Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical technology relics that the Frank Sharp Private museum has accumulated over the years .

Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.


Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:

- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........

..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !
-----------------------

©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of
Engineer Frank Sharp. NOTHING HERE IS FOR SALE !

Tuesday, April 9, 2013

PANASONIC TX-28XD3C QUINTRIX YEAR 1997.




The PANASONIC TX-28XD3C QUINTRIX is a 28 inches (70cm) digital color television with stereo HIFI sound.
The television receiver has an alphanumeric display  which appears on the picture tube screen, to give the user data on the tuned channel number, colour settings and other operating data. The digital processor which generates the characters for display also controls the channel setting, etc., under the control of a digital remote control unit . The processor  has an associated memory circuit  for permanent tuning back up. The control of the capacitance diode tuner  is achieved by the processor  altering the dividing factor of a feedback loop to a phase/frequency comparator . The other input to the comparator is a divided frequency from a quartz oscillator.

With this model, Panasonic, is , like other high class fabricants, adopting the DIGIVISION MICRONAS / ITT Digital Signal Processing Technology, using the ITT DIGIVISION DIGIT3000 Fast one chipset improving furthermore picture quality and sound.

The PANASONIC TX-28XD3C QUINTRIX is The DIGITAL Colour television receiver or set , which is known in which the majority of signal processing that takes place therein is carried out digitally. That is, a video or television signal is received in a conventional fashion using a known analog tuning circuit and then, following the tuning operation, the received analog television signal is converted into a digital signal and digitally processed before subsequently being converted back to an analog signal for display on a colour cathode ray tube.
In a conventional television receiver, all signals are analog-processed. Analog signal processing, however, has the problems at the video stage and thereafter. These problems stem from the general drawbacks of analog signal processing with regard to time-base operation, specifically, incomplete Y/C separation (which causes cross color and dot interference), various types of problems resulting in low picture quality, and low precision of synchronization. Furthermore, from the viewpoints of cost and ease of manufacturing the analog circuit, a hybrid configuration must be employed even if the main circuit comprises an IC. In addition to these disadvantages, many adjustments must be performed.

In order to solve the above problems, it is proposed to process all signals in a digital form from the video stage to the chrominance signal demodulation stage. In such a digital television receiver, various improvements in picture quality should result due to the advantages of digital signal processing.
Therefore digital television signal processing system introduced in 1984 by the Worldwide Semiconductor Group (Freiburg, West Germany) of International Telephone and Telegraph Corporation is described in an ITT Corporation publication titled "VLSI Digital TV System--DIGIT 2000." In that system color video signals, after being processed in digital (binary) form, are converted to analog form by means of digital-to-analog converters before being coupled to an image displaying kinescope. The analog color video signals are coupled to the kinescope via analog buffer amplifiers and video output kinescope driver amplifiers which provide video output signals at a high level suitable for driving intensity control electrodes of the kinescope.

The entire video processing and controlling for a color TV has been developed on a single chip in 0.8µ CMOS
technology. Modular design and submicron technology allow the economic integration of features in all classes
of TV sets.

Open architecture is the key word to the new DSP generation. Flexible standard building blocks have been defined that offer continuity and transparency of the entire system.
One IC contains the entire video and deflection processing and builds the heart of a modern color TV. Its performance and complexity allow the user to standardize his product development. Hardware and software appli-
cations can profit from the modularity as well as manufacturing, system support or maintenance. The main
features are:

– low cost, high performance
– all digital video processing
– multi-standard color decoder PAL/NTSC/SECAM
– 3 composite, 1 S–VHS input
– integrated high-quality AD/DA converters
– sync and deflection processing
– luminance and chrominance features, e.g.
peaking, color transient improvement
– programmable RGB matrix
– various digital interfaces
– embedded RISC controller (80 MIPS)
– one crystal, few external components
– single power supply 5 V
– 0.8µ CMOS Technology
– 68-pin PLCC or 64-pin Shrink DIL Package

Present-day, so-called digital television receivers generally contain at least two A/D converters ("analog-to-digital converters"). One of the A/D converters serves to convert the video signal from analog to digital form and is commonly located after the so-called sound trap, which keeps the sound-carrier signal out of the remaining signal. This first A/D converter is operated with a sampling signal whose frequency is usually four times the chrominance subcarrier frequency. Typically, this first A/D converter is a flash converter.
The second A/D converter is located at the beginning of the audio channel and, unlike the first-mentioned A/D converter, is generally a delta-sigma converter.

