Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical Obsolete technology relics that the Frank Sharp Private museum has accumulated over the years .
Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.

Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:
- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........
..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !
-----------------------
©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of Engineer Frank Sharp. NOTHING HERE IS FOR SALE !
All posts are presented here for informative, historical and educative purposes as applicable within Fair Use.


Tuesday, July 10, 2012

GRUNDIG TRIUMPH 1421 CHASSIS 29300-276.21 INTERNAL VIEW.











TDA1170 vertical deflection FRAME DEFLECTION INTEGRATED CIRCUITGENERAL DESCRIPTION f The TDA1170 and TDA1270 are monolithic integrated
circuits designed for use in TV vertical deflection systems. They are manufactured using
the Fairchild Planar* process.
Both devices are supplied in the 12-pin plastic power package with the heat sink fins bent
for insertion into the printed circuit board.
The TDA1170 is designed primarily for large and small screen black and white TV
receivers and industrial TV monitors. The TDA1270 is designed primarily for driving
complementary vertical deflection output stages in color TV receivers and industrial
monitors.
APPLICATION INFORMATION (TDA1170)
The vertical oscillator is directly synchronized by the sync pulses (positive or negative); therefore its free
running frequency must be lower than the sync frequency. The use of current feedback causes the yoke
current to be independent of yoke resistance variations due to thermal effects, Therefore no thermistor is
required in series with the yoke. The flyback generator applies a voltage, about twice the supply voltage, to
the yoke. This produces a short flyback time together with a high useful power to dissipated power
ratio.



TBA920 line oscillator combination
DESCRIPTION
The line oscillator combination TBA920 is a monolithic
integrated circuit intended for the horizontal deflection of the black and white
and colour TV sets
picture tube.

FEATURES:
SYNC-PULSE SEPARATION
OPTIONAL NOISE INVERSION
GENERATION OF A LINE FREQUENCY VOL-
TAGE BY MEANS OF AN OSCILLATOR
PHASE COMPARISON BETWEEN SYNC-
PULSE AND THE OSCILLATOR WAVEFORM
PHASE COMPARISON BETWEEN THE OS-
CILLATOR WAVEFORM AND THE MIDDLE OF
THE LINE FLY-BACK PULSE
AUTOMATIC SWITCHING OF THE VARIABLE
TRANSCONDUCTANCE AND THE VARIABLE
TIME CONSTANT TO ACHIEVE NOISE SUP-
PRESSION AND, BY SWITCHING OFF, POS-
SIBILITY OF TAPE-VIDEO-REGISTERED RE-
PRODUCTION
SHAPING AND AMPLIFICATION OF THE OS-
CILLATOR WAVEFORM TO OBTAIN PULSES
FOR THE CONTROL OF DRIVING STAGES IN
HORIZONTAL, DEFLECTION CIRCUITS
USING EITHER TRANSISTORS OR THYRISTORS


