Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical Obsolete technology relics that the Frank Sharp Private museum has accumulated over the years .
Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.

Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:
- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........
..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !
-----------------------
©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of Engineer Frank Sharp. NOTHING HERE IS FOR SALE !
All posts are presented here for informative, historical and educative purposes as applicable within Fair Use.


Friday, April 22, 2011

PHILIPS 23TI500A /01 TARANTO YEAR 1966.






The  PHILIPS 23TI500A /01  TARANTO is A 23 inches B/W television from PHILIPS. It has Manual tuning search with selector for VHF Channels and rotary variable capacitor for UHF channels, featured tone control (speech - music).

Television receivers currently being manufactured for consumer use were capable of operation in either the VHF (very high frequency) or UHF (ultra high frequency) bands of frequencies. In order to provide this capability, however, it is necessary to include two separate tuners or tuning circuits in the television receiver with one of these circuits being utilized for VHF reception and the other being used for UHF reception. The VHF tuner conventionally is a turret type of tuner having 13 detented positions which accomplish the coarse tuning or channel selection of the VHF tuner and a separate control is provided to effect the fine tuning at each of the channel positions. Generally, mechanical channel selecting devices for VHF television tuners fall into two groups, namely, the rotary-switching type or the turret types. Turret type tuners include an incrementally rotatable channel selector shaft for selectively connecting certain ones of a plurality of tuned circuit elements to each of a plurality of channel selector positions. UHF tuners generally employ a separate control mechanism or a tuning knob and use a dial indicator of a type commonly found in manual radio receivers. UHF tuners for television receivers are usually of a continuous tuning type similar to the tuning system adapted for radio sets. Therefore, the tuning in UHF channels has been extremely difficult as compared to the tuning in VHF channels. Such continuous tuning systems for the UHF tuners has heretofore been sufficient, since only two or three UHF channels have been authorized in one locality. However, where more UHF channels, namely seven or eight channels, are available for reception, a non-continuous type UHF tuner, which enables simpler tuning operation, is desired. Nevertheless, this continuous tuning system has heretofore been satisfactory, because there were only 2 or 3 UHF band channels or stations available for reception in an area. However, where there are an increased number (7 or 8 or more, for instance) of UHF band channels or stations available for reception, a non-continuous or intermittent tuning system as is adopted for the VHF tuner is preferable.

More desirably, the fine tuning control is presettable, so that the desired channel may be readily selected by merely turning the main channel switch-over shaft. The use of two separate tuning control mechanisms in order to effect the VHF and UHF tuning of the receiver is  at best; and when a receiver is provided with remote control capabilities, generally only the VHF band of frequencies may be remote controlled and the UHF channels still must be selected manually at the receiving set location.Conventional turret tuners still leave room for improvement, especially as far as minimizing the tuner size and dimension, and simplifying the assembly, as well as lowering the manufacture costs and improving the tuner performance are concerned.


It needs 200W power supply and it's tubes technology.

The set is made in MONZA (MILAN ITALY) a Very old PHILIPS factory in the 60's closed in the 70's.

(The set runs discretely warm .........it's  ....  Good in Winter).



The B/W Tubes Television set was powered with a External Voltage stabiliser unit for Television (portable metal box) which relates to voltage regulators of the type employed to supply alternating current and a constant voltage to a load circuit from a source in which the line voltage varies. Conventional AC-operated television receivers exhibit several undesirable performance attributes. For example, under low-line voltage conditions such as those encountered during peak load periods or temporary power brown-outs imposed during times of power shortage, picture shrinkage and defocusing are encountered and under extreme brown-out conditions the receiver loses synchronization with a resultant total loss of picture intelligibility.

On the other hand, abnormally high-line voltage conditions are sometimes encountered, and this can lead to excessive high voltage and X-ray generation. In addition, either abnormally high steady state line voltage conditions or high voltage transients such as those encountered during electrical storms or during power line switching operations may subject the active devices and other components of the receiver to over-voltage stresses which can lead to excessive component failure.

