value is the sum of the rectified a.c. voltages per layer. To obtain an output of about 25kV, four secondary layers and four diodes are used, each carrying a peak flyback voltage of  around 7kV.

On the right side of the back cover an composite video adapter could be fitted. This television also provides an audio output via a 5 pin DIN connector.


In The program changer To select the desired programs you have to select his "coordinates" on the front keyboard or even the same on the ultrasonic remote .The green key is used to reset the tv set to defaults.
The channels are organised from A1-4,B1-4,C1-4 to D1-4. The video channel is on A4.

I.E. to select program number 6 you have to press first the "B" letter then the "2" button to get program 6 which will be showed as B - 2.
The tellye here shown has the rare at the time OSD Feature which consist in a very basic Level bars graphic show visualizing the levels for volume, bright and color during setting up via recalling them through remote or front buttons.

These graphic bars are even shown during search tuning showing the advance of the search which is manual but electronically servo assisted by a highly sophisticated system
exported in after models with
PHILIPS CHASSIS K12 and quickly abandoned with other ASIC circuitry.The overlay depicts the choosen tv channel as a matrix of two by four dots. The other settings are depicted as bars.

This is the last model series using the ultrasound ac carrier for remote control commands.

First set and PHILIPS model series introducing the InLine PHILIPS 20AX CRT TUBE FAMILY with PHILIPS K11 CHASSIS.that is even a first model series with PHILIPS CHASSIS K11 with remote control feature with complex ASIC circuits instead of potentiometric drawbars tuning system.


The set is build with a Modular chassis design because as modern television receivers become more complex the problem of repairing the receiver becomes more difficult. As the number of components used in the television receiver increases the susceptibility to breakdown increases and it becomes more difficult to replace defective components as they are more closely spaced. The problem has become even more complicated with the increasing number of color television receivers in use. A color television receiver has a larger number of circuits of a higher degree of complexity than the black and white receiver and further a more highly trained serviceman is required to properly service the color television receiver.
Fortunately for the service problem to date, most failures occur in the vacuum tubes used in the television receivers. A faulty or inoperative vacuum tube is relatively easy to find and replace. However, where the television receiver malfunction is caused by the failure of other components, such as resistors, capacitors or inductors, it is harder to isolate the defective component and a higher degree of skill on the part of the serviceman is required.
Even with the great majority of the color television receiver malfunctions being of the "easy to find and repair" type proper servicing of color sets has been difficult to obtain due to the shortage of trained serviceman.
At the present time advances in the state of the semiconductor art have led to the increasing use of transistors in color television receivers. The receiver described in this application has only two tubes, the picture tube and the high voltage rectifier tube, all the other active components in the receiver being semiconductors.
One important characteristic of a semiconductor device is its extreme reliability in comparison with the vacuum tube. The number of transistor and integrated circuit failures in the television receiver will be very low in comparison with the failures of other components, the reverse of what is true in present day color television receivers. Thus most failures in future television receivers will be of the hard to service type and will require more highly qualified servicemen.
The primary symptoms of a television receiver malfunction are shown on the picture tube of the television receiver while the components causing the malfunction are located within the cabinet. Also many adjustments to the receiver require the serviceman to observe the screen. Thus the serviceman must use unsatisfactory mirror arrangements to remove the electronic chassis from the cabinet, usually a very difficult task. Further many components are "buried" in a maze of circuitry and other components so that they are difficult to remove and replace without damage to other components in the receiver.
Repairing a modern color television receiver often requires that the receiver be removed from the home and carried to a repair shop where it may remain for many weeks. This is an expensive undertaking since most receivers are bulky and heavy enough to require at least two persons to carry them. Further, two trips must be made to the home, one to pick up the receiver and one to deliver it. For these reasons, the cost of maintaining the color television receiver in operating condition often exceeds the initial cost of the receiver and is an important factor in determining whether a receiver will be purchased.
Therefore, the object of this invention is to provide a transistorized color television receiver in which the main electronic chassis is easily accessible for maintenance and adjustment. Another object of this invention is to provide a transistorized color television receiver in which the electronic circuits are divided into a plurality of modules with the modules easily removable for service and maintenance. The main electronic chassis is slidably mounted within the cabinet so that it may be withdrawn, in the same manner as a drawer, to expose the electronic circuitry therein for maintenance and adjustment from the rear closure panel after easy removal. Another aspect is the capability to be serviced at eventually the home of the owner.

The same model after made was the PHILIPS 26C668 (PHILIPS K12) YEAR 1978.featuring first time the after developed PHILIPS CHASSIS K12 allowing a smaller television cabinet but mantaining an equivalent model and features.

