Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical technology relics that the Frank Sharp Private museum has accumulated over the years .

Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.

Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:

- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........

..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !

©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of
Engineer Frank Sharp. NOTHING HERE IS FOR SALE !

Tuesday, February 1, 2011


First Digital Television in the world.

This model and bigger models were introducing the ITT DIGIVISION DIGITAL SIGNAL PROCESSING in the television consumer market.

The official introduction was in 1984 in Germany and this is a GRAETZ KONGRESS STEREO 4486 DIGIVISION ITT / GRAETZ model which was marketed in 1985- 1986 in Europe employing the first generation of the ITT DIGIVISION DIGITAL SIGNAL PROCESSING CHASSIS.

In the years after 1986 other television fabricants started using and developing television sets

Digital Signal Processing DIGVISION ITT in Brief:
 FOR several years now the use of digital techniques in television has been growing. A considerable impetus came initially from the need for high -quality Tv standards conversion. The IBA's DICE (Digital Intercontinental Conversion Equipment) standards converter came into operational use in 1972. It's success demonstrated convincingly the advantages of processing video signals in digital form - digital signals are neither phase nor level dependent. The trend since then has been towards the all - digital studio: digital effects generators have been in use for some time, and digital telecines were announced earlier this year. An earlier example of the application of digital techniques to television was the BBC's sound-in-syncs system, in which the sound signal is converted to digital form so that it can be added to the video signal for network distribution. The sound-in-syncs system first came into use in 1969, and is was  widely employed in pay tv systems alongside with video scrambling methods in the 80's.  Digital techniques have already appeared on the domestic TV scene. The teletext signals are digital, and require digital processing. In modern remote control systems the commands from the remote control transmitter are in digital form, and require digital decoding and digital - to -analogue conversion in the receiver before the required control action can be put into effect. Allied to this, digital techniques are used for the more sophisticated channel tuning systems. The basic TV receiver itself continues to use analogue techniques however. Are we about to see major changes here? 
ITT Semiconductors in W. Germany have been working on the application of digital techniques to basic TV receiver signal processing since 1977 with the supervision of the Engineer Micic Ljubomir, and at the recent Berlin Radio Show presented a set of digital chips for processing the video, audio and deflection signals in a TV receiver. The set consists of a' couple of l.s.i. and six v.l.s.i. chips - and by very large scale integration (v.l.s.i.) we're talking about chips that contain some more 200,000 transistors. What are the advantages? 
For the setmaker, there's reduction in the component count and simpler, automated receiver alignment - alignment data is simply fed into a programmable memory in the receiver, which then adjusts itself. Subsequently, the use of feedback enables the set to maintain its performance as it ages. From the user's viewpoint, the advantages are improved performance and the fact that extra features such as picture -within -a -picture (two pictures on the screen at the same time) and still pictures become relatively simple to incorporate. The disadvantage of course is the need for a lot of extra circuitry. Since the received signals remain in analogue form, analogue -to -digital conversion is required before signal processing is undertaken. As the c.r.t. requires analogue drive signals, digital -to -analogue conversion is required prior to the RGB output stages - the situation is somewhat different in the timebase and audio departments, since the line drive is basically digital anyway and class D amplifier techniques can be used in the field and audio output stages. In between the A -D conversion and the various output stages, handling the signals in digital form calls for much more elaborate circuitry - hence those chips with 200,000 or so transistors. The extra circuitry is all incorporated within a handful of chips of course, but the big question is if and when the use of these chips will become an economic proposition, taking into account reduced receiver assembly/setting up costs, compared to the use of the present analogue technology - after all, colour receiver component counts are already very low. With the present digital technology, it's not feasible to convert the signals to digital form at i.f. So conversion takes place following video and sound demodulation. Fig. 1 shows in simple block diagram form the basic video and deflection signal processing arrangement used in the system devised by ITT Semiconductors. Before going into detail, two basic points have to be considered - the rate at which the incoming analogue signals are sampled for conversion to digital form, and the number of digits required for signal coding. Consider the example shown in Fig. 2. At both (a) and (b) the signals are sampled at times Ti, T2 etc. In (a) the signal is changing at a much faster rate than the sampling rate. So very little of the signal information would be present in the samples. In (b) the rate at which the signal is changing is much slower, and since the sampling rate is the same the samples will contain the signal information accurately. In practice, the sampling rate has to be at least twice the bandwidth of the signal being sampled. Once you've got your samples, the next question is how many digits are required for adequate resolution of the signal, i.e. how many steps are required on the vertical (signal level) scale in Fig. 2 The use of a four -digit code, i.e. 0000, 0001 etc., gives 16 possible signal levels. Doubling the number of digits to eight gives 256 signal levels and so on. ITT's experience shows that the luminance signal requires 8 bits (digits), the colour -difference signals require 6 bits, the audio signal requires 12 bits (14 for hi-fi quality) while 13 bits are required for a linear horizontal scan on a 26inch tube. These digital signals are handled as parallel data streams in the subsequent signal processing. Returning to Fig. 1, the A -D and D -A conversion required in the video channel is carried out by a single chip which ITT call the video codec (coder/decoder). A clock pulse generator i.c. is required to produce the various pulse trains necessary for the digital signal processing, and a control i.c. is used to act as a computer for the whole digital system and also to provide interfacing to enable the external controls (brightness, volume, colour etc.) to produce the desired effects. In addition, the control i.c. incorporates the digital channel selection system. The video codec i.c. uses parallel A-D/D-A conversion, i.e. a string of voltage comparators connected in parallel. This system places a high premium on the number of bits used to code the signal in digital form, so ITT have devised a technique of biasing the converter to achieve 8 -bit resolution using only 7 bits (the viewer's eye does some averaging on alternate lines, as with Simple PAL, but this time averaging luminance levels). The A -D comparators provide grey -encoded outputs, so the first stage in the video processor i.c. is a grey -to -binary transcoder. As Fig. 3 shows, the processes carried out in the video processor i.c. then follow the normal practice, though everything's done in digital form. The key to this processing is the use of digital filters. These are clocked at rates up to 18MHz, and provide delays, addition and multiplication. The glass chroma delay line required for PAL decoding in a conventional analogue decoder consists of blocks of RAM (random-access memory) occupying only three square millimeters of chip area each. As an example of the ingenuity of the ITT design, the digital delay line used for chroma signal averaging/separation in the PAL system is used in the NTSC version of the chip as a luminance/chrominance signal separating comb filter. Fig. 4 shows the basic processes carried out in the deflection processor i.c. This employs the sorts of techniques we're becoming used to in the latest generation of sync processor i.c.s. Digital video goes in, and the main outputs consist of a horizontal drive pulse plus drives to the field output and EW modulator circuits. The latter are produced by a pulse -width modulator arrangement, i.e. the sort of thing employed with class D output stages. The necessary gating and blanking pulses are also provided. A further chip provides audio signal processing. One might wonder why the relatively simple audio department calls for this sort of treatment. The W. German networks are already equipping themselves for dual -channel sound however, and the audio processor i.c. contains the circuitry required to sort out the two -carrier sound signals. These chips represent a major step in digitalizing the domestic TV receiver. It seems likely that some enterprising setmaker will in due course announce a "digital TV set". The interesting point then will be whether the chip yields, and the chip prices as production increases, will eventually make it worthwhile for all setmakers to follow this path (in 1984).