 During the further development and refinement of the current principle of a digital television receiver, it has turned out that each of the various current television standards, and also expected future television standards, require suitably designed subcircuits which lead to a great number of different types of integrated circuits. This is disadvantageous, particularly with regard to the mass production of integrated circuits.
It is, therefore, the object of the invention as claimed to provide a circuit principle for television receiving sections having at least one interface between the analog signal processing circuitry and the digital signal-processing circuitry which permits considerably simpler adaptation to different television standards and reduces the number of A/D converters required.
The main idea underlying the invention is to use a single A/D converter already at the output of the intermediate-frequency stage (i.e., where the signal, still in its analog format, lies in a frequency range between about 30 MHz and 40 MHz). The clock signal of this A/D converter has a frequency approximately equal to twice the bandwidth of the received signal (e.g., a frequency of about 20 MHz). After this A/D converter, the received signal is divided into a video-information-processing channel ("the video channel"), and an audio-information processing channel ("the audio channel"). Compared to the conventional solution described above, the need for the separate audio-channel A/D converter is eliminated, so that in a currently marketable system, a complete integrated circuit is saved.

Furthermore it adds for first time a  digital sound processor for processing multistandard sound signals which are fed as analog or digital signals from at least one source to the sound processor at baseband or higher frequencies.
Such sound processors are suitable for processing sound signals of various transmission standards for entertainment electronics, such as sound signals of different television standards, satellite receivers, video recorders, radios with traffic information message decoders, etc., but also sound signals which are generated by means of specific personal computer sound cards. Via control inputs, the processing in the digital sound processor is adapted to the respective transmission standard or sound source, and via internal processors, the desired sound impression (treble, bass, volume, stereo effect, etc.) is adjusted.
One example of such a digital sound processor is the MSP 3410D Multistandard Sound Processor of Micronas Intermetall, a commercially available module used in entertainment electronics equipment. A detailed description of this flexible sound processor can be found, for example, in the relevant data sheet, Edition Jan. 15, 1998, Order No. 6251-422-3PD.


Furthermore Featuring STEREO HIFI SOUND , advanced osd, multipage teletext, multistandard capability, 2 AV SCART SOCKETS, CVBS INPUTS, HEADPHONES STEREO JACK, SVHS INPUT and a nice multifunction remote control.

A SCART Connector (which stands for Syndicat des Constructeurs d'Appareils Radiorécepteurs et Téléviseurs) is a standard for connecting audio-visual equipment together. The official standard for SCART is CENELEC document number EN 50049-1. SCART is also known as Péritel (especially in France) and Euroconnector but the name SCART will be used exclusively herein. The standard defines a 21-pin connector (herein after a SCART connector) for carrying analog television signals. Various pieces of equipment may be connected by cables having a plug fitting the SCART connectors. Television apparatuses commonly include one or more SCART connectors.
Although a SCART connector is bidirectional, the present invention is concerned with the use of a SCART connector as an input connector for receiving signals into a television apparatus. A SCART connector can receive input television signals either in an RGB format in which the red, green and blue signals are received on Pins 15, 11 and 7, respectively, or alternatively in an S-Video format in which the luminance (Y) and chroma (C) signals are received on Pins 20 and 15. As a result of the common usage of Pin 15 in accordance with the SCART standard, a SCART connector cannot receive input television signals in an RGB format and in an S-Video format at the same time.
Consequently many commercially available television apparatuses include a separate SCART connectors each dedicated to receive input television signals in one of an RGB format and an S-Video format. This limits the functionality of the SCART connectors. In practical terms, the number of SCART connectors which can be provided on a television apparatus is limited by cost and space considerations. However, different users wish the input a wide range of different combinations of formats of television signals, depending on the equipment they personally own and use. However, the provision of SCART connectors dedicated to input television signals in one of an RGB format and an S-Video format limits the overall connectivity of the television apparatus. Furthermore, for many users the different RGB format and S-Video format are confusing. Some users may not understand or may mistake the format of a television signal being supplied on a given cable from a given piece of equipment. This can result in the supply of input television signals of an inappropriate format for the SCART connector concerned.
This kind of connector is todays obsoleted !

Those digital CHASSIS were widely used by Panasonic until they decided in a brief time to drop all digital technology and return to analog CRT TUBE set employing the UOC 1 and the UOC 3 PHILIPS technology and then completely switch off to Flat Panels and Plasma sets.



Panasonic Corporation ( Panasonikku Kabushiki-gaisha) (TYO: 6752, NYSE: PC), formerly known as Matsushita Electric Industrial Co., Ltd. ( Matsushita Denki Sangyō Kabushiki-gaisha), is a Japanese multinational consumer electronics corporation headquartered in Kadoma, Osaka, Japan. Its main business is in electronics manufacturing and it produces products under a variety of names including Panasonic and Technics. Since its founding in 1918, it has grown to become the largest Japanese electronics producer. In addition to electronics, Panasonic offers non-electronic products and services such as home renovation services. Panasonic was ranked the 89th-largest company in the world in 2009 by the Forbes Global 2000 and is among the Worldwide Top 20 Semiconductor Sales Leaders !