The new tube, to be known as the 20AX, has been developed by PHILIPS in conjunction with the parent Philips / Mullard organisation and will be produced by several Philips subsidiary companies on the Continent as well as by PHILIPS in the UK. PHILIPS envisage quantity production of the tube by 1976, mainly for export at first, with large-scale production for UK set - makers starting in 1977. The tube has been developed as "probably the final phase in the design of the 110° shadowmask tube". Its main features are the use of three guns mounted horizontally in line, the use of a shadow - mask with slots instead of circular holes, and a screen with the phosphors deposited in vertical stripes instead of as a pattern of dot triads. It seems therefore that the days of the present delta gun shadowmask tube are now numbered, though considerable production will have to continue for many years to provide replacement tubes for the millions of colour sets already in use. So far as the viewer is concerned however it is important to appreciate the time scale involved (see above) and the reasons for the development of the new tube. There is nothing wrong with the type of shadow - mask tube we have known since the beginning of colour TV: it is able to provide superb pictures. But in its 110° form it does require rather a lot of scan/convergence correction circuitry. If this can be reduced by means of an alternative approach
as with the 20AX tube  considerable benefits in set production and servicing will be obtained. This has been the aim behind the development of the new tube, and the demonstration tube we have seen operating with its associated deflection yoke and circuitry gave a picture every bit as good as we have come to expect from the present "conventional" approach to colour tube design. There are now four colour tubes with in -line guns, the Sony Trinitron (the first to come along), the RCA /Mazda PIL tube, the Toshiba RIS tube and now the PHILIPS 20AX. It is interesting to compare them. The Trinitron is a 90° narrow neck (29mm) tube. It differs from the others in using an aperture grill (slits from top to bottom) instead of a mask behind the screen to shadow the beams and a tube face which is substantially flat in the vertical plane. On the domestic market it is used exclusively in Sony sets and certainly represented a break through in simplifying the convergence circuitry and setting up adjustments required. The Toshiba RIS (rectangular flare, in-line guns, slotted shadowmask) tube has now turned up in the UK in the recently introduced 18in. Sharp Model C1831H. Its most distinctive feature is the rectangu- lar instead of conical tube flare and the rectangular semi -toroidal scanning yoke which is used with this. It is a 110° thick neck (36mm) tube. The convergence arrangements are fairly simple. The most interesting comparisons however are between the PI tube and the 20AX. The first is a 90° tube of the narrow neck variety and features a toroidal yoke which is cemented to the tube- thus if either is faulty the entire tube/yoke assembly must be replaced. The great advantage is that no dynamic convergence adjustments or circuitry are required. It is at present limited to sizes up to 20in. and the designers say that it is not intended as a successor to the standard shadowmask tube above this size. Its depth compares with 110° tubes because of the simplified gun structure used. The PHILIPS 20AX tube differs from it in several respects. First it is basically a 110° tube which can be produced in a whole range of sizes production of 18, 22 and 26in. versions is proposed so that set  makers can use it with a single chassis for models of various sizes. Secondly it uses saddlewound deflection coils which are separate from though accurately aligned with the tube. And thirdly it is a thick neck tube. Unlike the PI tube in which all the gun electrodes except the cathodes are common to all guns the electrodes of each gun in the 20AX are separately available at the base. This means that in addition to RGB drive to the cathodes the grids are available for blanking and beam limiting and the first anodes for background control setting in the normal manner. In fact PHILIPS emphasised that the new tube is entirely compatible with existing colour set techniques  though the whole convergence system is greatly simplified. The basic idea behind these in line gun, slotted mask tubes is that by mounting the guns horizontally in line the convergence errors are confined to the horizontal plane and by applying an astigmatic deflection field these errors are cancelled. This means that a fair amount of cunning in the design of the deflection yoke is required. A saddlewound yoke is more efficient than a toroidal yoke since the deflection fields are totally enclosed.


 In comparison to current 110° PHILIPS tubes the 20AX requires much the same horizontal deflection power but about twice the vertical deflection power (which can be obtained without trouble from modern semiconductor devices). The use of a separate yoke with a tube of this type means that some dynamic convergence controls are still necessary, in order to match the assemblies. PHILIPS refer to these as "tolerance adjustments" rather than "dynamic convergence controls". About seven are required at present though further work is being done on this and by the time sets with the new tube appear we can expect some reduction. A single pincushion transductor is required instead of the two needed with 110° shadowmask tubes of the present variety. In comparison the PIL  tube requires no dynamic convergence adjustments, only some simple tube neck magnets for static setting up. It is a little less efficient however because of the type of yoke employed. Whatever else happens there is no doubt that the vast majority of colour tubes fitted to TVC sets come 1977 will be of the in line gun, slotted mask, vertical phosphor stripe variety. Two further points made by PHILIPS at their demonstration : first, this type of tube requires less degaussing so that there are worthwhile savings in the amount of copper required for the degaussing coils: secondly their new tube, and in fact all PHILIPS monochrome tubes and shortly their colour tubes as well, will incorporate "instant on" guns which come into operation about  five seconds after the set is switched on instead of the 30 seconds or more taken by present tubes. This instant on feature is based on a new heater/cathode assembly in which the use of mica insulators has been avoided. 
Meanwhile we understand that in addition to RCA and, in the UK, Mazda, ITT and Videocolor SA are to produce PIL tubes. Whilst congratulations all round was appropriate on the successful development of these  tubes it does seem a pity that was about to enter for the first time an era of non compatible colour c.r.t.s.

 IMPORTANT NOTE FOR PHILIPS K9 / K11 CHASSIS SETS:

Devices with the K9 chassis (delta picture tube) and the successors with the K9i to K11 chassis (in-line picture tube) are rightly considered  to be very reliable and durable.