In 1984, after ITT released on the market the DIGIVISION ITT DIGIT2000, only one constructor have followed immediately this technology; it was SINUDYNE an extint Italian industry.

It's a 21 Inches color (51Cm) stereo hi-fi, on table set with 40 programs and remote + Teletext feature.

This tellye is fabricated by SEL / ITT (Standard Elektrik Lorenz), the same fabricant of all semiconductors related to the ITT DIGIVISION chipset.

It' fitted with the ITT DIGI 3 90° FST / IFB-285/2 CHASSIS which is the first generation of DIGITAL CHASSIS for television.
This is the father of all the DIGITAL TECHNOLOGY applied to Video and Audio Processing for Television applications.

This ITT DIGIVISION DIGIT2000 it is an even today a superior example of the unique quality video and audio processing.

 GRAETZ  KONGRESS  STEREO  4486  DIGIVISION  (5436 85 61)  Colour television receiver or set , are known in which the majority of signal processing that takes place therein is carried out digitally. That is, a video or television signal is received in a conventional fashion using a known analog tuning circuit and then, following the tuning operation, the received analog television signal is converted into a digital signal and digitally processed before subsequently being converted back to an analog signal for display on a colour cathode ray tube.
In a conventional television receiver, all signals are analog-processed. Analog signal processing, however, has the problems at the video stage and thereafter. These problems stem from the general drawbacks of analog signal processing with regard to time-base operation, specifically, incomplete Y/C separation (which causes cross color and dot interference), various types of problems resulting in low picture quality, and low precision of synchronization. Furthermore, from the viewpoints of cost and ease of manufacturing the analog circuit, a hybrid configuration must be employed even if the main circuit comprises an IC. In addition to these disadvantages, many adjustments must be performed.

In order to solve the above problems, it is proposed to process all signals in a digital form from the video stage to the chrominance signal demodulation stage. In such a digital television receiver, various improvements in picture quality should result due to the advantages of digital signal processing.

Therefore digital television signal processing system introduced in 1984 by the Worldwide Semiconductor Group (Freiburg, West Germany) of International Telephone and Telegraph Corporation is described in an ITT Corporation publication titled "VLSI Digital TV System--DIGIT 2000."

In that system color video signals, after being processed in digital (binary) form, are converted to analog form by means of digital-to-analog converters before being coupled to an image displaying kinescope. The analog color video signals are coupled to the kinescope via analog buffer amplifiers and video output kinescope driver amplifiers which provide video output signals at a high level suitable for driving intensity control electrodes of the kinescope.

In the case of digital video signal processing and decoding the prior art fundamentally distinguishes between two system architectures. These are the burst-locked architecture and the line-locked architecture, i.e. systems which operate with sampling frequencies for the video signal, which are produced in phase-locked manner to the colour subcarrier frequency transmitted with the burst pulse or in phase-locked manner with the line frequency, respectively.

The principal advantage of the present invention is a color television receiver is provided having a fully digital color demodulator wherein the luminance signal and the chrominance signals are separated and digitally processed prior to being converted to analog signals in that the all-digital signal processing largely eliminates the need for nonintegratable circuit elements, i.e., particularly coils and capacitors, and that the subcircuits can be preferably implemented using integrated insulated-gate field-effect transistor circuits, i.e., so-called MOS technology. This technology is better suited for implementing digital circuits than the so-called bipolar technology.

The  GRAETZ  KONGRESS  STEREO  4486  DIGIVISION  (5436 85 61)   is a multisound tv digital sound processing.

The ITT DIGIVISION DIGIT2000 System has the unique capabilty to process video signal without any kind of artifacts or pixeling or any noise impurity related to DIGITAL Signal Processing.
The video signal in the DIGITAL DOMAIN OF ITT DIGIVISION DIGIT2000 has NO RIVALS. The processing is ULTRA FAST and doesn't mix or produce any type of "additions" unrelated to Original picture, it's every time natural and not artificial.

Pictures produced by a ITT DIGIVISION DIGIT2000 Tellye have unsurpassed, even today, quality picture:

- High contrast bright, because of the digital processing, lot of more dinamic is gained.

- High precision detailed picture, because of the digital processing any particular of the picture even the little point is processed and improved.

- Super color dynamic, because of the digital processing, colors are gaining power and precision details but without producing any kind of no reality like many modern CRAPPY LCD & Co.

The ITT DIGIT2000 chipset is the core of all Audio and Video processing. From the composite CVBS signal all processing is executed in the DIGIT2000 chipset board which improves signal quality and dynamic without needing any regulations or setup.

This technology is introducing even an another important group of revolutionary features:
NO MORE REGULATIONS needed via trimmers and / or potentiometers.

All setups regarding picture / CRT / SOUND are executed in the digital domain via a special kind of setup feasible via special tools or via a SERVICE MODE SETUP and parametrized via remote
controller and front display steps followed engineering menu.

It's Useless to say that the pictures produced by this set are excellent for precision and brightness and quality.

Even the sound has superb bass AUDIO and response to all sounds in perfect ways.

(To see the Internal Chassis Just click on Older Post Button on bottom page, that's simple !)