 THE TBA920 SYNC/TIMEBASE IC It has been quite common for some time for sync separation to be carried out in an i.c. but until 1971 this was as far as i.c.s had gone in television receiver timebase circuitry. With the recent introduction of the delta featured 110°  colour series however i.c.s have gone a step farther since this chassis uses a TBA920 as sync separator and line generator. A block diagram of this PHILIPS /Mullard  i.c. is shown in Fig. 1.
The video signal at about 2-7V peak -peak is fed to the sync separator section at pin 8, the composite sync waveform appearing at pin 7.
The noise gate switches off the sync separator when a positive -going input pulse is fed in at pin 9, an external noise limiter circuit being required .
The line sync pulses are shaped by R1 /C1 /C2/R2 and fed in to the oscillator phase detector section at pin 6.
The line oscillator waveform is fed internally to the oscillator phase detector circuit which produces at pin 12 a d.c. potential which is used to lock the line oscillator to the sync pulse frequency, the control potential being fed in at pin 15. The oscillator itself is a CR type whose waveform is produced by the charge and discharge of the external capacitor (C7) connected to pin 14. The oscillator frequency is set basically by C7 and R6 and can be varied by the control potential appearing at pin 15 from pin 12 and the external line hold control. Internally the line oscillator feeds a triangular waveform to the oscillator and flyback phase detector sections and the pulse width control section. The coincidence detector section is used to set the time constant of the oscillator phase detector circuit. It is fed internally with sync pulses from the sync separator section, and with line flyback pulses via pin 5. When the flyback pulses are out of phase with the sync pulses the impedance looking into pin 11 is high (21(Q). When the pulses are coincident the impedance falls to about 150Q and the oscillator phase detector circuit is then slow acting. The effect of this is to give fast pull -in when the pulses are out of sync and good noise immunity when they are in sync. The coincidence detector is controlled by the voltage on pin 10. When the sync and flyback pulses are in sync C3 is charged: when they are out of sync C3 discharges via R3. VTR use has been taken into consideration here. With a video recorder it is necessary to be able to follow the sync pulse phase variations that occur as a result of wow and flutter in the tape transport system, while noise is much less of a problem. For use with a VTR therefore the network on pin 10 can simply be left out so that the oscillator phase detector circuit is always fast acting. A second control loop is used to adjust the timing of the pulse output obtained from pin 2 to take into account the delay in the line output stage. The fly back phase detector compares the frequency of the flyback pulses fed in at pin 5 with the oscillator signal which has already been synchronised to the sync pulse frequency.
Any phase difference results in an output from pin 4 which is integrated and fed into the pulse width control section at pin 3. The potential at pin 3 sets the width of the output pulse obtained at pin 2: with a high positive voltage (via R11 and R12) at pin 3 a 1:1 mark -space ratio out- put pulse (32/us on, 32/us off) will be produced while a low potential at pin 3 (negative output at pin 4) will give a 16us output pulse at  the same frequency. The action of this control loop continues until the fly- back pulses are in phase with a fixed point on the oscillator waveform: the flyback pulses are then in phase with the sync pulses and delays in the line output stage are compensated. The output obtained at pin 2 is of low impedance and is suitable for driving valves, transistors or thyristors: R9 is necessary to provide current limiting.




Power supply is realized with mains transformer and Linear transistorized power supply stabilizer, A DC power supply apparatus includes a rectifier circuit which rectifies an input commercial AC voltage. The rectifier output voltage is smoothed in a smoothing capacitor. Voltage stabilization is provided in the stabilizing circuits by the use of Zener diode circuits to provide biasing to control the collector-emitter paths of respective transistors.A linear regulator circuit according to an embodiment of the present invention has an input node receiving an unregulated voltage and an output node providing a regulated voltage. The linear regulator circuit includes a voltage regulator, a bias circuit, and a current control device.

In one embodiment, the current control device is implemented as an NPN bipolar junction transistor (BJT) having a collector electrode forming the input node of the linear regulator circuit, an emitter electrode coupled to the input of the voltage regulator, and a base electrode coupled to the second terminal of the bias circuit. A first capacitor may be coupled between the input and reference terminals of the voltage regulator and a second capacitor may be coupled between the output and reference terminals of the voltage regulator. The voltage regulator may be implemented as known to those skilled in the art, such as an LDO or non-LDO 3-terminal regulator or the like.
The bias circuit may include a bias device and a current source. The bias device has a first terminal coupled to the output terminal of the voltage regulator and a second terminal
coupled to the control electrode of the current control device. The current source has an input coupled to the first current electrode of the current control device and an output coupled to the second terminal of the bias device. A capacitor may be coupled between the first and second terminals of the bias device.
In the bias device and current source embodiment, the bias device may be implemented as a Zener diode, one or more diodes coupled in series, at least one light emitting diode, or any other bias device which develops sufficient voltage while receiving current from the current source. The current source may be implemented with a PNP BJT having its collector electrode coupled to the second terminal of the bias device, at least one first resistor having a first end coupled to the emitter electrode of the PNP BJT and a second end, a Zener diode and a second resistor. The Zener diode has an anode coupled to the base electrode of the PNP BJT and a cathode coupled to the second end of the first resistor. The second resistor has a first end coupled to the anode of the Zener diode and a second end coupled to the reference terminal of the voltage regulator. A second Zener diode may be included having an anode coupled to the cathode of the first Zener diode and a cathode coupled to the first current electrode of the current control device.
A circuit is disclosed for improving operation of a linear regulator, having an input terminal, an output terminal, and a reference terminal. The circuit includes an input node, a transistor, a bias circuit, and first and second capacitors. The transistor has a first current electrode coupled to the input node, a second current electrode for coupling to the input terminal of the linear regulator, and a control electrode. The bias circuit has a first terminal for coupling to the output terminal of the linear regulator and a second terminal coupled to the control electrode of the transistor. The first capacitor is for coupling between the input and reference terminals of the linear regulator, and the second capacitor is for coupling between the output and reference terminals of the linear regulator. The bias circuit develops a voltage sufficient to drive the control terminal of the transistor and to operate the linear regulator. The bias circuit may be a battery, a bias device and a current source, a floating power supply, a charge pump, or any combination thereof. The transistor may be implemented as a BJT or FET or any other suitable current controlled device.