However, there is a very important warning:
In Philips Chassis K9 sets, two parallel-connected flyback capacitors are used in the line output stage, in contrast to the usual at the time circuit technology. These  capacitors  are arranged parallel to the line output stage transistor (here are two BU109s connected in parallel), one on the circuit board, the other directly next to the transistors.
Unfortunately, the problem is the quality of these capacitors (make ERO)! Most of the time, one fails after a short period of operation due to a total loss of capacity.

What follows is like a total catastrofic failure:
The failed capacitor reduces the return capacity from approx. 10nF to approx. 5nF or lower because the resonance of the circuit will be altered. This increases by consequence the high voltage (UHT/EHT) from 25kV to over 40kV !!! This makes the picture very bright, razor sharp and much too small.

Also X-RAYS are developed !!!!!!!!
There is great danger! The device must be switched off immediately!


Reason: In spite of the far too high return voltage, experience shows that the very stable BU transistors do not die, and strangely enough, this usually withstands the high-voltage cascade; the high voltage generation goes on instead of ending itself. Rather, the high voltage inside the neck of the picture tube (in the area of the focus) then strikes very quickly through the glass to the outside into the convergence or deflection unit.

This leads to considerable damage:
The picture tube draws air, the filament burns through, the color difference output stages break through, the convergence circuits are affected, etc., etc. Usually this is the economic end of such devices.


It is a series error that Philips was aware of at the time and that Philips had made known to the workshops. Unfortunately, the two ERO capacitors were often not replaced by a single, low-loss (!) 2kV capacitor (mostly Röderstein KP, blue) as a precaution, as prescribed, so that unfortunately quite a few of these devices literally "blown up".

That is why I urgently mandatory recommend that you always check with these devices whether the old ERO capacitors have been replaced by a single, suitable capacitor! To be on the safe side, the chassis K9i to K11 were also used, although these usually only had one capacitor installed as standard, a green one.



List of sets known to have the K11 chassis (made from approximately 1975-1978)

= means that models are most likely the same or very similar, but the styling can be different in some cases. Information was amongst others taken from the Philips model number survey 2003, 3122 785 14570.

A side note for those who have noticed the K10 chassis is missing from the line up. Ru
mour has, that this was a K9 variant with another tube, probably Trinitron, that didn’t make it beyond the prototype stage. Instead, Philips decided to use the 20AX tube and named the chassis K11. This chassis was designated K9i in some countries, most notable Germany. The differences between the K9 and K11 chassis were probably thought of as minor as the K11 chassis was basically an improved version of the K9 chassis with some minor (evolutionary) updates, another tube and as a result less complicated convergence circuits.

General models
22C545
22C549
26C364
26C466
26C555
26C556
26C557
26C560
26C561
26C564
26C565
26C566
26C567
26C568
26C569
26C655
26C657
26C663
26C667
26C677
26C750
26C752
26C753
26C762
26C764
26C768
26C770
26C782
26C840

Germany
Factory location Krefeld (KR)

It seems very strange that only one German model is mentioned. Quite possibly the person who compiled the official Philips model number survey got confused by the K9i nomenclature. As a result of that, the D26C865 mentioned in the K9 overview might actually be a K11 set. Other German K11 sets probably exist.

D26C662
D26C865??

Sweden
Factory location Norrköping (NF)
SK22C462
SK26C464
SK26C466
SK26C467
SK26C468
SK26C476
SK26C477
SK26C478
SK26C764
SK26C765
SK26C773
SK26C776
SK26C777
SK26C778
SK26C865

South Africa
Factory location Martinsville
V26k606
V26K609

Other brands (Erres, possibly Schneider (F), ..)
Erres branded sets mostly used the prefix RS
The suffix KSK instead of K might indicate a Swedish model. I haven’t actually seen it on a set in person.

22264KSK
22545K = 22C545
26555K
26557K
26565K
26566K
26568K
26655K
26756K
26764KSK
26768K
26965KSK
26966KSK
263637K
263737K

Other Brands
As a rule, the model number below is prefixed by letters indicating the brand name as

follows (not all brands may be used, others may exist):

AR = Aristona
SA = Siera
RA = Radiola
DX = Dux
CT = Conserton?

The infix KSK instead of K might indicate a Swedish model. I haven’t actually seen it on a set in person.

56KSK264
56K545 = 22C545
56K549 = 22C549
26K0624 (?)
66KSK364
66KSK365
66KSK366
66KSK375
66KSK376
66K466
66K555
66K557
66K565
66K566
66K568
66K655
66K756
66KSK764
66K768
66K4627
66K4727
66K5520
66K5522
66K5624