It is a principal object of the present invention to provide a new and improved AC-operated television receiver having greatly improved performance characteristics in the presence of fluctuating power supply voltages.

A more specific object of the invention is to provide an AC-operated television receiver affording substantially undegraded performance under even extremely low-line voltage conditions without excessive high voltage and X-ray generation under even extremely high-line voltage conditions.

Still another and extremely important object of the invention is to provide a new and improved AC-operated television receiver having greatly improved reliability against component failure. Such regulators are frequently provided employing saturable core reactors and condensers connected in circuit...  in such manner as to provide a plurality of variable voltage vectors which vary in different senses, as the line voltage varies, but which add vectorially in such manner that the
voltage stabilization
is automatically effected by the provision of an inductive pilot control device which is adapted to provide two excitation supply voltages for producing excitation or satuation of two magnetic circuits of a reversible booster transformer unit or units and diversion of flux from one magnetic circuit to the other, the booster unit being energized by primary windings from the A. C. supplysystem and being provided with a secondary winding or windings connected between the supply system and the corresponding inain or distribution circuit and in series therewith, through which a corrective boost voltage is
introduced into the circuit under the influence of the pilot control device, of an amount equal to that of the supply voltage fluctuation which initiated it and appropriate in polarity and direction for restoring the voltage to normal value and providing automatic stabilization of the circuit voltage against supply voltages which fluctuate above and below normal value.



Their vector sum remains substantially constant upon variations in line voltage, for providing automatic voltage stabilization of single or multiphase A. C. circuits where the supply voltage and frequency are subject to variation above and below normal value and where the load is subject to variation between normal limits.
The pilot control device which may be employed singly or may comprise three units or their equivalent when applied to multiphase supply systems comprises a pair of closed magnetic circuits or cores constructed of strip wound magnetic material or stacked laminations, the two
circuits forming a pair being constructed of materials possessing dis~similar magnetic characteristics when jointly energized by identical windings in series or by a collective primary winding, the said magnetic circuits being suitably proportioned to provide equal fluxes when energized at normal voltage.

The pilot control device is provided with a main and an auxiliary secondary winding or group of windings, the main secondary winding or windings being adapted to provide a voltage representing the difference in the fluxes of the two circuits to which it is jointly associated, while
the auxiliary secondary winding embraces only one circuit, preferably that subject to the least amount of flux variation. Either of the windings consists of two equal sections or in effect a double winding with a center tapping to which one end of the single winding is connected.

The voltage in the single secondary winding of the pilot device becomes directionally additive to that in one half of the tapped secondary winding a nd substractive in respect to that in the other half. When the supply voltage is normal the voltage provided by the single secondary winding is zero, since there is no difference of flux in the two magnetic circuits, and the two excitation voltages
produced in the halves of the other secondary winding are equal and when connected to the two excitation windings of the booster units, do not produce any diversion of flux between the two circuits or sets of circuits in the magnetic system of the booster transformer unit become equal, and since the series winding on the booster unit is arranged to provide a voltage due to the difference of
the fluxes in its two magnetic circuits or sets of magnetic circuits, no corrective voltage is introduced into the main circuit by the booster. If, however, the supply voltage varies from normal the pilot control device provides a voltage across the one secondary winding due to the difference in the fluxes of the two dis-similar magnetic circuits of which it is comprised, which voltage is combined with thosc in the halves of the other secondary winding to provide two excitation voltages which vary complementarily to each other as the supply voltage fluotuates, and cause a transference of flux between the two
circuits or groups of circuits in the booster unit and automatically provide a corrective boost voltage in the main circuit in which the series winding of the booster transformer is included of a value equal to that of the variation in supply voltage which initiated it.
The pilot device may be arranged in various ways, forboth single phase and multiphase operation, as exemplified by the constructions hereinafter more fully described.Similarly, numerous arrangements of the booster transformer unit are possible, some of which are hereinafter described in detail. The booster transformer unit embodies thc principles of the inductive devices described in my co-pending Application No. 411,189, filed February 18, 1954.