Power Supply: The examples chosen are taken from manufacturers' circuit diagrams and are usually simplified to emphasise the fundamental nature of the circuit. For each example the particular transistor properties that are exploited to achieve the desired performance are made clear. As a rough and ready classification the circuits are arranged in order of frequency: this part is devoted to circuits used at zero frequency, field frequency and audio frequencies. Series Regulator Circuit Portable television receivers are designed to operate from batteries (usually 12V car batteries) and from the a.c. mains. The receiver usually has an 11V supply line, and circuitry is required to ensure that the supply line is at this voltage whether the power source is a battery or the mains. The supply line also needs to have good regulation, i.e. a low output resistance, to ensure that the voltage remains constant in spite of variations in the mean current taken by some of the stages in the receiver. Fig. 1 shows a typical circuit of the power -supply arrangements. The mains transformer and bridge rectifier are designed to deliver about 16V. The battery can be assumed to give just over 12V. Both feed the regulator circuit Trl, Tr2, Tr3, which gives an 11V output and can be regarded as a three -stage direct -coupled amplifier. The first stage Tr 1 is required to give an output current proportional to the difference between two voltages, one being a constant voltage derived from the voltage reference diode D I (which is biased via R3 from the stabilised supply). The second voltage is obtained from a preset potential divider connected across the output of the unit, and is therefore a sample of the output voltage. In effect therefore Tr 1 compares the output voltage of the unit with a fixed voltage and gives an output current proportional to the difference between them. Clearly a field-effect transistor could do this, but the low input resistance of a bipolar transistor is no disadvantage and it can give a current output many times that of a field-effect transistor and is generally preferred therefore. The output current of the first stage is amplified by the two subsequent stages and then becomes the output current of the unit. Clearly therefore Tr2 and Tr3 should be current amplifiers and they normally take the form of emitter followers or common emitter stages (which have the same current gain). By adjusting the preset control we can alter the fraction of the output voltage' applied to the first stage and can thus set the output voltage of the unit at any desired value within a certain range. By making assumptions about the current gain of the transistors we can calculate the degree of regulation obtainable. For example, suppose the gain of Tr2 and Tr3 in cascade is 1,000, and that the current output demanded from the unit changes by 0.1A (for example due to the disconnection of part of the load). The corresponding change in Tr l's collector current is 0.1mA and, if the standing collector current of Tr 1 is 1mA, then its mutual conductance is approximately 4OmA/V and the base voltage must change by 2.5mV to bring about the required change in collector current. If the preset potential divider feeds one half of the output voltage to Tr l's base, then the change in output voltage must be 5mV. Thus an 0.1A change in output current brings about only 5mV change in output voltage: this represents an output resistance of only 0.0552.


GRUNDIG Tuning unit with bandswitch for high frequency receivers



Abstract:
A tuning unit with a bandswi
tch for high frequency receivers having a potentiometer system for the control of capacity diodes is disclosed. The potentiometer system includes a plurality of parallelly disposed resistance paths on which wipers can be moved by means of screw tuning spindles mounted beside one another in a common housing made of an insulating material. The bandswitch is formed of metal wires and is associated with each tuning spindle. The tuning spindles are joined for rotation with sleeves simultaneously forming the operating knobs which are carried in apertures in the front plate and each have a flange engaging the back side of the front plate about the apertures. The flange is slightly larger than the cross section of the apertures and tapers conically away from the back side of the front plate.