Here is the Announcement article from DER SPIEGEL a GERMAN journal which was discussing the introducing marketing of the DIGIVISION ITT TECHNOLOGY:

(This article is in original GERMAN Language)


Vorteil im Verborgenen

Die ersten computergesteuerten Fernseher kommen in die Geschäfte - für den Verbraucher bringen sie vorerst kaum Vorteile. *
Das Gerät sieht aus wie jeder andere Fernseh-Apparat, auch Bild und Ton sind keineswegs besser. Aber nach Ansicht der Ingenieure ist es ein "technologischer Meilenstein".
Gemeint ist das neueste Gerät der Standard Elektrik Lorenz (SEL) - ein computergesteuerter Fernseher namens Digivision. "Mit Freude und Stolz" hatte SEL-Vorstandschef Helmut Lohr seinen
Aktionären den Apparat auf der letzten Hauptversammlung präsentiert. Ende dieses Monats soll es nun den digitalen Fernseher zu kaufen geben.
Vorerst allerdings dürfte der rund 2700 Mark teure Apparat allein fortschrittshungrige Techniker begeistern. Es ist der erste Farbfernseher der Welt, der Bild- und Tonsignale digital, wie ein Computer, verarbeitet.
Die Idee stammt von dem jugoslawischen Ingenieur Lubo Micic. Der hatte bereits vor zehn Jahren bei der Firma Intermetall in Freiburg, einer Tochter des amerikanischen ITT-Konzerns, zu dem auch SEL gehört, die Grundlage für Digivision entwickelt.
Mikroprozessoren, so schlug Micic vor, sollten die von den Sendern kommenden Fernsehsignale in Zahlencodes verwandeln. Um eine optimale Bildqualität zu erreichen, müßte eine andere Rechnereinheit die in digitale Codes verwandelten Signale überprüfen und, falls nötig, korrigieren. Die so aufbereiteten Signale würden dann wieder in ihre ursprüngliche Wellenform gebracht und das Fernsehbild produzieren.
Doch vor zehn Jahren wußten die Techniker die nahezu unbegrenzten Möglichkeiten der neuen Mikroprozessoren noch nicht recht zu nutzen. Die fingernagelgroßen Chips, die alle zentralen Funktionen eines großen Computers übernahmen, waren gerade erst zwei Jahre auf dem Markt.
Inzwischen hat Intermetall mehr als 40 Millionen Mark investiert, um Chips zu entwickeln, die ohne Zeitverzögerung die wellenförmigen Fernsehsignale in digitale Codes umwandeln. Und weitere Millionen sind erforderlich, damit auch der Verbraucher die Wunder der neuen Technik nutzen kann. So soll der Digital-Fernseher
eines Tages Bildstörungen wie Flimmern oder Streifen auf der Mattscheibe automatisch beseitigen. Der Zuschauer soll auch Standbilder oder vergrößerte Bildausschnitte wählen können.
Doch dazu müssen die digitalen Fernsehsignale durch einen elektronischen Speicher geschickt werden, der etwa die gewünschten Standbilder später wieder hergibt. Ein solcher Speicher aber ist bislang in keinem der jetzt käuflichen Geräte eingebaut.
Das Problem ist die unvorstellbare Menge an Daten, die ein solcher Speicher aufnehmen müßte. Um das Standbild zu liefern, muß der Speicher alle für das Fernsehbild notwendigen Informationen festhalten können. Bei einem Farbbild sind das rund vier Millionen digitaler Informationen (bits) pro Sekunde.
Diese Datenflut läßt sich mit den heute verfügbaren Speichern auf dem engen Raum eines Fernsehgeräts kaum verarbeiten. Mehr als 250 der heute üblichen Chips wären erforderlich. Der Preis für das Gerät stiege dadurch um mindestens 1500 Mark.
Frühestens in zwei Jahren, so rechnen die Experten, wird es möglich sein, die Zahl der für den Datenspeicher notwendigen Chips drastisch zu reduzieren. Dann könnten störungsfrei arbeitende Fernseher mit Standbild und Ausschnittvergrößerung als Luxusmodelle mit etwa 600 Mark Aufpreis angeboten werden.
Bislang wirken sich die Vorzüge des neuen Fernsehers vor allem für die Hersteller aus: Die Chips machen den Fernseher computergerecht. Zum Beispiel die Einstellung von Helligkeit und Bildschärfe sowie die Endkontrolle im Werk können von einem Rechner übernommen werden.
Die Folge: Die Geräte kommen noch schneller vom Band. Seit Mitte der siebziger Jahre fiel die Produktionszeit für einen Fernseher bereits von acht auf zwei Stunden. Mit Hilfe der Digitaltechnik läßt sich nun noch einmal mindestens eine halbe Stunde einsparen.
Solche Rationalisierungsvorteile weckten das Interesse der Konkurrenz. Bereits 18 Gerätehersteller aus aller Welt, darunter Sony, Grundig und Blaupunkt, verhandeln mit Intermetall. Die für 1983 vorgesehene Produktion von 200 000 der neuen Chips ist bereits verkauft. Im kommenden Jahr soll die zehnfache Menge produziert werden.
Der ITT-Konzern hat schon jetzt 60 Millionen Mark in die Fabrikation der Chips gesteckt. Bis 1987 will der US-Multi noch einmal 350 Millionen Mark investieren. "Wir sind", so ein Intermetall-Manager, "vielleicht ein halbes Jahr weiter als die Konkurrenz, und diesen Vorsprung müssen wir nutzen."
In der Tat ziehen die Konkurrenten nach. Halbleiter-Produzenten wie Siemens, Texas Instruments oder Motorola sehen ebenfalls eine Chance, ihr Bauteile-Geschäft auszuweiten. Immerhin werden jährlich weltweit rund 50 Millionen Fernseher gebaut - für die Chips-Hersteller tut sich da ein ganz neuer Markt auf.
Für den Verbraucher dagegen, der sich ein neues Fernsehgerät anschafft, liegen die Vorteile der Digital-Technik eher noch im Verborgenen: Im Gerät ist weniger drin - sechs Mikrochips ersetzen rund 300 von etwa tausend herkömmlichen Bauteilen.
Im Gebrauch muß deshalb ein solcher Apparat zuverlässiger sein: Was nicht drin ist, so ein alter Techniker-Schnack, kann auch nicht kaputtgehen. _(Sechs Chips einer ITT-Leiterplatte ) _(ersetzen rund 300 konventionelle ) _(Bauteile. )
Sechs Chips einer ITT-Leiterplatte ersetzen rund 300 konventionelle Bauteile.

Alle Rechte vorbehalten
Vervielfältigung nur mit Genehmigung der SPIEGEL-Verlag Rudolf Augstein GmbH & Co. KG.

One more comment about digital in 2000..............