PROGRESSIVE BY YEAR LIST OF COLOR TELEVISION SETS WITH PHILIPS CHASSIS K11 20AX CRT TUBE.
26C466 CHASSIS K11 YEAR 1974
26565K CHASSIS K11 YEAR 1975
26566K CHASSIS K11 YEAR 1975
26C567 CHASSIS K11 YEAR 1975
66K565 CHASSIS K11 YEAR 1975
66K566 CHASSIS K11 YEAR 1975
22264KSK CHASSIS K11 YEAR 1976
22545K CHASSIS K11 YEAR 1976
22C545 CHASSIS K11 YEAR 1976
22C549 CHASSIS K11 YEAR 1976
26555K CHASSIS K11 YEAR 1976
26557K CHASSIS K11 YEAR 1976
26568K CHASSIS K11 YEAR 1976
26655K CHASSIS K11 YEAR 1976
26756K CHASSIS K11 YEAR 1976
26764KSK CHASSIS K11 YEAR 1976
26966KSK CHASSIS K11 YEAR 1976
26C555 CHASSIS K11 YEAR 1976
26C557 CHASSIS K11 YEAR 1976
26C565 CHASSIS K11 YEAR 1976
26C566 CHASSIS K11 YEAR 1976
26C568 CHASSIS K11 YEAR 1976
26C569 CHASSIS K11 YEAR 1976
26C655 CHASSIS K11 YEAR 1976
56K545 CHASSIS K11 YEAR 1976
56K549 CHASSIS K11 YEAR 1976
56KSK264 CHASSIS K11 YEAR 1976
66K555 CHASSIS K11 YEAR 1976
66K557 CHASSIS K11 YEAR 1976
66K568 CHASSIS K11 YEAR 1976
66K655 CHASSIS K11 YEAR 1976
66K756 CHASSIS K11 YEAR 1976
66KSK365 CHASSIS K11 YEAR 1976
66KSK366 CHASSIS K11 YEAR 1976
SK22C462 CHASSIS K11 YEAR 1976
SK26C464 CHASSIS K11 YEAR 1976
SK26C466 CHASSIS K11 YEAR 1976
SK26C467 CHASSIS K11 YEAR 1976
SK26C765 CHASSIS K11 YEAR 1976
sk26c865 CHASSIS K11 YEAR 1976
V26K606 CHASSIS K11 YEAR 1976
V26K609 CHASSIS K11 YEAR 1976
263637K CHASSIS K11 YEAR 1977
26768K CHASSIS K11 YEAR 1977
26C364 CHASSIS K11 YEAR 1977
26C556 CHASSIS K11 YEAR 1977
26C564 CHASSIS K11 YEAR 1977
26C657 CHASSIS K11 YEAR 1977
26C667 CHASSIS K11 YEAR 1977
26C677 CHASSIS K11 YEAR 1977
26C762 CHASSIS K11 YEAR 1977
26C764 CHASSIS K11 YEAR 1977
26C768 CHASSIS K11 YEAR 1977
26C770 CHASSIS K11 YEAR 1977
26C782 CHASSIS K11 YEAR 1977
56K0624 CHASSIS K11 YEAR 1977
66K4627 CHASSIS K11 YEAR 1977
66K5624 CHASSIS K11-TRIPLER YEAR 1977
66K768 CHASSIS K11 YEAR 1977
66KSK375 CHASSIS K11 YEAR 1977
66KSK376 CHASSIS K11 YEAR 1977
66KSK764 CHASSIS K11 YEAR 1977
SK26C468 CHASSIS K11 YEAR 1977
SK26C476 CHASSIS K11 YEAR 1977
SK26C478 CHASSIS K11 YEAR 1977
SK26C764 CHASSIS K11 YEAR 1977
SK26C773 CHASSIS K11 YEAR 1977
SK26C776 CHASSIS K11 YEAR 1977
SK26C777 CHASSIS K11 YEAR 1977
263737K CHASSIS K11 YEAR 1978
26965KSK CHASSIS K11 YEAR 1978
26C560 CHASSIS K11 YEAR 1978
26C561 CHASSIS K11 YEAR 1978
26C663 CHASSIS K11 YEAR 1978
26C750 CHASSIS K11 YEAR 1978
26C752 CHASSIS K11 YEAR 1978
26C753 CHASSIS K11 YEAR 1978
26C840 CHASSIS K11 YEAR 1978
66K466 CHASSIS K11 YEAR 1978
66K4727 CHASSIS K11 YEAR 1978
66K5520 CHASSIS K11 YEAR 1978
66K5522 CHASSIS K11 YEAR 1978
66KSK364 CHASSIS K11 YEAR 1978
D26C662 CHASSIS K11 YEAR 1978
SK26C477 CHASSIS K11 YEAR 1978
SK26C778 CHASSIS K11 YEAR 1978




A brief note about on Television sets reliability and durability..........................

ANYONE with even the smallest experience of television engineering is bound to come up against that embarrassing question which is always so difficult to answer-"which TV shall I get?" The questioner is usually concerned about obtaining the cheapest and most reliable receiver that is available, and this same approach generally governs the choice between buying when new - restoring in this time. This is perfectly reasonable and often applies to other consumer products apart from TV. 
What does seem a little strange however is that no one ever seems to ask "which TV set gives the best picture?" Why not? Doesn't anyone care, or is the question too complicated to discuss? 
Yet the average person spends five and a half hours a day, every day, watching TV garbage:
The Propaganda TV Machine a.k.a. The Ministry of Truth delivers The Truth from The Government to the people.
At least, that's what they say. In fact, a Propaganda Machine is only employed by The Empire and used to brainwash people into Gullible Lemmings who believe that everything is all right when in fact, it isn't, and that the very people who could help them are their enemies..............