1. Tuning unit with bandswitch for high frequency receivers having potentiometer means for the control of capacity diodes composed of a plurality of parallelly disposed resistance paths on which wipers are moved by means of screw tuning spindle means mounted beside one another in a common housing of insulating material, bandswitch means formed of metal wires associated with each tuning spindle means, said tuning spindle means being joined for rotation with sleeve means simultaneously forming operating knobs which are borne in apertures in the front plate and each sleeve means having an axial flange surface engaging the back side of the front plate about one aperture therein, said flange surface being slightly larger than the cross section of the apertures and tapering conically away from the back side of the front plate.

2. Tuning unit of claim 1 wherein the sleeve means are joined telescopically and coaxially with the tuning spindle means, and the flange surface engages the back side of the front plate when the sleeve means are in the state wherein they are pulled out of the front plate.

3. Tuning unit of claim 1 wherein the ends of the tuning spindle means which are opposite the front plate have each an annular groove into which a spring bracket engages whose bent end is supported against the housing and which has two diametrically disposed spring arms having opposite spring curvature, the said spring arms in each case contacting the opposite axial walls of the groove.

4. Tuning unit of claim 3 wherein the spring bracket rests with its bent end against the housing and the spring arms additionally engage a bracket formed on the housing or an intermediate bracket formed in one piece with the connection soldering lugs.

5. Tuning unit of claim 3 wherein the spring bracket is formed in one piece with the connection soldering lugs and has spring arms curved both in the same direction which engage an axial wall of the annular groove in the spindle and the opposite axial wall rests against a housing wall.

6. Tuning unit of claim 1 wherein the pointers associated with each potentiometer means lie on the one hand in windows associated with each tuning spindle means in the front plate, and on the other hand are rotatably mounted with their ends opposite the front plate in pivot pins on the housing, and the guiding pin of the spindle nuts carried in a longitudinally displaceable manner on each tuning spindle is provided with a slit disposed parallel to the longitudinal axis of the tuning spindle and slides with its peripheral surface resiliently within the slide tract of the pointer.

7. Tuning unit of claim 1 wherein the bandswitches are formed each of a displaceable metal rod which is in working engagement with stationary metal rods common to all bandswitches of a tuning unit, contacting each of them individually.

8. Tuning unit of claim 7 wherein the metal rods are metal wires.

9. Tuning unit of claim 7 wherein the metal rods are stamped metal parts.

10. Tuning unit of claim 7 wherein levers of insulating material are placed on the front ends of the displaceable metal rods and extend through windows which are provided with detents and which are associated with each tuning spindle in the housing front plate, while the opposite ends are held fixedly in the rearward end of the housing, and the displaceable metal rods individually make contact with contact cams on the stationary metal rods, these cams being in an offset array corresponding to the detents in the windows, the corresponding rods extending parallel to the front plate and parallel to one another behind the front plate.

11. Tuning unit of claim 7 wherein insulating material bridges or insulating material slide pieces are inserted between the contact cams of two adjacent, stationary metal rods and within the free space between two such parallel metal rods.

12. Tuning unit of claim 7 wherein the displaceable metal rods have, in the vicinity of their mountings on the housing, an articulation in the form of a vertically disposed flat portion.