As an alternative to the provision of an auxiliary secondary winding on the pilot control device this may be
replaced by an independent or external source of supply,which may be either subject to or independent of supply voltage variation, provided such supply may be arranged with a center tapping if required.

Feed-back arrangements may be employed for providing compensation against voltage drop due to the effects of load in various ways. These are preferably providedon the booster transformer unit and may comprise a current transformer in one or more lines of the main circuit,
the secondary output of the transformer being rectified and arranged to energize an additional excitation winding on the booster transformer unit which in clfect increases the amount of the corrective boost voltage as the load increases.

Koninklijke Philips Electronics N.V. (Royal Philips Electronics Inc.), most commonly known as Philips, (Euronext: PHIA, NYSE: PHG) is a multinational Dutch electronics corporation.

Philips is one of the largest electronics companies in the world. In 2009, its sales were €23.18 billion. The company employs 115,924 people in more than 60 countries.

Philips is organized in a number of sectors: Philips Consumer Lifestyles (formerly Philips Consumer Electronics and Philips Domestic Appliances and Personal Care), Philips Lighting and Philips Healthcare (formerly Philips Medical Systems).
he company was founded in 1891 by Gerard Philips, a maternal cousin of Karl Marx, in Eindhoven, Netherlands. Its first products were light bulbs and other electro-technical equipment. Its first factory survives as a museum devoted to light sculpture. In the 1920s, the company started to manufacture other products, such as vacuum tubes (also known worldwide as 'valves'), In 1927 they acquired the British electronic valve manufacturers Mullard and in 1932 the German tube manufacturer Valvo, both of which became subsidiaries. In 1939 they introduced their electric razor, the Philishave (marketed in the USA using the Norelco brand name).
Philips was also instrumental in the revival of the Stirling engine.

As a chip maker, Philips Semiconductors was among the Worldwide Top 20 Semiconductor Sales Leaders.

In December 2005 Philips announced its intention to make the Semiconductor Division into a separate legal entity. This process of "disentanglement" was completed on 1 October 2006.

On 2 August 2006, Philips completed an agreement to sell a controlling 80.1% stake in Philips Semiconductors to a consortium of private equity investors consisting of Kohlberg Kravis Roberts & Co. (KKR), Silver Lake Partners and AlpInvest Partners. The sale completed a process, which began December 2005, with its decision to create a separate legal entity for Semiconductors and to pursue all strategic options. Six weeks before, ahead of its online dialogue, through a letter to 8,000 of Philips managers, it was announced that they were speeding up the transformation of Semiconductors into a stand-alone entity with majority ownership by a third party. It was stated then that "this is much more than just a transaction: it is probably the most significant milestone on a long journey of change for Philips and the beginning of a new chapter for everyone – especially those involved with Semiconductors".

In its more than 115 year history, this counts as a big step that is definitely changing the profile of the company. Philips was one of few companies that successfully made the transition from the electrical world of the 19th century into the electronic age, starting its semiconductor activity in 1953 and building it into a global top 10 player in its industry. As such, Semiconductors was at the heart of many innovations in Philips over the past 50 years.

Agreeing to start a process that would ultimately lead to the decision to sell the Semiconductor Division therefore was one of the toughest decisions that the Board of Management ever had to make.

On 21 August 2006, Bain Capital and Apax Partners announced that they had signed definitive commitments to join the expanded consortium headed by KKR that is to acquire the controlling stake in the Semiconductors Division.

On 1 September 2006, it was announced in Berlin that the name of the new semiconductor company founded by Philips is NXP Semiconductors.

Coinciding with the sale of the Semiconductor Division, Philips also announced that they would drop the word 'Electronics' from the company name, thus becoming simply Koninklijke Philips N.V. (Royal Philips N.V.).