Over the years we have learnt that one of the most important things in video/ TV technology is selecting the best system to use. We have also seen how difficult this can be. Prior to the start of the colour TV era in Europe there was an great to-do about the best system to adopt. The US NTSC system seemed an obvious choice to start with. It had been proved in use, and refine- ments had been devised. But alternative, better solutions were proposed - PAL and Secam. PAL proved to be a great success, in fact a good choice. 
The French Secam system seems to have worked just as well. Apart from the video tape battles of the Seventies, the next really big debate concerned digital TV. When it came to digital terrestrial TV (DTT), Europe and the USA again adopted different standards. 

One major difference is the modulation system used for transmission. Coded orthogonal frequency   division multiplexing (COFDM) was selected for the European DVB system, while in the USA a system called 8VSB was adopted. COFDM uses quadrature amplitude modulation of a number of orthogonal carriers that are spread across the channel bandwidth. Because of their number, each carrier has a relatively low bit rate. 
The main advantage of the system is its excellent behaviour under multipath reception conditions. 8VSB represents a rather older,  pre phase modulation technoogy: eight  state amplitude modulation of a single carrier, with a vestigial sideband. The decision on the US system was assigned to the Advanced Television Systems Committee (ATSC), reporting to the FCC. The system it proposed was approved by the FCC on December 26th, 1996. The curious date might suggest that there had been a certain amount of politicking. In fact there had been an almighty row between the TV and computer industries about the video standard to adopt, the two fearing that one or other would gain an advantage as the technologies converged. It was 'resolved' by adopting a sort of   "open standard"  we are talking about resolution and scanning standards here - the idea apparently being that the technology would somehow sort itself out.

 There seems to have been rather less concern about the modulation standard. 8VSB was adopted because it was assumed to be able to provide a larger service area than the alternatives, including COFDM, for a given transmitter power. Well, the USA is a very large place! But the US TV industry, or at least some parts of it, is now having second thoughts. Once the FCC had made its decision, there was pressure to get on with digital TV. In early 1998 there were announce- ments about the start of transmissions and broadcasters assured the FCC that DTT would be available in the ten areas of greatest population concentration by May 1999. Rapid advances were expected, with an anticipated analogue TV switch -off in 2006. So far however things have not gone like that. At the end of 1999 some seventy DTI' transmitters were in operation, but Consumer Electronics Manufacturers Association estimates suggest that only some 50,000 sets and 5,000 STBs had been sold.

 There have been many reports of technical problems, in particular with reception in urban and hilly areas and the use of indoor aerials, also with video/audio sync and other matters. Poor reception with indoor aerials in urban conditions is of particular concern: that's how much of the population receives its TV. The UK was the first European country to start DTI', in late 1998 - at much the same time as in the USA. The contrast is striking. ONdigital had signed up well over 500,000 subscribers by the end of 1999, a much higher proportion of viewers than in the USA. Free STBs have played a part of course, but it's notable that DTT 's reception in the UK has been relatively hassle -free. In making this comparison it should also be remembered that the main aim of DTT technology differs in Europe and the USA. 

The main concern in Europe has been to provide additional channels. In the USA it has been to move to HDTV, in particular to provide a successor the NTSC system. There have been plenty of channels in the USA for many a year. For example the DirecTV satellite service started in mid 1994 and offers some 200 channels. Internationally, various countries have been comparing the US and European digital systems. They have overwhelmingly come down in favour of the DVB system. There have been some very damaging assessments of the ATSC standard. The present concern in the US TV industry results from this poor domestic take up and lack of international success. Did the FCC make a boob, in particular in the choice of 8VSB? Following compara- tive tests carried out by Sinclair Broadcasting Group Inc., the company has petitioned the FCC to adopt COFDM as an option in the ATSC standard. Not only did its tests confirm poor reception with indoor aerials: they also established that the greater coverage predicted for 8VSB failed to materialise in practice. Could the USA have two DTT transmission standards? It seems unlikely. It would involve dual standard receivers and non  standardisation of transmitters. In the all important business of system selection, it looks as if the FCC got it wrong.
              ....................................   It is obviously wasteful to duplicate terrestrial TV transmissions in analogue and digital form. Sooner or later transmissions will all be digital, since this is a more efficient use of spectrum space. The question is when? It would suit some to switch off the analogue transmitters as soon as possible. 2006 has been suggested as a time to start, with ana- logue transmissions finally ending in 2010. All very neat and tidy. Whether it will work out in that way is another matter. Strong doubts are already beginning to be aired. 
 The government has, quite properly, laid down conditions to be met before the switch off occurs. Basically that the digital signal coverage should equal that achieved for analogue TV, currently 99.4 per cent of the population, and that digital receiving equipment should be available at an affordable price. The real problem is that there is a difference between a coverage of 99.4 per cent and 99.4 per cent of the population actually having digital receiving equipment. Why should those who are interested in only free - to -air channels go out and buy/rent a digital receiver? It is already becoming evident that this represents a fair chunk of the population. 
The ITC has warned the government that the 2006-2010 timetable is in jeopardy. Peter Rogers, the ITC's chief executive, has said "we need to persuade people only interested in watching free -to -air television to switch to digital. "
Unless we do, there will be no switch - over." Well not quite, because the analogue receivers will eventually wear out and have to be replaced. But that could take a long, long time. Meanwhile many people will expect to be able to continue to watch their usual TV fare using their existing analogue receivers. 

Research carried out by Culture Secretary Chris Smith's department has established that between forty and fifty per cent of the population expects the BBC licence to cover their TV viewing, which means what they get at present in analogue form. A substantial percentage of the population simply isn't interested in going digital. In fact take up of integrated receiver -decoders, as opposed to the free digital set -top boxes, has so far been very slow. 
Of five million TV sets sold in the UK year 1999 , only 10,000 were digital. There are important factors apart from overall coverage and how many people have sets. There is the extension of coverage, which becomes more difficult to achieve eco- nomically as the number of those not covered decreases. There is the problem of reception quality. And there is the question of domestic arrangements and convenience. Extending coverage to the last ten fifteen per cent of the population by means of conventional terrestrial transmitters will be expensive. Mr Smith's department seems to have conceded that other methods of signal delivery may have to be adopted - by satellite, by microwave links or by cable. The latter has of course never been economic where few households are involved. 
The frequency planners have been trying to find ways of increasing coverage even to well populated areas. There are so many areas where problems of one sort or another make the provision of DTT difficult. Satellite TV is the obvious solution. 
The time may well come when it is wondered why anyone bothered with DTT. Signal quality is becoming an increasingly important factor as the digital roll out continues. In areas where the signal is marginal, viewers could experience the extreme irritation of picture break up or complete loss like even todays. This is quite apart from the actual quality of the channel, which depends on the number of bits per second used. There is a maximum number of bits per multiplex, the total being shared by several channels. The fewer the bits, the poorer the picture in terms of definition and rendering. 