................... so the quality of the picture must be important........................ 

expecially for those football idiots so the they have the motivation to glue their assface on the screen all day long to discover better somewaht in their ignorance.
........Now................It is high time that people began to realise this simple fact, and to take an interest in the quality of the product that absorbs so much of their spare time. There are of course plenty of people who are genuinely interested in good picture quality. It is unlikely for example that so many readers of this Blog would be taking part in the magnificent TELEVISION colour receiver project, but more likely restoring  monochrome receivers or adapting old color ones, if they were indifferent to the quality of the picture obtained at the end of the day. But today times seems changing, the trend started by many readers of Obsolete Technology Tellye !  have had a significative rise up in recovering and restoring old CRT's TV's and started to build up collections by people in many lands worldwide.
 Good CRT  picture quality cannot however be achieved merely by connecting together the appropriate groups of circuits. Sometimes in fact even well established designs can present problems if they are assembled in a different way to the original or with non-standard components. 
So what constitutes good picture quality and what do you do when things go wrong? 
It is not much use delving into the textbooks because they are strangely unhelpful about this sort of thing.
  At least however we can here at Obsolete Technology Tellye !  establish some basic principles to use as a starting point. There is a difference between the kind of picture quality defects that you would expect to find in a manufactured receiver compared to one made by a home restorer / constructor. 
A CRT manufactured receiver usually has only minor faults and one wants to'assess how well it compares with the products of other set - makers.
Todays trade, threw a rather different light on matters however. Briefly, we found that during CRT boom periods for the setmakers reliability increased whilst during periods of diminishing sales a fall in the standard of reliability became evident, so you will find excellent sets from the 70s/80s. I had tended to think that a boom meant an attitude of anything goes to get as many sets out to meet the demand, with consequent corner cutting and use of whatever alternative components could be got hold of if necessary. The overriding point seems to be however that in boom conditions with a seller's market prices can be maintained and quality standards kept up whilst in flat market conditions there is overwhelming pressure on prices and reliability tends to fall. It is difficult to be too sure about this since the worst trading period coincided with the era of dual standard analog TV sets which may eventually but not certainly inevitably less reliable than the single -standard chassis which preceeded and succeeded them. It would however tie up  about the comparative reliability of colour and monochrome sets, since the era of colour boom coincides with a very flat period in monochrome set production and sales, that in talking about reliability means overall dependability rather than initial statistics for unboxed set condition. 

That all said is very applicable to todays times, with completely different technically means, reality where unfair market conditions focibly applied to European firms by an elite which has only the will and target to destroy European eritage at all levels with the main  point in destroying local economy.
It includes:

- A number of areas of law involving acts by one competitor or group of competitors which harm another in the field, and which may give rise to criminal offenses and civil causes of action.

- Trade libel, the spreading of false information about the quality or characteristics of a competitor's products, is prohibited at common law but still high present and unstopped.

- Various unfair business practices such as fraud, misrepresentation, and unconscionable contracts may be considered unfair competition, if they give one competitor an advantage over others expecially all from the so called ASIATIC MARKET.

Therefore:
All of todays apparates are literally absolute GARBAGE when new and resulting often broken when out of the box after purchase. Poor engineering, manufacturing and materials in the main part, combined with unfair massive import to Europe of such DUMP goods, at cheap prices in closed hard tight market (so they can be the only 2 3 competitor in foreign lands and all locals firms brought to death by heavy taxations, troublesome difficulties at all levels) and sold with medium to high prices respect to initial build costs !!
For that there can't be a comparation of reliability between a CRT TV SET and any one of todays sets, which often are resulting in a SCAM mainly under the technological part, emerging, even, from the first repair attempt !
......  And  in the end you will NEVER SEE a  restoring of ANY of the Actual todays electronic GARBAGE !

R.I.P.  EUROPE !



Koninklijke Philips Electronics N.V. (Royal Philips Electronics Inc.), most commonly known as Philips, (Euronext: PHIA, NYSE: PHG) is a multinational Dutch electronics corporation.

Philips is one of the largest electronics companies in the world. In 2009, its sales were €23.18 billion. The company employs 115,924 people in more than 60 countries.

Philips is organized in a number of sectors: Philips Consumer Lifestyles (formerly Philips Consumer Electronics and Philips Domestic Appliances and Personal Care), Philips Lighting and Philips Healthcare (formerly Philips Medical Systems).
The company was founded in 1891 by Gerard Philips, a maternal cousin of Karl Marx, in Eindhoven, Netherlands. Its first products were light bulbs and other electro-technical equipment. Its first factory survives as a museum devoted to light sculpture. In the 1920s, the company started to manufacture other products, such as vacuum tubes (also known worldwide as 'valves'), In 1927 they acquired the British electronic valve manufacturers Mullard and in 1932 the German tube manufacturer Valvo, both of which became subsidiaries. In 1939 they introduced their electric razor, the Philishave (marketed in the USA using the Norelco brand name).
Philips was also instrumental in the revival of the Stirling engine.

As a chip maker, Philips Semiconductors was among the Worldwide Top 20 Semiconductor Sales Leaders.

In December 2005 Philips announced its intention to make the Semiconductor Division into a separate legal entity. This process of "disentanglement" was completed on 1 October 2006.