PHILIPS FOUNDATION:

The foundations of Philips were laid in 1891 when Anton and Gerard Philips established Philips & Co. in Eindhoven, the Netherlands. The company begun manufacturing carbon-filament lamps and by the turn of the century, had become one of the largest producers in Europe. Stimulated by the industrial revolution in Europe, Philips’ first research laboratory started introducing its first innovations in the x-ray and radio technology. Over the years, the list of inventions has only been growing to include many breakthroughs that have continued to enrich people’s everyday lives.



In the early years of Philips &; Co., the representation of the company name took many forms: one was an emblem formed by the initial letters of Philips ; Co., and another was the word Philips printed on the glass of metal filament lamps.



One of the very first campaigns was launched in 1898 when Anton Philips used a range of postcards showing the Dutch national costumes as marketing tools. Each letter of the word Philips was printed in a row of light bulbs as at the top of every card. In the late 1920s, the Philips name began to take on the form that we recognize today.



The now familiar Philips waves and stars first appeared in 1926 on the packaging of miniwatt radio valves, as well as on the Philigraph, an early sound recording device. The waves symbolized radio waves, while the stars represented the ether of the evening sky through which the radio waves would travel.



In 1930 it was the first time that the four stars flanking the three waves were placed together in a circle. After that, the stars and waves started appearing on radios and gramophones, featuring this circle as part of their design. Gradually the use of the circle emblem was then extended to advertising materials and other products.



At this time Philips’ business activities were expanding rapidly and the company wanted to find a trademark that would uniquely represent Philips, but one that would also avoid legal problems with the owners of other well-known circular emblems. This wish resulted in the combination of the Philips circle and the wordmark within the shield emblem.



In 1938, the Philips shield made its first appearance. Although modified over the years, the basic design has remained constant ever since and, together with the wordmark, gives Philips the distinctive identity that is still embraced today.

The first steps of CRT production by Philips started in the thirties with the Deutsche Philips Electro-Spezial gesellschaft in Germany and the Philips NatLab (Physics laboratory) in Holland. After the introduction of television in Europe, just after WWII there was a growing demand of television sets and oscilloscope equipment. Philips in Holland was ambitious and started experimental television in 1948. Philips wanted to be the biggest on this market. From 1948 there was a small Philips production of television and oscilloscope tubes in the town of Eindhoven which soon developed in mass production. In 1976 a part of the Philips CRT production went to the town of Heerlen and produced its 500.000'th tube in 1986. In 1994 the company in Heerlen changed from Philips into CRT-Heerlen B.V. specialized in the production of small monochrome CRT's for the professional market and reached 1.000.000 produced tubes in 1996. In this stage the company was able to produce very complicated tubes like storage CRT's.
In 2001 the company merged into Professional Display Systems, PDS worked on LCD and Plasma technology but went bankrupt in 2009. The employees managed a start through as Cathode Ray Technology which now in 2012 has to close it's doors due to the lack of sales in a stressed market. Their main production was small CRT's for oscilloscope, radar and large medical use (X-ray displays). New experimental developments were small Electron Microscopy, 3D-TV displays, X-Ray purposes and Cathode Ray Lithography for wafer production. Unfortunately the time gap to develop these new products was too big.


28 of September 2012, Cathode Ray Technology (the Netherlands), the last Cathode Ray Tube factory in Europe closed. Ironically the company never experienced so much publicity as now, all of the media brought the news in Holland about the closure. In fact this means the end of mass production 115 years after Ferdinand Braun his invention. The rapid introduction and acceptation of LCD and Plasma displays was responsible for a drastic decrease in sales. Despite the replacement market for the next couple of years in the industrial, medical and avionics sector.
The numbers are small and the last few CRT producers worldwide are in heavy competition.