There have already been complaints about poor quality. The question of domestic arrangements is one that has not so far received adequate public attention. Most households 2000 nowadays don't have just one TV set that the family watches. They have a main one, probably, almost certainly one or more VCRs, and several other sets around the house to serve various purposes. What 'the percentage of households that have digital TV' should really mean is the percentage willing to replace all this equipment. It will be expensive, and people would not be happy if they were told to throw away their other equipment when they get a single nice new all  singing all dancing widescreen digital TV set. It fact there would be uproar. The move from analogue to digital is not like that from 405 to 625 lines, which went fairly smoothly.

In those days few people had video equipment or a multitude of sets. The transition to digital is not going to be smooth, and the suggestion of a switch off during 2006-2010 already looks totally unrealistic. Unless the government subsidises or gives away digital TV sets - and why should it? - people will expect their existing equipment to continue to be usable.  

So it's likely that analogue TV will be with us for many years yet. But that would be the end of analogue too. 



Graetz AG (formerly Ehrich & Graetz AG) was a German manufacturer of petrol lamps. In 1899 the company began to produce radio sets at its plant in Treptow, Berlin. The company lent its name to an electrical circuit called the diode bridge, which is better known as the full-wave bridge rectifier. A drawing of this circuit attributed to Graetz, dated 1897, appears in a paper by Chattopadhyay.

On January 2nd, 1866, master plumber Albert Graetz (1831-1901), together with the distributor Emil Ehrich, founded the "Lampen-Fabrik Erich and Graetz OHG" (Erich and Graetz Lamp Factory, Unlimited), on Dresdener St. in Berlin. Albert Graetz felt compelled to end the "dark times" of what he referred to as "Rueboelfunzein" (vegetable oil lamps), through the introduction of improved lamp designs. Thus, Ehrich and Graetz manufactured and sold, quite successfully, air-draft kerosene lamps under the brand names "Akaria", Matador", and "Iris". In 1889, Albert Graetz handed over management of the company to his sons Adolf (1860-1909) and Max (1861-1937), Emil Ehrich having left the company some time earlier.

n early 1961, Erich Graetz, having no family successor to take over the company, sold 74.5% of "Graetz KG" to the high-bidding "SEL" (Standard- Elektronik-Lorenz AG) (the "Phillips" corporation also being a bidder). The remaining 25.5% of the shares were held by the "Westfaelische Kupfer-und Messing-Werke AG" (Westfaeli Copper and Brass Factories Corporation), as a purely speculative investment holding. "SEL", in turn, eventually sold the factories to "Nokia", of Finland. At the Altena factories, the Petromax lantern continued to be built in to the 1970's.

Ehrich & Graetz
Der Handwerker Albert Graetz unterhielt seit 1859 mit drei Mann in Berlin, Dresdener Straße, eine Werkstatt für Petroleumlampen.
Durch Eintritt des Kaufmanns Emil Ehrich als Kapitalgeber erfolgte im Januar 1866 die Gründung einer offenen Handelsgesellschaft (OHG) in der Lausitzer Strasse 31, Berlin S.O..
Nachdem Emil Ehrich im Jahre 1887 verstarb, war es vornehmlich der Sohn des Mitbegründers der Firma, Max Graetz, der mit technischer Erfindungsgabe und kaufmännischem Geschick den Betrieb ständig ausbaute.
Die folgenden Jahrzehnte brachten auch der Firma Ehrich & Graetz OHG, wie der Mehrzahl der deutschen Industriebetriebe, einen beachtlichen wirtschaftlichen Aufschwung. 1889 beschäftigte Graetz schon 100 Arbeiter. In den Jahren 1897 bis 1899 wurde auf einem sechs Hektar großen Gelände in der Elsenstraße in der damaligen Landgemeinde Treptow bei Berlin (Kreis Teltow) ein neues Fabrikgebäude gebaut. Dor begann die Produktion mit 300 Arbeitern. Nach dem Einzug in die neuerbauten Fabrikgebäude im Jahre 1899 wuchs die Belegschaft der Firma in einem Jahr auf 1000 Beschäftigte.
1908 begann der Betrieb erstmalig mit der Herstellung einer elektrischen Metallfadenlampe und der Produktion verschiedener anderer elektrotechnischer Artikel. Ab 1913 wurden in großem Umfang elektrische Bügeleisen, Wasserkocher und Heizöfen hergestellt und abgesetzt. Das Hauptsortiment lag jedoch weiterhin in der Herstellung von Petroleum- und Gaslampen. Die Markennamen Graetzin und Graetzor werden weltbekannt. Mit der "Petromax Lampe" erlangte Graetz ein Absatzmonopol auf dem Weltmarkt.

Zu Beginn des 1. Weltkrieges 1914 verstand es der Großunternehmer Graetz, dessen Belegschaft etwa 3000 Beschäftigte umfasste, sich auf die steigende profitversprechende Rüstungsproduktion umzustellen. Hauptsächlich wurden Patronen, Zünder sowie Maschinengewehre produziert. Dabei wuchs die Belegschaft auf etwa 7000 Beschäftigte (vor allem Frauen) an.
Die Firma Ehrich und Graetz büßte durch den Krieg ihre Auslandsverbindungen weitgehend ein und war somit gezwungen, sich wieder auf Konsumgüterproduktion umzustellen. Von den 5500 Arbeitern, die am Ende des Krieges beschäftigt waren, wurden 4500 entlassen.
Am 29. Dezember 1919 bildete sich die "Offene Handelsgesellschaft Ehrich & Graetz" in die "Kommanditgesellschaft Ehrich & Graetz" um
Am 20. Mai 1922 wurde die Aktiengesellschaft Ehrich & Graetz AG (neben der Graetz KG) gegründet. Die Hauptaktionäre waren der Seniorchef Max Graetz, seine Söhne Erich, Fritz, Hans und Rudolf sowie sein Schwiegersohn Hans Pahl. (Stammkapital 18 Millionen Mark)