On 2 August 2006, Philips completed an agreement to sell a controlling 80.1% stake in Philips Semiconductors to a consortium of private equity investors consisting of Kohlberg Kravis Roberts & Co. (KKR), Silver Lake Partners and AlpInvest Partners. The sale completed a process, which began December 2005, with its decision to create a separate legal entity for Semiconductors and to pursue all strategic options. Six weeks before, ahead of its online dialogue, through a letter to 8,000 of Philips managers, it was announced that they were speeding up the transformation of Semiconductors into a stand-alone entity with majority ownership by a third party. It was stated then that "this is much more than just a transaction: it is probably the most significant milestone on a long journey of change for Philips and the beginning of a new chapter for everyone – especially those involved with Semiconductors".

In its more than 115 year history, this counts as a big step that is definitely changing the profile of the company. Philips was one of few companies that successfully made the transition from the electrical world of the 19th century into the electronic age, starting its semiconductor activity in 1953 and building it into a global top 10 player in its industry. As such, Semiconductors was at the heart of many innovations in Philips over the past 50 years.

Agreeing to start a process that would ultimately lead to the decision to sell the Semiconductor Division therefore was one of the toughest decisions that the Board of Management ever had to make.

On 21 August 2006, Bain Capital and Apax Partners announced that they had signed definitive commitments to join the expanded consortium headed by KKR that is to acquire the controlling stake in the Semiconductors Division.

On 1 September 2006, it was announced in Berlin that the name of the new semiconductor company founded by Philips is NXP Semiconductors.

Coinciding with the sale of the Semiconductor Division, Philips also announced that they would drop the word 'Electronics' from the company name, thus becoming simply Koninklijke Philips N.V. (Royal Philips N.V.).


PHILIPS FOUNDATION:

The foundations of Philips were laid in 1891 when Anton and Gerard Philips established Philips & Co. in Eindhoven, the Netherlands. The company begun manufacturing carbon-filament lamps and by the turn of the century, had become one of the largest producers in Europe. Stimulated by the industrial revolution in Europe, Philips’ first research laboratory started introducing its first innovations in the x-ray and radio technology. Over the years, the list of inventions has only been growing to include many breakthroughs that have continued to enrich people’s everyday lives.



In the early years of Philips &; Co., the representation of the company name took many forms: one was an emblem formed by the initial letters of Philips ; Co., and another was the word Philips printed on the glass of metal filament lamps.



One of the very first campaigns was launched in 1898 when Anton Philips used a range of postcards showing the Dutch national costumes as marketing tools. Each letter of the word Philips was printed in a row of light bulbs as at the top of every card. In the late 1920s, the Philips name began to take on the form that we recognize today.



The now familiar Philips waves and stars first appeared in 1926 on the packaging of miniwatt radio valves, as well as on the Philigraph, an early sound recording device. The waves symbolized radio waves, while the stars represented the ether of the evening sky through which the radio waves would travel.



In 1930 it was the first time that the four stars flanking the three waves were placed together in a circle. After that, the stars and waves started appearing on radios and gramophones, featuring this circle as part of their design. Gradually the use of the circle emblem was then extended to advertising materials and other products.



At this time Philips’ business activities were expanding rapidly and the company wanted to find a trademark that would uniquely represent Philips, but one that would also avoid legal problems with the owners of other well-known circular emblems. This wish resulted in the combination of the Philips circle and the wordmark within the shield emblem.



In 1938, the Philips shield made its first appearance. Although modified over the years, the basic design has remained constant ever since and, together with the wordmark, gives Philips the distinctive identity that is still embraced today.

The first steps of CRT production by Philips started in the thirties with the Deutsche Philips Electro-Spezial gesellschaft in Germany and the Philips NatLab (Physics laboratory) in Holland. After the introduction of television in Europe, just after WWII there was a growing demand of television sets and oscilloscope equipment. Philips in Holland was ambitious and started experimental television in 1948. Philips wanted to be the biggest on this market. From 1948 there was a small Philips production of television and oscilloscope tubes in the town of Eindhoven which soon developed in mass production. In 1976 a part of the Philips CRT production went to the town of Heerlen and produced its 500.000'th tube in 1986. In 1994 the company in Heerlen changed from Philips into CRT-Heerlen B.V. specialized in the production of small monochrome CRT's for the professional market and reached 1.000.000 produced tubes in 1996. In this stage the company was able to produce very complicated tubes like storage CRT's.
In 2001 the company merged into Professional Display Systems, PDS worked on LCD and Plasma technology but went bankrupt in 2009. The employees managed a start through as Cathode Ray Technology which now in 2012 has to close it's doors due to the lack of sales in a stressed market. Their main production was small CRT's for oscilloscope, radar and large medical use (X-ray displays). New experimental developments were small Electron Microscopy, 3D-TV displays, X-Ray purposes and Cathode Ray Lithography for wafer production. Unfortunately the time gap to develop these new products was too big.