Gerard Philips:

Gerard Leonard Frederik Philips (October 9, 1858, in Zaltbommel – January 27, 1942, in The Hague, Netherlands) was a Dutch industrialist, co-founder (with his father Frederik Philips) of the Philips Company as a family business in 1891. Gerard and his younger brother Anton Philips changed the business to a corporation by founding in 1912 the NV Philips' Gloeilampenfabrieken. As the first CEO of the Philips corporation, Gerard laid with Anton the base for the later Philips multinational.



Early life and education

Gerard was the first son of Benjamin Frederik David Philips (1 December 1830 – 12 June 1900) and Maria Heyligers (1836 – 1921). His father was active in the tobacco business and a banker at Zaltbommel in the Netherlands; he was a first cousin of Karl Marx.



Career

Gerard Philips became interested in electronics and engineering. Frederik was the financier for Gerard's purchase of the old factory building in Eindhoven where he established the first factory in 1891. They operated the Philips Company as a family business for more than a decade.



Marriage and family

On March 19, 1896 Philips married Johanna van der Willigen (30 September 1862 – 1942). They had no children.

Gerard was an uncle of Frits Philips, whom he and his brother brought into the business. Later they brought in his brother's grandson, Franz Otten.


Gerard and his brother Anton supported education and social programs in Eindhoven, including the Philips Sport Vereniging (Philips Sports Association), which they founded. From it the professional football (soccer) department developed into the independent Philips Sport Vereniging N.V.



Anton Philips:

Anton Frederik Philips (March 14, 1874, Zaltbommel, Gelderland – October 7, 1951, Eindhoven) co-founded Royal Philips Electronics N.V. in 1912 with his older brother Gerard Philips in Eindhoven, the Netherlands. He served as CEO of the company from 1922 to 1939.



Early life and education

Anton was born to Maria Heyligers (1836 – 1921) and Benjamin Frederik David Philips (December 1, 1830 – June 12, 1900). His father was active in the tobacco business and a banker at Zaltbommel in the Netherlands. (He was a first cousin to Karl Marx.) Anton's brother Gerard was 16 years older.



Career

In May 1891 the father Frederik was the financier and, with his son Gerard Philips, co-founder of the Philips Company as a family business. In 1912 Anton joined the firm, which they named Royal Philips Electronics N.V.

During World War I, Anton Philips managed to increase sales by taking advantage of a boycott of German goods in several countries. He provided the markets with alternative products.

Anton (and his brother Gerard) are remembered as being civic-minded. In Eindhoven they supported education and social programs and facilities, such as the soccer department of the Philips Sports Association as the best-known example.

Anton Philips brought his son Frits Philips and grandson Franz Otten into the company in their times. Anton took the young Franz Otten with him and other family members to escape the Netherlands just before the Nazi Occupation during World War II; they went to the United States. They returned after the war.

His son Frits Philips chose to stay and manage the company during the occupation; he survived several months at the concentration camp of Vught after his workers went on strike. He saved the lives of 382 Jews by claiming them as indispensable to his factory, and thus helped them evade Nazi roundups and deportation to concentration camps.

Philips died in Eindhoven in 1951.



Marriage and family

Philips married Anne Henriëtte Elisabeth Maria de Jongh (Amersfoort, May 30, 1878 – Eindhoven, March 7, 1970). They had the following children:

* Anna Elisabeth Cornelia Philips (June 19, 1899 – ?), married in 1925 to Pieter Franciscus Sylvester Otten (1895 – 1969), and had:
o Diek Otten
o Franz Otten (b. c. 1928 - d. 1967), manager in the Dutch electronics company Philips
* Frederik Jacques Philips (1905-2005)
* Henriëtte Anna Philips (Eindhoven, October 26, 1906 – ?), married firstly to A. Knappert (d. 1932), without issue; married secondly to G. Jonkheer Sandberg (d. September 5, 1935), without issue; and married thirdly in New York City, New York, on September 29, 1938 to Jonkheer Gerrit van Riemsdijk (Aerdenhout, January 10, 1911 – Eindhoven, November 8, 2005). They had the following children:
o ..., Jonkheerin Gerrit van Riemsdijk (b. Waalre, October 2, 1939), married at Waalre on February 17, 1968 to Johannes Jasper Tuijt (b. Atjeh, Koeta Radja, March 10, 1930), son of Jacobus Tuijt and wife Hedwig Jager, without issue
o ..., Jonkheerin Gerrit van Riemsdijk (b. Waalre, April 3, 1946), married firstly at Calvados, Falaise, on June 6, 1974 to Martinus Jan Petrus Vermooten (Utrecht, September 16, 1939 – Falaise, August 29, 1978), son of Martinus Vermooten and wife Anna Pieternella Hendrika Kwantes, without issue; married secondly in Paris on December 12, 1981 to Jean Yves Louis Bedos (Calvados, Rémy, January 9, 1947 – Calvados, Lisieux, October 5, 1982), son of Georges Charles Bedos and wife Henriette Louise Piel, without issue; and married thirdly at Manche, Sartilly, on September 21, 1985 to Arnaud Evain (b. Ardennes, Sedan, July 7, 1952), son of Jean Claude Evain and wife Flore Halleux, without issue
o ..., Jonkheerin Gerrit van Riemsdijk (b. Waalre, September 4, 1948), married at Waalre, October 28, 1972 to Elie Johan François van Dissel (b. Eindhoven, October 9, 1948), son of Willem Pieter
Jacob van Dissel and wife Francisca Frederike Marie Wirtz, without issue.



(To see the Internal Chassis Just click on Older Post Button on bottom page, that's simple !)




A comment...........of a 1996 reality ..................
Philips, which seems to be a perennial walking wounded case. The company had appeared to be on the mend after a worldwide cost- cutting programme which was started five years ago when Jan Timmer took over as chairman.
 But, following a sharp profits fall, with the company's first quarterly loss since 1992, a further shake up is being undertaken.
The difficulty is that the company operates in a mature market, in which prices are falling at an annual rate of six per cent. Manufacturers are competing by cutting costs to gain a larger share of static demand. It's not a situation in which any firm that does its own manufacturing can achieve much. Philips' latest plan involves an overall loss of 6,000 jobs in its consumer electronics business, with far greater reliance placed on a group of external suppliers which are referred to as "a cluster of dedicated subcontractors".

This is an approach that was pioneered many years ago by major Japanese manufacturers. Rather than make everything yourself, you rely on subcontractors who, in return, rely on you for their main source of work. It is hardly a cosy arrangement: the whole point seems to be that the major fain can exert pressure on its subcontractors, thereby - in theory - achieving optimum efficiency and cost-effectiveness. What happens when lower and lower prices are demanded for subcontracted work is not made clear.

The whole edifice could collapse. However that might be, this is the course on which Philips has now embarked. The company is also to carry out distribution, sales and marketing on a regional rather than a national basis, and has said that it will not support Grundig's losses after this year.

But Philips' chief financial officer Dudley Eustace has said that it has "no intention of abandoning the television and audio business". One has to assume that the subcontracting will also be done on an international basis, as major Japanese firms have had to do. There is a sense of déjà vu about this, though one wishes Philips well - it is still one of the major contributors to research and development in our industry.