Fritz Graetz übernahm die Geschäftsführung. Es wurden dann Radioapparate für Graetz hergestellt.
1933 wurde "Elektrowatt" aufgelöst und ging in die Graetz Radio GmbH auf.
Seit 1929 stellte die Graetz Radio GmbH, eine hundertprozentige Tochter von Ehrich & Graetz, Rundfunkgeräte her.
Als 1933 die faschistische Diktatur in Deutschland errichtet wurde, begann die Firma Graetz den Maschinenpark zu erneuern und stellte sich bereits 1933 auf Rüstungsproduktion um. Von 1935 bis 1939 entwickelte sich die Firma wieder zu einem bedeutenden Großbetrieb mit 4000 Belegschaftsmitgliedern.
Gefertigt wurden neben Radiogeräten auch vieles andere, hier zu sehen ein 8er Topfsockel / Röhrensockel aus Pressstoff als Zulieferung für Röhrenhersteller / Elektronenröhrenindustrie (1940):
Die Firma Ehrich & Graetz AG stellte sich mit Kriegsbeginn immer mehr auf Rüstungsproduktion um und fertigte Zünder, Kartuschen, Motorradvergaser, Radio- und Nachrichtengeräte sowie Benzinpumpen (Graetzin-Kraftstoff-Förderpumpe) für Flugzeuge.

Die Graetz AG unterlag nach dem Potsdamer Abkommen der Demontage. Ein Großteil der noch intakten Maschinen wurde in die Sowjetunion abtransportiert.
Wenige Männer und Frauen, die bis Ende des Krieges 1945 bei der Graetz AG beschäftigt waren, begannen mit den Aufräumungsarbeiten auf den mit Trümmern übersäten Betriebsgelände.
Wie in vielen anderen Berliner Betrieben fingen auch sie an, aus Kriegsmaterial und den verbliebenen und reparierten Maschinen dringend benötigte Gebrauchsgüter (Töpfe, Schüsseln, Bratpfannen u.a.) herzustellen.
Noch im Jahre 1945 wurde die Produktion der Petromax-Lampen aufgenommen und weitere Konsumgüter wie Rasierapparate, Winkelmesser und Schulzirkel übernommen. Im Dezember 1945 waren bei der Graetz AG wieder 300 Arbeiter und Angestellte beschäftigt.
Am 8. Februar 1949 wurden die Graetz-Werke in Volkseigentum überführt und der Hauptverwaltung RFT, Rundfunk- und Fernmeldetechnik, in Leipzig unterstellt (VEB Graetz).
Nach kurzer Zeit der Eingliederung des Betriebes in die Hauptverwaltung RFT begann eine Wende im Produktionsprofil des VEB Graetz-Werk. Als Perspektive sah die Hauptverwaltung vor, den gesamten Betrieb mit nunmehr 1200 Beschäftigten auf die Produktion von Fernmeldeanlagen umzustellen.
Die bisherige Produktion von Gaslampen, Bügeleisen, Radiogeräten u.a. musste etappenweise eingestellt werden. Am 4. Februar 1950 wurde der VEB Graetz-Werk in VEB Fernmeldewerk Treptow umbenannt.
Am 1. Juli 1953 wurde der Zusammenschluss des VEB Fernmeldewerk Treptow und des VEB Signalbau Berlin zum neugebildeten VEB Werk für Signal- und Sicherungstechnik Berlin (WSSB) vollzogen.

Erich Graetz und sein Bruder Fritz waren unmittelbar vor dem Zusammenbruch des Deutschen Reiches 1945 nach Bregenz in ihr Zweigwerk geflüchtet, die Metallwaren GmbH, in dem noch Maschinen im Wert von mehreren hunderttausend Reichsmark standen.
Im Oktober 1945 reiste Fritz Graetz nach Berlin und versuchte, im Stammwerk wieder Fuß zu fassen. Doch stieß er auf erbitterte Ablehnung beim neuen Betriebsausschuss. Er musste unverrichteter Dinge wieder abreisen.
Erich Graetz begann so 1946 / 1947 mit der Produktion u.a. von Petromax-Laternen, für die es auch in den Westzonen Bedarf gab. Aber auch andere Gegenstände des "täglichen Bedarfs" wurden hergestellt, u.a. Feuerzeuge:

1948 gründete er zusammen mit seinem Bruder Fritz die Graetz KG, und zwar im westfälischen Altena.
GRAETZ Kommandit-Gesellschaft, Altena (Westfalen), Westiger Strasse 172, Postfach 48, Fernruf: 2357-2359 Amt Altena (Westf.)
Das Gelände und die vorhandenen Fabrikhallen einer ehemaligen Munitionsfabrik von "Thyssen-Krupp" konnten für den Neubeginn genutzt werden. Im November 1948 war das neue Stammwerk fertiggestellt. In rascher Folge weitete sich der Betrieb aus, im Juni 1950 entstand Werk II, im Mai 1951 Werk III - beide ebenfalls in Altena.
In der 1949 gegründeten "Bundesrepublik Deutschland" nahmen Erich und Fritz Graetz die Produktion von Radiogeräten erneut auf.
Anfang der 50er Jahre trumpfte Graetz mit einigen technischen Innovationen in den vorderen Reihen der deutschen Radio- und Fernsehgeräte- Hersteller.

In der Nacht vom 8. zum 9. Mai 1952 brannte das komplette Obergeschoss des Graetz- Werkes 1 ab... : Ansprache des Herrn Erich Graetz an die Belegschaft am Tage nach dem Brand.
Zu Beginn des Jahres 1961 gehen die Firmengruppen SEL (Standard Elektronik Lorenz) und Graetz eine Verbindung ein, zum Ende des Jahres scheidet Erich Graetz aus dem Unternehmen aus.
Auch die SEL gehörte zum amerikanischen Konzern ITT (International Telephone and Telegraph Company)

Der Vertrieb wird ab 1962 neu strukturiert: Man spricht von der koordinierten Vertriebsorganisation von Graetz und Schaub-Lorenz im SEL - Geschäftsbereich Rundfunk Fernsehen Phono.
Zunächst wurde aber noch Graetz und Schaub-Lorenz getrennt, aber unter einem Dach organisiert. Es galt:
Graetz Vertriebsgesellschaft mbH, 7530 Pforzheim, Östliche Karl-Friedrich-Straße 132, Telefon 07231-3021
Ab 1. Januar 1967 wird der Vertrieb weiter "gestrafft" - aus organisatorischen Gründen - wie es in einer Mitteilung verfasst wird. Verkaufsbezirke werden neu festgelegt und Geschäftsstellen benannt.
Firmiert wird mit Standard Elektronik Lorenz Aktiengesellschaft (SEL-AG) / UGR Audio Video Elektronik, 7530 Pforzheim, Östliche 132, Postfach 1526, Telefon 07231/59-2216, Telex 0783781
darunter die Marken "ITT" ("Schaub-Lorenz") und "Graetz", später auch "Ingelen"
Auf der Rückwand späterer "Graetz" Geräte finden wir später:

Auch die österreichische Firma Ingelen wird 1966 vom ITT-Konzern übernommen. Interessanterweise sind so viele in Pforzheim entwickelte Geräte, welche aus Deutschland unter der Marke GRAETZ bekannt wurden, auch mit dem MarkennamenDer frühere Inhaber der Marke, die "Nokia Unterhaltungselektronik GmbH" in 75175 Pforzheim hat die Marke am 02.11.1998 an das Italienische Unternehmen "VIDITEL S.P.A." in Rom weitergegeben. Aufgrund der Nichtverlängerung wurde die Marke am 13.09.2000 gelöscht.
HISTORY OF Standard Elektrik Lorenz AG IN GERMAN:

Die Standard Elektrik Lorenz AG (heute Alcatel-Lucent Deutschland AG) ist ein Unternehmen der Nachrichtentechnik (früherer Slogan: SEL – Die ganze Nachrichtentechnik) mit Hauptsitz in Stuttgart. Zur Nachrichtentechnik zählen auch Informations- und Kommunikationstechnik, Telekommunikationstechnik (SEL war für die Röchelschaltung bekannt) und früher Fernmeldetechnik oder Schwachstromtechnik. Einen weiteren Geschäftsbereich hatte das Unternehmen in der Bahnsicherungstechnik, so wurden für die Deutsche Bundesbahn Relaisstellwerke und elektronische Stellwerke mit den dazugehörigen Außenanlagen (Signale, Gleisfreimeldeanlagen, Weichenantriebe) sowie die Linienzugbeeinflussung entwickelt und gebaut, welche auch bei ausländischen Bahnen Abnehmer fanden. Der Bereich gehört seit 2007 als Thales Transportation Systems GmbH (seit 02.2011 vorher Thales Rail Signalling Solutions GmbH) zum Thales-Konzern. Die bereits 1998 ausgegliederten Bereiche Alcatel Air Navigation Systems und SEL Verteidigungssysteme sind ebenfalls heute in Thales Deutschland beheimatet.[1]
Fernseher Illustraphon 743 von 1957
„Goldsuper Stereo 20“ (1961)
Das Flaggschiff der erfolgreichen Schaub-Lorenz Kofferradios der sechziger Jahre: Touring 70 Universal
Erster Digitalfernseher der Welt (1983)

Bis 1987 gehörte SEL zusammen mit anderen auf dem Sektor Telekommunikation in anderen Ländern tätigen Schwesterfirmen zum US-amerikanischen Mischkonzern International Telephone and Telegraph (ITT). ITT verkaufte die Aktien-Mehrheit an den ITT-Telekommunikationsfirmen an die französische Compagnie Générale d’Electricité (CGE), die nach der Zusammenfassung mit den eigenen Telekommunikationsaktivitäten daraus die Alcatel N.V. bildete.

Die Standard Elektrik Lorenz AG wurde 1993 in Alcatel SEL AG umbenannt. Die Aktienmehrheit liegt mit über 99 % bei der Alcatel. Mit der Fusion von Alcatel und Lucent zu Alcatel-Lucent am 1. Dezember 2006 und der Neu-Firmierung beider Unternehmen in Deutschland zur Alcatel-Lucent Deutschland AG entfiel der Zusatz SEL.


Die beiden Stammfirmen des Unternehmens, die Mix & Genest AG und die Telegraphenbauanstalt von C. Lorenz, wurden 1879 bzw. 1880 gegründet. Das erste Patent von Mix & Genest datiert von 1883, das erste Patent von C. Lorenz ist aus dem Jahr 1902.

Das Unternehmen Mix & Genest war wesentlicher Teil der Standard Elektrizitäts-Gesellschaft (SEG), in die auch die Süddeutsche Apparatefabrik (SAF), die 1875 von F. Heller als "Friedrich Heller, Fabrik Elektrotechnischer Apparate" gegründet wurde, integriert wurde. Der technische Schwerpunkt von Mix & Genest bzw. SEG sowie der C. Lorenz AG war der klassischen Fernmelde- bzw. Funktechnik zuzuordnen. Die C. Lorenz AG baute in den 1920er und 1930er Jahren Großsender für den neu gegründeten Rundfunk.

1930 übernahm die International Telephone and Telegraph Company (ITT) die Aktienmehrheit der Mix & Genest AG und der C. Lorenz AG. [2]

Die C. Lorenz AG positionierte sich mit der Übernahme der G. Schaub Apparatebau-Gesellschaft mbH im Jahr 1940 in der Entwicklung und Herstellung von Rundfunkempfängern. Ab dem Jahr 1950 wurden alle Geräte bei Schaub in Pforzheim gefertigt. 1952 wurde das Typenprogramm beider Unternehmen verschmolzen und der Lorenz-Radio-Vertrieb in die Firma Schaub integriert. Ab 1955 wurden die Geräte unter dem Namen Schaub-Lorenz vertrieben.

1956 wurde das Unternehmen SEG in Standard Elektrik AG umbenannt. Ebenfalls 1956 wurde ein Kabelwerk gegründet. Wesentlicher Motor für das 1957 gegründete Informatikwerk war Karl Steinbuch, der von 1948–1958 dem Unternehmen, zuletzt als Technischer Direktor und Leiter der Zentralen Forschung, angehörte.

1958 erfolgte die Vereinigung der Standard Elektrik AG mit der C. Lorenz AG zur Standard Elektrik Lorenz AG (SEL).

Die Standard Elektrik Lorenz AG übernahm 1961 die Graetz KG. Die Firmenteile Schaub-Lorenz und Graetz waren zusammen mit einem Bildröhrenwerk Bestandteil der Unternehmensgruppe Audio Video der SEL AG, die 1979 als Audio-Video-Elektronik in die ITT ausgegliedert wurde. Die Produkte, die unter anderem Fernsehgeräte, Radios, Autoradios, Kassettenrecorder, Weltempfänger und Lautsprecherboxen umfassen, wurden fortan unter dem Namen ITT Schaub-Lorenz vertrieben.[2]

Versuche, auf dem neuen Gebiet der Raumfahrt-Elektronik Fuß zu fassen, waren auf folgende Produkte beschränkt:

* AZUR: Telemetrie/Telekommandogeräte
* Spacelab: Datenerfassung/Kommandoterminal.