28 of September 2012, Cathode Ray Technology (the Netherlands), the last Cathode Ray Tube factory in Europe closed. Ironically the company never experienced so much publicity as now, all of the media brought the news in Holland about the closure. In fact this means the end of mass production 115 years after Ferdinand Braun his invention. The rapid introduction and acceptation of LCD and Plasma displays was responsible for a drastic decrease in sales. Despite the replacement market for the next couple of years in the industrial, medical and avionics sector.
The numbers are small and the last few CRT producers worldwide are in heavy competition.

Gerard Philips:

Gerard Leonard Frederik Philips (October 9, 1858, in Zaltbommel – January 27, 1942, in The Hague, Netherlands) was a Dutch industrialist, co-founder (with his father Frederik Philips) of the Philips Company as a family business in 1891. Gerard and his younger brother Anton Philips changed the business to a corporation by founding in 1912 the NV Philips' Gloeilampenfabrieken. As the first CEO of the Philips corporation, Gerard laid with Anton the base for the later Philips multinational.



Early life and education

Gerard was the first son of Benjamin Frederik David Philips (1 December 1830 – 12 June 1900) and Maria Heyligers (1836 – 1921). His father was active in the tobacco business and a banker at Zaltbommel in the Netherlands; he was a first cousin of Karl Marx.



Career

Gerard Philips became interested in electronics and engineering. Frederik was the financier for Gerard's purchase of the old factory building in Eindhoven where he established the first factory in 1891. They operated the Philips Company as a family business for more than a decade.



Marriage and family

On March 19, 1896 Philips married Johanna van der Willigen (30 September 1862 – 1942). They had no children.

Gerard was an uncle of Frits Philips, whom he and his brother brought into the business. Later they brought in his brother's grandson, Franz Otten.


Gerard and his brother Anton supported education and social programs in Eindhoven, including the Philips Sport Vereniging (Philips Sports Association), which they founded. From it the professional football (soccer) department developed into the independent Philips Sport Vereniging N.V.



Anton Philips:

Anton Frederik Philips (March 14, 1874, Zaltbommel, Gelderland – October 7, 1951, Eindhoven) co-founded Royal Philips Electronics N.V. in 1912 with his older brother Gerard Philips in Eindhoven, the Netherlands. He served as CEO of the company from 1922 to 1939.



Early life and education

Anton was born to Maria Heyligers (1836 – 1921) and Benjamin Frederik David Philips (December 1, 1830 – June 12, 1900). His father was active in the tobacco business and a banker at Zaltbommel in the Netherlands. (He was a first cousin to Karl Marx.) Anton's brother Gerard was 16 years older.



Career

In May 1891 the father Frederik was the financier and, with his son Gerard Philips, co-founder of the Philips Company as a family business. In 1912 Anton joined the firm, which they named Royal Philips Electronics N.V.

During World War I, Anton Philips managed to increase sales by taking advantage of a boycott of German goods in several countries. He provided the markets with alternative products.

Anton (and his brother Gerard) are remembered as being civic-minded. In Eindhoven they supported education and social programs and facilities, such as the soccer department of the Philips Sports Association as the best-known example.

Anton Philips brought his son Frits Philips and grandson Franz Otten into the company in their times. Anton took the young Franz Otten with him and other family members to escape the Netherlands just before the Nazi Occupation during World War II; they went to the United States. They returned after the war.

His son Frits Philips chose to stay and manage the company during the occupation; he survived several months at the concentration camp of Vught after his workers went on strike. He saved the lives of 382 Jews by claiming them as indispensable to his factory, and thus helped them evade Nazi roundups and deportation to concentration camps.

Philips died in Eindhoven in 1951.



Marriage and family

Philips married Anne Henriëtte Elisabeth Maria de Jongh (Amersfoort, May 30, 1878 – Eindhoven, March 7, 1970). They had the following children:

* Anna Elisabeth Cornelia Philips (June 19, 1899 – ?), married in 1925 to Pieter Franciscus Sylvester Otten (1895 – 1969), and had:
o Diek Otten
o Franz Otten (b. c. 1928 - d. 1967), manager in the Dutch electronics company Philips
* Frederik Jacques Philips (1905-2005)
* Henriëtte Anna Philips (Eindhoven, October 26, 1906 – ?), married firstly to A. Knappert (d. 1932), without issue; married secondly to G. Jonkheer Sandberg (d. September 5, 1935), without issue; and married thirdly in New York City, New York, on September 29, 1938 to Jonkheer Gerrit van Riemsdijk (Aerdenhout, January 10, 1911 – Eindhoven, November 8, 2005). They had the following children:
o ..., Jonkheerin Gerrit van Riemsdijk (b. Waalre, October 2, 1939), married at Waalre on February 17, 1968 to Johannes Jasper Tuijt (b. Atjeh, Koeta Radja, March 10, 1930), son of Jacobus Tuijt and wife Hedwig Jager, without issue
o ..., Jonkheerin Gerrit van Riemsdijk (b. Waalre, April 3, 1946), married firstly at Calvados, Falaise, on June 6, 1974 to Martinus Jan Petrus Vermooten (Utrecht, September 16, 1939 – Falaise, August 29, 1978), son of Martinus Vermooten and wife Anna Pieternella Hendrika Kwantes, without issue; married secondly in Paris on December 12, 1981 to Jean Yves Louis Bedos (Calvados, Rémy, January 9, 1947 – Calvados, Lisieux, October 5, 1982), son of Georges Charles Bedos and wife Henriette Louise Piel, without issue; and married thirdly at Manche, Sartilly, on September 21, 1985 to Arnaud Evain (b. Ardennes, Sedan, July 7, 1952), son of Jean Claude Evain and wife Flore Halleux, without issue
o ..., Jonkheerin Gerrit van Riemsdijk (b. Waalre, September 4, 1948), married at Waalre, October 28, 1972 to Elie Johan François van Dissel (b. Eindhoven, October 9, 1948), son of Willem Pieter
Jacob van Dissel and wife Francisca Frederike Marie Wirtz, without issue.