Toshiba, which has also just appointed a new top man, Taizo Nishimoro, provides an interesting contrast. Mr Nishimoro thinks that the western emphasis on sales and marketing rather than engineering is the way to go. So the whole industry seems to be moving full circle. Taizo Nishimoro has become the first non engineering president of Toshiba. Where the company cannot compete effectively on its own, he intends to seek international alliances or go for closures. He put it as follows. "The technology and the businesses we are engaged in are getting more complex.
 In these circumstances, if we try to do everything ourselves we are making a mistake." Here's how Minoru Makihara, who became head of Mitsubishi Corporation four years ago, sees it. "Technologies are now moving so fast that it is impossible for the top manager to know all the details. 
Companies are now looking for generalists who can understand broad changes, delegate and provide leadership." Corporate change indeed amongst our oriental colleagues. Major firms the world over are facing similar problems and having to adopt similar policies.
In a mature market such as consumer electronics, you have to rely on marketing to squeeze the last little bit of advantage from such developments as Dolby sound and other added value features. The consumer electronics industry has been hoping that the digital video disc would come to its aid and get sales and profits moving ahead.
The DVD was due to be released in Sept 1996 , but we are unlikely to hear much more about it yet awhile. There's no problem with the technology: the difficulty is with licensing and software. There is obviously no point in launching it without adequate software support. But the movie companies, which control most of the required supply of software, are concerned that a recordable version of the disc, due in a couple of years' time, would be a gift to pirates worldwide. Concessions have been made by the electronics industry, in particular that different disc formats should be used in different parts of the world. But a curious problem has arisen.
 The other main use of the DVD is as a ROM in computer systems. For this application flexible copying facilities are a major requirement. But the movie companies are unwilling to agree to this. At present the situation is deadlocked and the great hope of an autumn launch, all important for sales, has had to be postponed. Next year maybe? It's a great pity, since the DVD has much to offer.
There's a lot of sad news on the retail side as well. Colorvision has been placed in administrative receivership in 1996 , with a threat to 800 jobs at its 76 stores, while the Rumbelows shops that were taken over by computer retailer Escom have suffered a similar fate. The receivers have closed down the UK chain with the loss of 850 jobs at some 150 stores. Nothing seems to be going right just now.

RIP NETHERLANDS.............


A good point  on good  old  B/W Televisions.....................

The Sixties was a time of great change for TV. At the start of the decade there were just monochrome sets with valves, designed for 405 -line transmissions at VHF. By the end there was 625 -line colour at UHF, with transistorised chassis that used the odd IC.

The following decade was one of growth. The "space race" had begun in 1957, when the USSR launched Sputnik 1 and terrified the Americans. Thereafter the USA began to spend countless billions of dollars on space missions. This got underway in earnest in the Sixties, with the announcement that America would be going all out to get a man on the moon by the end of the decade. There followed the Mercury series of earth - orbit missions, then the Apollo launches. Success was achieved in 1969. Most of these missions were televised, and in those days anything to do with space was hot stuff. It was inevitable that everyone wanted to have a television set. At the time an average receiver would be a monochrome one with a 14in. tube - there was no colour until 1967. It would cost about 75 guineas. 
TV sets were often priced in guineas (21 shillings) as it made the price look a bit easier on the pocket. Anyway 75 guineas, equivalent to about £78.75 in 2000's currency, was a lot of money then.  For those who couldn't, rental was a good option. The Sixties was a period of tremendous growth for rental TV. 
Much else was rented at that time, even radios, also washing machines, spin driers, refrigerators and, later on, audio tape recorders (no VCRs then). 
For most people these things were too expensive for cash purchase. 
There were no credit cards then. And when it came to a TV set, the question of reli- ability had to be taken into account: renting took care of repair costs. 

TV reliability.........The TV sets of the period were notoriously unreliable. They still used valves, which meant that a large amount of heat was generated. The dropper resistor contributed to this: it was used mainly as a series device to reduce the mains voltage to the level required to power the valve heaters. These were generally connected in series, so the heater volt- ages of all the valves were added together and the total was subtracted from the mains voltage. The difference was the voltage across the heater section of the dropper resistor, whose value was determined by simple application of Ohm's Law. 
As valves are voltage -operated devices, there was no need to stabilise the current. So the power supply circuits in TV sets were very simple. They often consisted of nothing more than a dropper resistor, a half or biphase rectifier and a couple of smoothing capacitors. If a TV set had a transformer and a full wave rectifier in addition to the other components, it was sophisticated!
 As the valve heaters were connected in series they were like Christmas -tree lights: should one fail they all went out and the TV set ceased to function. Another common problem with valves is the cathode -to -heater short. When this fault occurs in a valve, some of the heaters in the chain would go out and some would stay on. Those that stayed on would glow like search- lights, often becoming damaged as a result. Dropper failure could cause loss of HT (dead set with the heaters glowing), or no heater supply with HT present. When the HT rectifier valve went low emission, there was low EHT, a small picture and poor performance all round. CRTs would go soft or low emission, the result being a faint picture, or cathode -to -heater short-circuit, the result this time being uncontrollable brightness. On average a TV set would have twelve to fourteen valves, any one of which could go low -emission or fail in some other way. All valves have a finite life, so each one would probably have to be replaced at one time or another. The amount of heat generated in an average TV set would dry out the capacitors, which then failed. So you can see why people rented! 