Description:
BACKGROUND
The invention relates to a tuning unit with bandswitch for high frequency receivers, especially radio and television receivers, having a potentiometer system for the control of capacity diodes, the said potentiometer system consisting of a plurality of parallel resistance paths along which wiper contacts can be driven by means of screw spindles disposed adjacent one another in a common insulating material housing in which a bandswitch formed of metal rods is associated with each tuning spindle.
In these tuning units, the working voltages of the capacity diodes in the tuning circuits are recorded once a precise tuning to the desired frequency has been performed. A potentiometer tuning system has great advantages over the formerly used channel selectors operating with mechanically adjustable capacitors (tuning condensers) or mechanically adjustable inductances (variometers), mainly because it is not required to have such great precision in its tuning mechanism.
Tuning units with bandswitches formed of variable resistances and combined with interlocking pushbuttons controlling the supply of recorded working voltages to capacity diodes are known. Channel selection is accomplished by depressing the knobs, and the tuning or fine tuning are performed by turning the knobs. The resistances serving as voltage dividers in these tuning units are combined into a component unit such that they are in the form of a ladderlike pattern on a common insulating plate forming the cover of the housing in which the tuning spindles and wiper contacts corresponding to the variable resistances are housed. The number of resistances corresponds to the number of channels or frequencies which are to be recorded. The wiper contact picks up a voltage which, when applied to the capacity diodes determines their capacitance and hence the frequency of the corresponding oscillating circuit. The adjustment of the wipers is performed by turning the tuning spindle coupled to the tuning knob. By the depression of a button the electrical connection between a contact rod and a tuning spindle is brought about and thus the selected voltage is applied to the capacity diodes. Since the push buttons release one another, it is possible simply by depressing another button to tune to a different receiving frequency or a different channel, as the case may be.
To permit the switching of a number of channels in a certain tuning range, bandswitches for a plurality of tuning ranges, such as UHF and VHF for example, are often provided in the tuning units described above. In the pushbutton tuning unit of the above-named type, the bandswitch consists of a printed circuit board which is fastened on the housing of the tuning unit, and a switch lever which is preset by means of the pushbutton by turning, and is operated by depressing the pushbutton while at the same time selecting the channel.
Where this combination of knobs and pushbuttons is not possible, the selection of the range is accomplished by means of an additional lever which can be set over to select the range.
However, since such tuning units require too many riveting operations when they are assembled, tuning units were later created in which the individual parts in the voltage divider and pushbutton housing were loosely inserted and/or held in place by projections, lugs, hooks or tabs of resilient plastic. In spite of these initial improvements, the bandswitch, especially the one associated with the tuning units, was still technically intricate and very expensive.
THE INVENTION
It is the object of the invention, therefore, to create an additionally improved and simplified tuning unit containing a bandswitch of simple, space-saving and reliably operating design.
In accordance with the invention, this object is accomplished in a tuning unit with bandswitch of the kind described in the beginning by joining the tuning spindles for rotation with sleeves simultaneously forming the control knobs, which are mounted in apertures in the front plate of the housing and have each a flange engaging the back of the front plate around the aperture, the said flange being slightly larger than the aperture and tapering conically away from the back of the front plate.
In further development, the sleeves can be joined telescopically for rotation with the tuning spindles, and the flange is able to engage the back side of the front plate when the sleeve is in the position in which it is drawn out of the front plate. The sleeves constructed in this manner, whose portions projecting from the apertures in the front plate form the control knobs for the tuning spindles, permit easy assembly of the tuning uni
t and at the same time assure positive co-rotation of sleeves and spindles. The sleeves can be pushed from the front side of the front plate through the apertures onto the clutch surfaces of the spindles, this inward pushing being easily accomplished on account of the taper, and the dropping out of the sleeve being prevented by the flange engaging the back of the front plate. If the control knobs project only slightly out of the front plate, they can be operated from the outside by inserting a tool into them. With the telescoping type of coupling, however, it is possible to draw the sleeves or control knobs further outwardly so that they can be rotated by hand without the use of tools.