SEL entwickelte zu Beginn der 1970er Jahre das Präzisionsanflugverfahren SETAC. Dieser Unternehmensbereich wurde im Jahre 1987 von der finnischen Firma Nokia übernommen.

1976 hatte SEL ein Grundkapital von 357 Mio. DM bei 33.000 Beschäftigten und einem Umsatz von 2,6 Mrd. DM.

1983 stellte SEL auf der Internationalen Funkausstellung Berlin 1983 mit dem ITT Digivision den weltweit ersten Fernseher mit digitaler Signalverarbeitung vor.[3]

2003 wurden die Markenrechte am Namen Schaub Lorenz an die italienische General Trading SpA verkauft. Die neugegründete Schaub Lorenz International GmbH vertreibt seitdem unter dem alten Markennamen Schaub-Lorenz importierte Konsumelektronik aus dem unteren Preisbereich.

ITT Corporation (NYSE: ITT) is a global diversified manufacturing company with 2008 revenues of $11.7 billion. ITT participates in global markets including water and fluids management, defense and security, and motion and flow control. named ITT Corporation to its list of "America's Best Managed Companies" for 2008, and awarded the company the top spot in the conglomerates category.

,ITT's water business is the world's largest supplier of pumps and systems to transport, treat and control water, and other fluids. The company's defense electronics and services business is one of the ten largest US defense contractors providing defense and security systems, advanced technologies and operational services for military and civilian customers. ITT's motion and flow control business manufactures specialty components for aerospace, transportation and industrial markets.

In 2008, ITT was named to the Dow Jones Sustainability World Index (DJSI World) for the tenth time in recognition of the company's economic, environmental and social performance. ITT is one of the few companies to be included on the list every year since its inception in 1999.

The company was founded in 1920 as International Telephone & Telegraph. During the 1960s and 1970s, under the leadership of its CEO Harold Geneen the company rose to prominence as the archetypal conglomerate, deriving its growth from hundreds of acquisitions in diversified industries. ITT divested its telecommunications assets in 1986, and in 1995 spun off its non-manufacturing divisions, later to be purchased by Starwood Hotels & Resorts Worldwide.

In 1996, the company became ITT Industries, Inc., but changed its name back to ITT Corporation in 2006.


ITT was formed in 1920, created from the Puerto Rico Telephone Company co-founded by Sosthenes Behn.[1] Its first major expansion was in 1923 when it consolidated the Spanish Telecoms market into what is now Telefónica.[2] From 1922 to 1925 it purchased a number of European telephone companies. In 1925 it purchased the Bell Telephone Manufacturing Company of Brussels, Belgium, which was formerly affiliated with AT&T, and manufactured rotary system switching equipment. In the 1930s, ITT grew through purchasing German electronic companies Standard Elektrizitaetsgesellschaft (SEG) and Mix & Genest, both of which were internationally active companies. Its only serious rival was the Theodore Gary & Company conglomerate, which operated a subsidiary, Associated Telephone and Telegraph, with manufacturing plants in Europe.

In the United States, ITT acquired the various companies of the Mackay Companies in 1928 through a specially organized subsidiary corporation, Postal Telegraph & Cable. These companies included the Commercial Cable Company, the Commercial Pacific Cable Company, Postal Telegraph, and the Federal Telegraph Company.

International telecommunications

International telecommunications manufacturing subsidiaries included STC in Australia and Britain, SEL in Germany, BTM in Belgium, and CGCT and LMT in France. Alec Reeves invented Pulse-code modulation (PCM), upon which future digital voice communication was based. These companies manufactured equipment according to ITT designs including the (1960s) Pentaconta crossbar switch and (1970s) Metaconta D, L and 10c Stored Program Control exchanges, mostly for sale to their respective national telephone administrations. This equipment was also produced under license in Poznań (Poland), and in Yugoslavia, and elsewhere. ITT was the largest owner of the LM Ericsson company in Sweden but sold out in 1960.

1989 breakup

In 1989 ITT sold its international telecommunications product businesses to Alcatel, now Alcatel-Lucent. ITT Kellogg was also part of the 1989 sale to Alcatel. The company was then sold to private investors in the U.S. and went by the name Cortelco Kellogg. Today the company is known as Cortelco (Corinth Telecommunications Corporation, named for Corinth, MS headquarters). ITT Educational Services, Inc. (ESI) was spun off through an IPO in 1994, with ITT as an 83% shareholder. ITT merged its long distance division with Metromedia Long Distance, creating Metromedia-ITT. Metromedia-ITT would eventually be acquired by Long Distance Discount Services, Inc. (LDDS) in 1993. LDDS would later change its name to Worldcom in 1995.

In 1995, ITT Corporation split into 3 separate public companies:

* ITT Corp. — In 1997, ITT Corp. completed a merger with Starwood Hotels & Resorts Worldwide, selling off its non-hotel and resorts business. By 1999, ITT completely divested from ITT/ESI; however, the schools still operate as ITT Technical Institute using the ITT name under license.[1] Also in 1999, ITT Corp. dropped the ITT name in favor of Starwood.[7]
* ITT Hartford (insurance) — Today ITT Hartford is still a major insurance company although it has dropped the ITT from its name altogether. The company is now known as The Hartford Financial Services Group, Inc.
* ITT Industries — ITT operated under this name until 2006 and is a major manufacturing and defense contractor business.
o On July 1, 2006, ITT Industries changed its name to ITT Corporation as a result of its shareholders vote on May 9, 2006.

Purchase of International Motion Control (IMC)

An agreement was reached on June 26, 2007 for ITT to acquire privately held International Motion Control (IMC) for $395 million. The deal was closed and finalized in September 2007. An announcement was made September 14, 2010, to close the Cleveland site.
Purchase of EDO

An agreement was reached September 18, 2007 for ITT to buy EDO Corporation for $1.7 billion.[12] After EDO shareholders' approval, the deal was closed and finalized on December 20, 2007.

Purchase of Laing

On April 16, 2009, ITT announced it has signed a definitive agreement to acquire Laing GmbH of Germany, a privately held leading producer of energy-efficient circulator pumps primarily used in residential and commercial plumbing and heating, ventilating and air conditioning (HVAC) systems.

2011 breakup

On January 12, 2011, ITT announced a transformation to separate the company into 3, stand-alone, publicly-traded, and independent companies.

No comments:

Post a Comment

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.