The CRT could cause various problems. Because of its cost, it was the gen- eral practice to place its heater at the earthy end of the chain. In this position it was less likely to be overloaded by a heater chain fault. But during the winter months, when the mains voltage dropped a bit, it would be starved of power. This would eventually lead to 'cathode poi- soning' with loss of emission. The 'cure' for this was to fit a booster transformer designed to overrun the heater by 10, 20 or 30 per cent. It would work fine for a while, until the CRT completely expired. At about this time CRT reactivators came into being - and a weird and wonderful collection of devices they turned out to be. Regunned tubes also started to appear. You couldn't do this with the `hard -glass' triode tubes made by Emitron. These were fitted in a number of older sets. Yes, they were still around, at least during the early Sixties.



Developments................... A great deal of development occurred during the Sixties. Many TV sets and radios made in the early Sixties were still hard -wired: the introduction of the printed circuit board changed the construction of electronic equipment forever. The first one was in a Pam transistor radio. PCBs were ideal for use in transistor radios, because of the small size of the components used and the fact that such radios ran almost cold. 
They were not so good for use with valve circuitry, as the heat from the valves caused all sorts of problems. Print cracks could develop if a board became warped. If it became carbonised there could be serious leakage and tracking problems. In addition it was more difficult to remove components from a PCB. Many technicians at that time didn't like PCBs. As the Sixties progressed, transistors took over more and more in TV sets. They first appeared in a rather random fashion, for example in the sync separator stages in some Pye models. Then the IF strip became transistorised. Early transistors were based on the use of germanium, which was far from ideal. 

The change to silicon produced devices that were more robust and had a better signal-to-noise ratio. 
Car radios became fully transistorised, and 'solid-state' circuitry ceased to be based on earlier valve arrangements. Many hi-fi amplifiers had been transistorised from the late Fifties, and all tape recorders were now solid-state. 
Both reel-to-reel and compact -cassette recorders were available at this time. Initially, audio cassette recorders had a maximum upper frequency response of only about 9kHz. 
To increase it meant either a smaller head gap or a faster speed. Philips, which developed the compact audio cassette and holds the patents for the design (which we still use in 2000!) wouldn't allow an increase in speed. Good reel-to-reel recorders had a fre- quency response that extended to 20kHz when the tape speed was 15in./sec. 
This is true hi-fi. In time the frequency response of compact -cassette recorders did improve, because of the use of better head materials with a smaller gap. 
This led to the demise of the reel-to-reel audio recorder as a domestic product We began to benefit from spin-offs of the space race between the USA and the USSR. 
The need to squeeze as much technology as possible into the early computers in the Mercury space capsules used by the USA lead to the first inte- grated circuits. 
This technology soon found its way into consumer equipment. Often these devices were hybrid encap- sulations rather than true chips, but they did improve reliability and saved space. The few chips around in those days were analogue devices.  To start with most UHF tuners used valves such as the PC86 and PC88. They were all manually tuned. Some had slow-motion drives and others had push -buttons. They didn't have a lot of gain, so it was important to have an adequate aerial and use low -loss cable..............................

No comments:

Post a Comment

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.

Note: Only a member of this blog may post a comment.