To provide constant assurance of the axial fixation of the tuning spindles, the tuning spindle ends farthest from the front plate can each be provided with an annular groove engaged by a spring bracket whose one leg is supported against the housing and whose other leg is forked to form two spring arms, each bent in the opposite direction and each engaging one of the two opposite walls of the annular groove. The tuning spindles are secured against axial displacement by this construction of the invention alone, without the need for further measures. This facilitates the joining of the sleeves or control knobs to the tuning spindle, because in this case there is no need for precise axial fixation and extreme dimensional accuracy.
Furthermore, the indicators associated with each potentiometer can be mounted in windows in the front plate which are associated with each tuning spindle or tuning knob for visual indication at the front, the other extremities farthest from the front plate being mounted for pivoting on pins set in the housing; the guiding pin on the spindle nut that is driven longitudinally on each tuning spindle can be provided with a slit disposed parallel to the long axis of the tuning spindles and can slide within the indicator slide lever slot, with its surface resiliently engaging the walls of said slot.
In an especially advantageous embodiment, the tuning unit can have bandswitches each formed of a displaceable metal rod which is in contacting engagement individually with stationary metal rods which are common to all of the bandswitches of a tuning unit. It contrast to the bandswitches known hitherto, which as a rule consist of a printed circuit board with switchable contacts thereon, this frequency bandswitch of the invention is of great simplicity, can be manufactured simply and inexpensively, and at the same time is very reliable in operation.
The displaceable and stationary metal rods of the bandswitches can be formed of metal wires or they can be of stamped sheet metal. Also, in further expansion of the concept of the invention, the stationary metal rods thus formed can be all entirely alike and merely offset from one another, thereby further simplifying the manufacture and stocking thereof.
To permit connection also to audiovisual apparatus, one or more of the stationary metal rods can be divided electrically into at least two parts each.
In a special development of this concept, lugs of insulating material can be mounted on the front ends of the displaceable metal wires, these lugs extending through windows in the front plate of the housing which are associated with each tuning spindle and are provided with detents, while the opposite ends can be held fixedly at the rear end of the housing, and the displaceable metal wires can make contact with contact humps on the stationary metal wires, the humps being offset from one another to correspond to the detents in the windows, and the stationary metal wires extending in back of the front plate, parallel to the latter and parallel to one another.
To increase switching reliability, bridges or sliding pieces made of insulating material can be inserted between the contact humps of adjacent stationary wires within the free space between two such parallel lying metal wires.
To achieve easy displacement of the displaceable metal wires despite the fixed end mounting on the housing, the displaceable metal wires, in further embodiment of the invention, can have each an articulation adjacent their end mountings, in the form of a vertically disposed flattened portion. This flat permits the metal wires to be deflected horizontally against a weak spring bias.
DESCRIPTION OF THE DRAWING
As an example of the embodiment of the invention, there is represented in the drawings a tuning unit with bandswitch for television receivers. In these drawings,
FIG. 1 is a front elevational view of a tuning unit with bandswitch,
FIG. 2 is a plan view showing the bandswitch of the tuning unit of FIG. 1,
FIG. 3 is a side elevational, cross-sectional view of the tuning unit of FIG. 1,
FIG. 4 is a rear elevational view of the tuning unit of FIG. 1,
FIG. 5 is a plan view showing the indicator means of the tuning unit of FIG. 1,
FIG. 6 shows the sleeve with the operating knob and tuning spindle,
FIG. 7 shows the telescoping manner in which the sleeve is joined to the tuning spindle,
FIG. 8 is a fragmentary view of the bandswitch,
FIG. 9 is another fragmentary view of the bandswitch, and
FIG. 10 shows how the tuning spindle is fixed in position.
DESCRIPTION
The method of representation used in the drawings is greatly simplified, for the purpose of better delineating the features of the invention. The tuning unit with bandswitch consists of an insulating material housing 1 with a front plate 2, which is closed by a cover plate 3 accommodating the resistance paths. The housing 1 is divided by parallel sidewalls 4 into chambers in which the tuning spindles 5 are disposed.
The embodiments is an 8-fold tuning unit having eight bandswitches assocated with each tuning spindle, and eight indicators.
Accordingly, there are eight apertures 6 in a central row, through which the operating knobs 7 of the sleeves 8 coupled with the tuning spindles 5 are passed. The operating knobs 7 have recessed surfaces 9 for turning with a turning tool. In a row extending parallel above the row of the apertures 6 there are eight windows 10, whose upper edge is provided with notches 11. Lugs 12 of insulating material extend through the windows 10 and engage the upper notches 11 and are joined behind the front plate to displaceable metal wires 13 of the bandswitch. In a row located beneath the row of apertures 6 another eight windows 14 are provided, through which the ends of the pointers of the indicators 15 protrude.