History

Panasonic was founded in 1918 by Konosuke Matsushita first selling duplex lamp sockets. In 1927, it produced a bicycle lamp, the first product it marketed under the brand name National. It operated factories in Japan and other parts of Asia through the end of World War II, producing electrical components and appliances such as light fixtures, motors, and electric irons.
After World War II, Panasonic regrouped and began to supply the post war boom in Japan with radios and appliances, as well as bicycles. Matsushita's brother-in-law, Toshio Iue founded Sanyo as a subcontractor for components after WWII. Sanyo grew to become a competitor to Panasonic.


Name

For 90 years since establishment, the name of the company was always topped with ("Matsushita"). The company's name before 1 October 2008 had been "Matsushita Electric Industrial Co., Ltd.", used since 1935.
In 1927, the company founder adopted a brand name "National" ( National) for a new lamp product, knowing "national" meant "of or relating to a people, a nation."[5] In 1955, the company labeled its export audio speakers and lamps "PanaSonic", which was the first time it used its "Panasonic" brand name.
The company began to use a brand name "Technics" in 1965.[6] The use of multiple brands lasted for some decades.[6]
In May 2003, the company put "Panasonic" as its global brand, and set its global brand slogan, "Panasonic ideas for life."[7] The company began to unify its brands to "Panasonic" and, by March 2004 replaced "National" for products and outdoor signboards, except for those in Japan[7].
On January 10, 2008, the company announced that it would change its name to "Panasonic Corporation" (effective on October 1, 2008) and phase out the brand "National" in Japan, replacing it with the global brand "Panasonic" (by March 2010). The name change was approved at a shareholders' meeting on June 26, 2008 after consultation with the Matsushita family. Panasonic owns RCTI, Global TV and MNC TV.


Electronics

In 1961, Konosuke Matsushita traveled to the United States and met with American dealers. Panasonic began producing television sets for the U.S. market under the Panasonic brand name, and expanded the use of the brand to Europe in 1979.
The company used the National trademark outside of North America during the 1950s through the 1970s. (The trademark could not be used probably due to discriminatory application of trademark laws where brands like General Motors were registrable.) It sold televisions, hi-fidelity stereo receivers, multi-band shortwave radios, and marine radio direction finders, often exported to North America under various U.S. brand names. The company also developed a line of home appliances such as rice cookers for the Japanese and Asian markets. Rapid growth resulted in the company opening manufacturing plants around the world. National/Panasonic quickly developed a reputation for well-made, reliable products.
The company debuted a hi-fidelity audio speaker in Japan in 1965 with the brand Technics. This line of high quality stereo components became worldwide favorites. The most famous product still made today is the SL-1200 record player, known for its high performance, precision, and durability. Throughout the 1970s and early 1980s, Panasonic continued to produce high-quality specialized electronics for niche markets such as shortwave radios, as well as developing a successful line of stereo receivers, CD players, and other components.
Since 2004, Toyota has used Panasonic batteries for its Toyota Prius, an environmentally friendly car made in Japan.

On January 19, 2006 Panasonic announced that, starting in February, it will stop producing analog televisions (then 30% of its total TV business) to concentrate on digital TVs.
On November 3, 2008 Panasonic and Sanyo were in talks, resulting in the eventual acquisition of Sanyo. The merger was completed in December 2009, and resulted in a mega-corporation with revenues over ¥11.2 trillion (around $110 billion). As part of what will be Japan's biggest electronics company, the Sanyo brand and most of the employees will be retained as a subsidiary.
In November 1999, the Japan Times reported that Panasonic planned to develop a "next generation first aid kit" called the Electronic Health Checker. At the time, the target market was said to be elderly people, especially those living in rural areas where medical help might not be immediately available, so it was planned that the kit would include support for telemedicine. The kits were then in the testing stage, with plans for eventual overseas distribution, to include the United States.
In recent years the company has been involved with the development of high-density optical disc standards intended to eventually replace the DVD and the SD memory card.
On July 29, 2010 Panasonic reached an agreement to acquire the remaining shares of Panasonic Electric Works and Sanyo shares for $9.4 billion.

Panasonic and Universal

Panasonic used to own Universal Studios, then known as the Music Corporation of America, since acquiring the company in 1990 but sold it to Seagram in 1995. Universal Studios is now a unit of NBC Universal.


No comments:

Post a Comment

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.