(To see the Internal Chassis Just click on Older Post Button on bottom page, that's simple !)



A comment...........of a 1996 reality ..................
Philips, which seems to be a perennial walking wounded case. The company had appeared to be on the mend after a worldwide cost- cutting programme which was started five years ago when Jan Timmer took over as chairman.
 But, following a sharp profits fall, with the company's first quarterly loss since 1992, a further shake up is being undertaken.
The difficulty is that the company operates in a mature market, in which prices are falling at an annual rate of six per cent. Manufacturers are competing by cutting costs to gain a larger share of static demand. It's not a situation in which any firm that does its own manufacturing can achieve much. Philips' latest plan involves an overall loss of 6,000 jobs in its consumer electronics business, with far greater reliance placed on a group of external suppliers which are referred to as "a cluster of dedicated subcontractors".

This is an approach that was pioneered many years ago by major Japanese manufacturers. Rather than make everything yourself, you rely on subcontractors who, in return, rely on you for their main source of work. It is hardly a cosy arrangement: the whole point seems to be that the major fain can exert pressure on its subcontractors, thereby - in theory - achieving optimum efficiency and cost-effectiveness. What happens when lower and lower prices are demanded for subcontracted work is not made clear.

The whole edifice could collapse. However that might be, this is the course on which Philips has now embarked. The company is also to carry out distribution, sales and marketing on a regional rather than a national basis, and has said that it will not support Grundig's losses after this year.

But Philips' chief financial officer Dudley Eustace has said that it has "no intention of abandoning the television and audio business". One has to assume that the subcontracting will also be done on an international basis, as major Japanese firms have had to do. There is a sense of déjà vu about this, though one wishes Philips well - it is still one of the major contributors to research and development in our industry.

Toshiba, which has also just appointed a new top man, Taizo Nishimoro, provides an interesting contrast. Mr Nishimoro thinks that the western emphasis on sales and marketing rather than engineering is the way to go. So the whole industry seems to be moving full circle. Taizo Nishimoro has become the first non engineering president of Toshiba. Where the company cannot compete effectively on its own, he intends to seek international alliances or go for closures. He put it as follows. "The technology and the businesses we are engaged in are getting more complex.
 In these circumstances, if we try to do everything ourselves we are making a mistake." Here's how Minoru Makihara, who became head of Mitsubishi Corporation four years ago, sees it. "Technologies are now moving so fast that it is impossible for the top manager to know all the details. 
Companies are now looking for generalists who can understand broad changes, delegate and provide leadership." Corporate change indeed amongst our oriental colleagues. Major firms the world over are facing similar problems and having to adopt similar policies.
In a mature market such as consumer electronics, you have to rely on marketing to squeeze the last little bit of advantage from such developments as Dolby sound and other added value features. The consumer electronics industry has been hoping that the digital video disc would come to its aid and get sales and profits moving ahead.
The DVD was due to be released in Sept 1996 , but we are unlikely to hear much more about it yet awhile. There's no problem with the technology: the difficulty is with licensing and software. There is obviously no point in launching it without adequate software support. But the movie companies, which control most of the required supply of software, are concerned that a recordable version of the disc, due in a couple of years' time, would be a gift to pirates worldwide. Concessions have been made by the electronics industry, in particular that different disc formats should be used in different parts of the world. But a curious problem has arisen.
 The other main use of the DVD is as a ROM in computer systems. For this application flexible copying facilities are a major requirement. But the movie companies are unwilling to agree to this. At present the situation is deadlocked and the great hope of an autumn launch, all important for sales, has had to be postponed. Next year maybe? It's a great pity, since the DVD has much to offer.
There's a lot of sad news on the retail side as well. Colorvision has been placed in administrative receivership in 1996 , with a threat to 800 jobs at its 76 stores, while the Rumbelows shops that were taken over by computer retailer Escom have suffered a similar fate. The receivers have closed down the UK chain with the loss of 850 jobs at some 150 stores. Nothing seems to be going right just now.

2 comments:

  1. I also have a phillips k11 from 1975.It is a part of my old electronics collection :).It works well in today.I use it always.I repaired it 3 or 4 times.the main problem:dry capacitors, but this is normal for old capacitors...
    After 42 years of work it is better than a new tv :).

    ReplyDelete
  2. YEAR 2012 - YEAR 1975 =37 YEARS !! !!

    NOT 42.

    Anyway PHILIPS CHASSIS K11 will live much longer.......than me.....&.....You !! !! !!

    FRANK.

    ReplyDelete

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.

Note: Only a member of this blog may post a comment.