Now, the bandswitch consists in each case of a displaceable metal wire 13 which can be brought into working engagement with stationary metal wires 16, which are all of the same construction and are only disposed offset from one another. While the displaceable metal wire 13 extends substantially parallel to the longitudinal axis and thus at right angles to the front plate 2, the stationary, parallelly disposed metal wires 16 are parallel to the front plate 2 and are thus inserted at a right angle to the displaceable metal wire. A departure from parallelism or from the right angle, as the case may be, takes place substantially only when the displaceable metal wire 13 is deflected to the two outer notches. The rearward end 18 of the displaceable metal wire, which forms a vertical loop, is tightly inserted into a receiver 17. Just ahead of the loop 18, the metal wire 13 is provided with a vertically disposed portion 19 by a flattening on the metal wire 13. The movement, when the metal wire 13 is deflected into the desired notches or detents, takes place horizontally by the flexing of these portions 19. The stationary metal wires 16 are held tightly in their positions in projections 20 on the housing, or by lugs or the like. Since three switch actions are provided, that is, three ranges, for each tuning spindle, a bandswitch consists of one displaceable metal wire and three stationary metal wires 16, which are used for all switches.
To permit each bandswitch to have exactly three switching actions, each of the three stationary metal wires 16 has one contact hump 21 corresponding to one of the detents 11 in the windows 10 of the front plate 2. The contact humps 21 are thus located one next to the other as seen from the front plate 2. So that the displaceable metal wire 13 will always come into mechanical and electrical contact only with the desired contact hump, and prevent short circuits, insulating bridges 22 are installed between the adjacent metal wires 16, said insulating bridges being stationary.
If more or less than three switching actions are desired, all that need be done in the case of the bandswitch of the invention is to change the number of stationary metal rods or wires accordingly.
The sleeves 8 with the operating knob 7 have a flange 23 engaging the back of the front plate 2 and tapering back to the point where it joins the tuning spindle. This enables the sleeves to be pushed in, in the case of a housing that has already been manufactured with the tuning spindle installed, without creating the possibility that the sleeves 8 might escape after they have been inserted. The sleeves 8 are connected to the tuning spindles 5 usually by means of driving surfaces. If manual operation without tools is to be possible, rather than requiring a tool for the operation of the sleeves, the coupling of the sleeve 8 to the tuning spindle will be a telescoping coupling (see FIG. 7).
The actual firm axial fixation of the tuning spindle 5 is located on the rear end of the housing. Here the tuning spindle 5 has an annular groove 24 which is engaged by a spring by means of two diametrically disposed spring arms 25 and 26. The spring arms 25 and 26 have oppositely curved lugs and are supported on the housing at their terminal and marginal surfaces and their lugs engage opposite axial walls 27 and 28 of the annular groove 24.
Additional support is provided by the common, bent foot 29 of the spring arms 25 and 26 against the cover plate of the housing.
The indicator means of the tuning unit with bandswitch consists of a pointer 15 which is movable within the window 14, and a cam 30 which is a prolongation of the pointer 15. At its rearward end, the pointer is mounted rotatably in the housing on pin 31. Within the cam 30 slides a guiding pin 32 which is attached to the spindle nut or carriage 40. Upon the rotation of the tuning spindle, the spindle nut is longitudinally displaceable therewith. In order to achieve good guidance and hence precise indication, the guiding pin has a slit 33 extending parallel to the longitudinal axis of the tuning spindle 5, so that it will resiliently engage the cam 30 within the slot thereof.
The necessary soldering lugs are indicated at 34.
On the basis of the design of the tuning unit with bandswitch in accordance with the invention, a desired frequency range--UHF, for example--can be selected by deflecting a displaceable metal wire 13 into one of the detents 11 by means of the lug 12 mounted thereon. Within this range, a transmitter or channel can then be selected by turning the tuning spindle 5. The transmitter preselected in this manner can then be tuned in by means of a keyboard or by electronic recall from a keyboard which is not shown. The fine tuning of this tuned-in transmitter, as well as the selection of a different transmitter within the same frequency range, is accomplished by turning the tuning spindle 5.
All of the details explained in the above description and represented in the drawings are important to the invention.







No comments:

Post a Comment

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.

Note: Only a member of this blog may post a comment.